mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2026-01-02 18:53:36 +00:00
1.5 KiB
1.5 KiB
Using TAESD to faster decoding
You can use TAESD to accelerate the decoding of latent images by following these steps:
- Download the model weights.
Or curl
curl -L -O https://huggingface.co/madebyollin/taesd/resolve/main/diffusion_pytorch_model.safetensors
- Specify the model path using the
--taesd PATHparameter. example:
sd-cli -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors
Qwen-Image and wan (TAEHV)
sd.cpp also supports TAEHV (#937), which can be used for Qwen-Image and wan.
-
For Qwen-Image and wan2.1 and wan2.2-A14B, download the wan2.1 tae safetensors weights
Or curl
curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_1.safetensors -
For wan2.2-TI2V-5B, use the wan2.2 tae safetensors weights
Or curl
curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_2.safetensors
Then simply replace the --vae xxx.safetensors with --tae xxx.safetensors in the commands. If it still out of VRAM, add --vae-conv-direct to your command though might be slower.