mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
feat: add cpu rng (#977)
This commit is contained in:
parent
e8eb3791c8
commit
742a7333c3
@ -81,7 +81,9 @@ API and command-line option may change frequently.***
|
||||
- [`DPM++ 2M v2`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457)
|
||||
- `DPM++ 2S a`
|
||||
- [`LCM`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13952)
|
||||
- Cross-platform reproducibility (`--rng cuda`, consistent with the `stable-diffusion-webui GPU RNG`)
|
||||
- Cross-platform reproducibility
|
||||
- `--rng cuda`, default, consistent with the `stable-diffusion-webui GPU RNG`
|
||||
- `--rng cpu`, consistent with the `comfyui RNG`
|
||||
- Embedds generation parameters into png output as webui-compatible text string
|
||||
|
||||
## Quick Start
|
||||
|
||||
@ -94,7 +94,7 @@ Options:
|
||||
-M, --mode run mode, one of [img_gen, vid_gen, upscale, convert], default: img_gen
|
||||
--type weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K). If not specified, the default is the
|
||||
type of the weight file
|
||||
--rng RNG, one of [std_default, cuda], default: cuda
|
||||
--rng RNG, one of [std_default, cuda, cpu], default: cuda(sd-webui), cpu(comfyui)
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
|
||||
@ -1124,7 +1124,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
on_type_arg},
|
||||
{"",
|
||||
"--rng",
|
||||
"RNG, one of [std_default, cuda], default: cuda",
|
||||
"RNG, one of [std_default, cuda, cpu], default: cuda(sd-webui), cpu(comfyui)",
|
||||
on_rng_arg},
|
||||
{"-s",
|
||||
"--seed",
|
||||
|
||||
147
rng_mt19937.hpp
Normal file
147
rng_mt19937.hpp
Normal file
@ -0,0 +1,147 @@
|
||||
#ifndef __RNG_MT19937_HPP__
|
||||
#define __RNG_MT19937_HPP__
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
|
||||
#include "rng.hpp"
|
||||
|
||||
// RNG imitiating torch cpu randn on CPU.
|
||||
// Port from pytorch, original license: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/LICENSE
|
||||
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/TransformationHelper.h, for uniform_real
|
||||
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/native/cpu/DistributionTemplates.h, for normal_kernel/normal_fill/normal_fill_16
|
||||
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/MT19937RNGEngine.h, for mt19937_engine
|
||||
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/DistributionsHelper.h, for uniform_real_distribution/normal_distribution
|
||||
class MT19937RNG : public RNG {
|
||||
static const int N = 624;
|
||||
static const int M = 397;
|
||||
static const uint32_t MATRIX_A = 0x9908b0dfU;
|
||||
static const uint32_t UMASK = 0x80000000U;
|
||||
static const uint32_t LMASK = 0x7fffffffU;
|
||||
|
||||
struct State {
|
||||
uint64_t seed_;
|
||||
int left_;
|
||||
bool seeded_;
|
||||
uint32_t next_;
|
||||
std::array<uint32_t, N> state_;
|
||||
bool has_next_gauss = false;
|
||||
double next_gauss = 0.0f;
|
||||
};
|
||||
|
||||
State s;
|
||||
|
||||
uint32_t mix_bits(uint32_t u, uint32_t v) { return (u & UMASK) | (v & LMASK); }
|
||||
uint32_t twist(uint32_t u, uint32_t v) { return (mix_bits(u, v) >> 1) ^ ((v & 1) ? MATRIX_A : 0); }
|
||||
void next_state() {
|
||||
uint32_t* p = s.state_.data();
|
||||
s.left_ = N;
|
||||
s.next_ = 0;
|
||||
for (int j = N - M + 1; --j; p++)
|
||||
p[0] = p[M] ^ twist(p[0], p[1]);
|
||||
for (int j = M; --j; p++)
|
||||
p[0] = p[M - N] ^ twist(p[0], p[1]);
|
||||
p[0] = p[M - N] ^ twist(p[0], s.state_[0]);
|
||||
}
|
||||
|
||||
uint32_t rand_uint32() {
|
||||
if (--s.left_ == 0)
|
||||
next_state();
|
||||
uint32_t y = s.state_[s.next_++];
|
||||
y ^= (y >> 11);
|
||||
y ^= (y << 7) & 0x9d2c5680U;
|
||||
y ^= (y << 15) & 0xefc60000U;
|
||||
y ^= (y >> 18);
|
||||
return y;
|
||||
}
|
||||
|
||||
uint64_t rand_uint64() {
|
||||
uint64_t high = (uint64_t)rand_uint32();
|
||||
uint64_t low = (uint64_t)rand_uint32();
|
||||
return (high << 32) | low;
|
||||
}
|
||||
|
||||
template <typename T, typename V>
|
||||
T uniform_real(V val, T from, T to) {
|
||||
constexpr auto MASK = static_cast<V>((static_cast<uint64_t>(1) << std::numeric_limits<T>::digits) - 1);
|
||||
constexpr auto DIVISOR = static_cast<T>(1) / (static_cast<uint64_t>(1) << std::numeric_limits<T>::digits);
|
||||
T x = (val & MASK) * DIVISOR;
|
||||
return (x * (to - from) + from);
|
||||
}
|
||||
|
||||
double normal_double_value(double mean, double std) {
|
||||
if (s.has_next_gauss) {
|
||||
s.has_next_gauss = false;
|
||||
return s.next_gauss;
|
||||
}
|
||||
double u1 = uniform_real(rand_uint64(), 0., 1.); // double
|
||||
double u2 = uniform_real(rand_uint64(), 0., 1.); // double
|
||||
|
||||
double r = std::sqrt(-2.0 * std::log1p(-u2));
|
||||
double theta = 2.0 * 3.14159265358979323846 * u1;
|
||||
double value = r * std::cos(theta) * std + mean;
|
||||
s.next_gauss = r * std::sin(theta) * std + mean;
|
||||
s.has_next_gauss = true;
|
||||
return value;
|
||||
}
|
||||
|
||||
void normal_fill_16(float* data, float mean, float std) {
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
float u1 = 1.0f - data[j];
|
||||
float u2 = data[j + 8];
|
||||
float r = std::sqrt(-2.0f * std::log(u1));
|
||||
float theta = 2.0f * 3.14159265358979323846 * u2;
|
||||
data[j] = r * std::cos(theta) * std + mean;
|
||||
data[j + 8] = r * std::sin(theta) * std + mean;
|
||||
}
|
||||
}
|
||||
|
||||
void randn(float* data, int64_t size, float mean = 0.0f, float std = 1.0f) {
|
||||
if (size >= 16) {
|
||||
for (int64_t i = 0; i < size; i++) {
|
||||
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
|
||||
}
|
||||
for (int64_t i = 0; i < size - 15; i += 16) {
|
||||
normal_fill_16(data + i, mean, std);
|
||||
}
|
||||
if (size % 16 != 0) {
|
||||
// Recompute the last 16 values.
|
||||
data = data + size - 16;
|
||||
for (int64_t i = 0; i < 16; i++) {
|
||||
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
|
||||
}
|
||||
normal_fill_16(data, mean, std);
|
||||
}
|
||||
} else {
|
||||
// Strange handling, hard to understand, but keeping it consistent with PyTorch.
|
||||
for (int64_t i = 0; i < size; i++) {
|
||||
data[i] = (float)normal_double_value(mean, std);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
MT19937RNG(uint64_t seed = 0) { manual_seed(seed); }
|
||||
|
||||
void manual_seed(uint64_t seed) override {
|
||||
s.seed_ = seed;
|
||||
s.seeded_ = true;
|
||||
s.state_[0] = (uint32_t)(seed & 0xffffffffU);
|
||||
for (int j = 1; j < N; j++) {
|
||||
uint32_t prev = s.state_[j - 1];
|
||||
s.state_[j] = 1812433253U * (prev ^ (prev >> 30)) + j;
|
||||
}
|
||||
s.left_ = 1;
|
||||
s.next_ = 0;
|
||||
s.has_next_gauss = false;
|
||||
}
|
||||
|
||||
std::vector<float> randn(uint32_t n) override {
|
||||
std::vector<float> out;
|
||||
out.resize(n);
|
||||
randn((float*)out.data(), out.size());
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __RNG_MT19937_HPP__
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
#include "model.h"
|
||||
#include "rng.hpp"
|
||||
#include "rng_mt19937.hpp"
|
||||
#include "rng_philox.hpp"
|
||||
#include "stable-diffusion.h"
|
||||
#include "util.h"
|
||||
@ -200,6 +201,8 @@ public:
|
||||
rng = std::make_shared<STDDefaultRNG>();
|
||||
} else if (sd_ctx_params->rng_type == CUDA_RNG) {
|
||||
rng = std::make_shared<PhiloxRNG>();
|
||||
} else if (sd_ctx_params->rng_type == CPU_RNG) {
|
||||
rng = std::make_shared<MT19937RNG>();
|
||||
}
|
||||
|
||||
ggml_log_set(ggml_log_callback_default, nullptr);
|
||||
@ -2131,6 +2134,7 @@ enum sd_type_t str_to_sd_type(const char* str) {
|
||||
const char* rng_type_to_str[] = {
|
||||
"std_default",
|
||||
"cuda",
|
||||
"cpu",
|
||||
};
|
||||
|
||||
const char* sd_rng_type_name(enum rng_type_t rng_type) {
|
||||
|
||||
@ -31,6 +31,7 @@ extern "C" {
|
||||
enum rng_type_t {
|
||||
STD_DEFAULT_RNG,
|
||||
CUDA_RNG,
|
||||
CPU_RNG,
|
||||
RNG_TYPE_COUNT
|
||||
};
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user