mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 21:38:58 +00:00
147 lines
5.4 KiB
C++
147 lines
5.4 KiB
C++
#ifndef __RNG_MT19937_HPP__
|
|
#define __RNG_MT19937_HPP__
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "rng.hpp"
|
|
|
|
// RNG imitiating torch cpu randn on CPU.
|
|
// Port from pytorch, original license: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/LICENSE
|
|
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/TransformationHelper.h, for uniform_real
|
|
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/native/cpu/DistributionTemplates.h, for normal_kernel/normal_fill/normal_fill_16
|
|
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/MT19937RNGEngine.h, for mt19937_engine
|
|
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/DistributionsHelper.h, for uniform_real_distribution/normal_distribution
|
|
class MT19937RNG : public RNG {
|
|
static const int N = 624;
|
|
static const int M = 397;
|
|
static const uint32_t MATRIX_A = 0x9908b0dfU;
|
|
static const uint32_t UMASK = 0x80000000U;
|
|
static const uint32_t LMASK = 0x7fffffffU;
|
|
|
|
struct State {
|
|
uint64_t seed_;
|
|
int left_;
|
|
bool seeded_;
|
|
uint32_t next_;
|
|
std::array<uint32_t, N> state_;
|
|
bool has_next_gauss = false;
|
|
double next_gauss = 0.0f;
|
|
};
|
|
|
|
State s;
|
|
|
|
uint32_t mix_bits(uint32_t u, uint32_t v) { return (u & UMASK) | (v & LMASK); }
|
|
uint32_t twist(uint32_t u, uint32_t v) { return (mix_bits(u, v) >> 1) ^ ((v & 1) ? MATRIX_A : 0); }
|
|
void next_state() {
|
|
uint32_t* p = s.state_.data();
|
|
s.left_ = N;
|
|
s.next_ = 0;
|
|
for (int j = N - M + 1; --j; p++)
|
|
p[0] = p[M] ^ twist(p[0], p[1]);
|
|
for (int j = M; --j; p++)
|
|
p[0] = p[M - N] ^ twist(p[0], p[1]);
|
|
p[0] = p[M - N] ^ twist(p[0], s.state_[0]);
|
|
}
|
|
|
|
uint32_t rand_uint32() {
|
|
if (--s.left_ == 0)
|
|
next_state();
|
|
uint32_t y = s.state_[s.next_++];
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9d2c5680U;
|
|
y ^= (y << 15) & 0xefc60000U;
|
|
y ^= (y >> 18);
|
|
return y;
|
|
}
|
|
|
|
uint64_t rand_uint64() {
|
|
uint64_t high = (uint64_t)rand_uint32();
|
|
uint64_t low = (uint64_t)rand_uint32();
|
|
return (high << 32) | low;
|
|
}
|
|
|
|
template <typename T, typename V>
|
|
T uniform_real(V val, T from, T to) {
|
|
constexpr auto MASK = static_cast<V>((static_cast<uint64_t>(1) << std::numeric_limits<T>::digits) - 1);
|
|
constexpr auto DIVISOR = static_cast<T>(1) / (static_cast<uint64_t>(1) << std::numeric_limits<T>::digits);
|
|
T x = (val & MASK) * DIVISOR;
|
|
return (x * (to - from) + from);
|
|
}
|
|
|
|
double normal_double_value(double mean, double std) {
|
|
if (s.has_next_gauss) {
|
|
s.has_next_gauss = false;
|
|
return s.next_gauss;
|
|
}
|
|
double u1 = uniform_real(rand_uint64(), 0., 1.); // double
|
|
double u2 = uniform_real(rand_uint64(), 0., 1.); // double
|
|
|
|
double r = std::sqrt(-2.0 * std::log1p(-u2));
|
|
double theta = 2.0 * 3.14159265358979323846 * u1;
|
|
double value = r * std::cos(theta) * std + mean;
|
|
s.next_gauss = r * std::sin(theta) * std + mean;
|
|
s.has_next_gauss = true;
|
|
return value;
|
|
}
|
|
|
|
void normal_fill_16(float* data, float mean, float std) {
|
|
for (int j = 0; j < 8; ++j) {
|
|
float u1 = 1.0f - data[j];
|
|
float u2 = data[j + 8];
|
|
float r = std::sqrt(-2.0f * std::log(u1));
|
|
float theta = 2.0f * 3.14159265358979323846 * u2;
|
|
data[j] = r * std::cos(theta) * std + mean;
|
|
data[j + 8] = r * std::sin(theta) * std + mean;
|
|
}
|
|
}
|
|
|
|
void randn(float* data, int64_t size, float mean = 0.0f, float std = 1.0f) {
|
|
if (size >= 16) {
|
|
for (int64_t i = 0; i < size; i++) {
|
|
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
|
|
}
|
|
for (int64_t i = 0; i < size - 15; i += 16) {
|
|
normal_fill_16(data + i, mean, std);
|
|
}
|
|
if (size % 16 != 0) {
|
|
// Recompute the last 16 values.
|
|
data = data + size - 16;
|
|
for (int64_t i = 0; i < 16; i++) {
|
|
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
|
|
}
|
|
normal_fill_16(data, mean, std);
|
|
}
|
|
} else {
|
|
// Strange handling, hard to understand, but keeping it consistent with PyTorch.
|
|
for (int64_t i = 0; i < size; i++) {
|
|
data[i] = (float)normal_double_value(mean, std);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
MT19937RNG(uint64_t seed = 0) { manual_seed(seed); }
|
|
|
|
void manual_seed(uint64_t seed) override {
|
|
s.seed_ = seed;
|
|
s.seeded_ = true;
|
|
s.state_[0] = (uint32_t)(seed & 0xffffffffU);
|
|
for (int j = 1; j < N; j++) {
|
|
uint32_t prev = s.state_[j - 1];
|
|
s.state_[j] = 1812433253U * (prev ^ (prev >> 30)) + j;
|
|
}
|
|
s.left_ = 1;
|
|
s.next_ = 0;
|
|
s.has_next_gauss = false;
|
|
}
|
|
|
|
std::vector<float> randn(uint32_t n) override {
|
|
std::vector<float> out;
|
|
out.resize(n);
|
|
randn((float*)out.data(), out.size());
|
|
return out;
|
|
}
|
|
};
|
|
|
|
#endif // __RNG_MT19937_HPP__
|