Compare commits

..

160 Commits

Author SHA1 Message Date
leejet
3ba6399b74 refactor: update c api 2025-07-13 18:46:48 +08:00
stduhpf
a772dca27a
feat: add Instruct-Pix2pix/CosXL-Edit support (#679)
* Instruct-p2p support

* support 2 conditionings cfg

* Do not re-encode the exact same image twice

* fixes for 2-cfg

* Fix pix2pix latent inputs + improve inpainting a bit + fix naming

* prepare for other pix2pix-like models

* Support sdxl ip2p

* fix reference image embeddings

* Support 2-cond cfg properly in cli

* fix typo in help

* Support masks for ip2p models

* unify code style

* delete unused code

* use edit mode

* add img_cond

* format code

---------

Co-authored-by: leejet <leejet714@gmail.com>
2025-07-12 15:36:45 +08:00
Wagner Bruna
6d84a30c66
feat: overriding quant types for specific tensors on model conversion (#724) 2025-07-08 00:11:38 +08:00
stduhpf
dafc32d0dd
feat: add support for f64/i64 and clip_g diffusers model (#681) 2025-07-06 23:24:55 +08:00
idostyle
225162f270
fix: mark encoder.embed_tokens.weight as unused tensor (#721) 2025-07-06 23:10:10 +08:00
leejet
b9e4718fac fix: correct --chroma-enable-t5-mask argument 2025-07-06 11:11:47 +08:00
leejet
1ce1c1adca feat: make lora graph size variable 2025-07-05 22:44:22 +08:00
stduhpf
19fbfd8639
feat: override text encoders for unet models (#682) 2025-07-04 22:19:47 +08:00
Wagner Bruna
76c72628b1
fix: fix a few typos on cli help and error messages (#714) 2025-07-04 22:15:41 +08:00
vmobilis
3bae667f3d
fix: break the line after skipping tensors in VAE (#591) 2025-07-03 22:50:42 +08:00
stduhpf
8d0819c548
fix: actually use embeddings with SDXL (#657) 2025-07-03 22:39:57 +08:00
Binozo
7a8ff2e819
docs: add golang cgo bindings to README (#635) 2025-07-02 23:19:49 +08:00
rmatif
0927e8e322
docs: add Android app to README (#647) 2025-07-02 23:18:16 +08:00
stduhpf
83ef4e44ce
feat: add T5 with llama.cpp naming convention support (#654) 2025-07-02 23:13:00 +08:00
leejet
7dac89ad75 refector: reuse some code 2025-07-01 23:33:50 +08:00
stduhpf
9251756086
feat: add CosXL support (#683) 2025-07-01 23:13:04 +08:00
leejet
ecf5db97ae chore: fix windows build and release 2025-07-01 23:05:48 +08:00
stduhpf
ea46fd6948
fix: force zero-initialize output of tiling (#703) 2025-07-01 23:01:29 +08:00
leejet
23de7fc44a chore: avoid warnings when building on linux 2025-06-30 23:49:52 +08:00
rmatif
d42fd59464
feat: add OpenCL backend support (#680) 2025-06-30 23:32:23 +08:00
Wagner Bruna
0d8b39f0ba
fix: avoid crash on sdxl loras (#658)
Some SDXL LoRAs (eg. PCM) can exceed 12k nodes.
2025-06-30 23:29:32 +08:00
R0CKSTAR
539b5b9374
fix: fix musa docker build (#662)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-30 23:27:40 +08:00
Wagner Bruna
b1fc16b504
fix: allow resetting clip_skip to its default value (#697) 2025-06-30 23:23:21 +08:00
leejet
d6c87dce5c docs: add chroma doc 2025-06-29 23:58:15 +08:00
leejet
a28d04dd81 fix: fix the issue in parsing --chroma-disable-dit-mask 2025-06-29 23:52:36 +08:00
leejet
45d0ebb30c style: format code 2025-06-29 23:40:55 +08:00
stduhpf
b1cc40c35c
feat: add Chroma support (#696)
---------

Co-authored-by: Green Sky <Green-Sky@users.noreply.github.com>
Co-authored-by: leejet <leejet714@gmail.com>
2025-06-29 23:36:42 +08:00
leejet
884e23eeeb docs: add kontext doc 2025-06-29 10:35:31 +08:00
stduhpf
c9b5735116
feat: add FLUX.1 Kontext dev support (#707)
* Kontext support
* add edit mode

---------

Co-authored-by: leejet <leejet714@gmail.com>
2025-06-29 10:08:53 +08:00
vmobilis
10c6501bd0
fix missing argument in prototype of stbi_write_jpg (#613) 2025-03-09 12:30:10 +08:00
vmobilis
10feacf031
fix: correct img2img time (#616) 2025-03-09 12:29:08 +08:00
vmobilis
655f8a5169
fix: clang complains about needless braces (#618) 2025-03-09 12:26:41 +08:00
idostyle
d7c7a34712
fix: ModelLoader::load_tensors duplicated check (#623)
Introduced in 2b6ec97fe244d03c40aa8d70131d40bb086099b0
2025-03-09 12:23:23 +08:00
vmobilis
81556f3136
chore: silence some warnings about precision loss (#620) 2025-03-09 12:22:39 +08:00
stduhpf
3fb275a67b
fix: suport sdxl embedddings (#621) 2025-03-09 12:21:23 +08:00
leejet
30b3ac8e62 fix: avoid potential dangling pointer problem 2025-03-01 16:58:26 +08:00
leejet
195d170136 sync: update ggml 2025-03-01 12:09:55 +08:00
stduhpf
f50a7f66aa
fix: fix race condition causing inconsistent value for decoder_only (#609) 2025-03-01 11:49:06 +08:00
stduhpf
85e9a12988
fix: preprocess tensor names in tensor types map (#607)
Thank you for your contribution
2025-03-01 11:48:04 +08:00
stduhpf
fbd42b6fc1
fix: fix embeddings with quantized models (#601) 2025-03-01 11:45:39 +08:00
yslai
19d876ee30
feat: implement DDIM with the "trailing" timestep spacing and TCD (#568) 2025-02-22 21:34:22 +08:00
lalala
f27f2b2aa2
docs: add missing --mask and --guidance options to print_usage (#572) 2025-02-22 21:32:37 +08:00
piallai
99609761dc
docs: fix typo in readme (#574) 2025-02-22 21:30:28 +08:00
stduhpf
69c73789fe
fix: force binary mask for inpaint models (#589)
Co-authored-by: leejet <leejet714@gmail.com>
2025-02-22 21:29:57 +08:00
Meng, Hengyu
838beb9b5e
chore: add global SYCL compile flags (#597) 2025-02-22 21:23:58 +08:00
stduhpf
f23b803a6b
fix:: unapply current loras properly (#590) 2025-02-22 21:22:22 +08:00
stduhpf
1be2491dcf
feat: partial LyCORIS support (tucker decomposition for LoCon + LoHa + LoKr) (#577) 2025-02-22 21:19:26 +08:00
Matti Pulkkinen
3753223982
fix: make get_files_from_dir works with absolute path (#598)
Co-authored-by: Matti Pulkkinen <pulkkinen@ultimatium.com>
2025-02-22 21:16:50 +08:00
R0CKSTAR
59ca2b0f16
chore: bump MUSA SDK version to rc3.1.1 (#599)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-02-22 21:14:26 +08:00
vmobilis
d46ed5e184
feat: support JPEG compression (#583) 2025-02-05 16:18:02 +08:00
ag2s20150909
2535ad5a43
chore: fix cuda on github action (#580) 2025-02-05 16:15:41 +08:00
stduhpf
e500d95abd
fix: fix rank 1 loras (#575) 2025-02-05 16:13:17 +08:00
R0CKSTAR
a3cbdf6dcb
chore: SD_USE_CUBLAS => SD_USE_CUDA for MUSA backend (#578)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-02-05 16:11:26 +08:00
piallai
5eb15ef4d0
docs: add CLI-GUI to list (#546) 2025-01-18 13:16:54 +08:00
stduhpf
d9b5942d98
feat: add sdxl v-pred suppport (#536) 2025-01-18 13:15:54 +08:00
stduhpf
587a37b2e2
fix: avoid sd2((non inpaint) crash on v-pred check (#537) 2025-01-18 13:13:34 +08:00
ag2s20150909
4fe83d52cf
chore: fix CUDA on GitHub Action (#567) 2025-01-18 13:12:26 +08:00
null-define
b70aaa672a
chore: fix amd rocm build (#571) 2025-01-18 13:11:39 +08:00
idostyle
27edb765a5
chore: fix CI windows release artifacts (#532) 2025-01-18 13:09:22 +08:00
leejet
dcf91f9e0f chore: change SD_CUBLAS/SD_USE_CUBLAS to SD_CUDA/SD_USE_CUDA 2024-12-28 13:27:51 +08:00
stduhpf
348a54e34a
feat: use pretty-progress for tensor loading (#516) 2024-12-28 13:14:52 +08:00
stduhpf
d50473dc49
feat: support 16 channel tae (taesd/taef1) (#527) 2024-12-28 13:13:48 +08:00
piallai
b5cc1422da
fix: fix typo for skip layers parameters (#492) 2024-12-28 13:12:08 +08:00
R0CKSTAR
5cc74d1f09
feat: support Moore Threads GPU (#529)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-12-28 13:08:36 +08:00
stduhpf
0d9d6659a7
fix: fix metal build (#513) 2024-12-28 13:06:17 +08:00
stduhpf
8f4ab9add3
feat: support Inpaint models (#511) 2024-12-28 13:04:49 +08:00
stduhpf
cc92a6a1b3
feat: support more LoRA models (#520) 2024-12-28 12:56:44 +08:00
leejet
9578fdcc46 chore: remove rocm5.5 build temporarily 2024-11-30 14:26:29 +08:00
stduhpf
9148b980be
feat: remove type restrictions (#489) 2024-11-30 14:22:15 +08:00
stduhpf
7ce63e740c
feat: flexible model architecture for dit models (Flux & SD3) (#490)
* Refactor: wtype per tensor

* Fix default args

* refactor: fix flux

* Refactor photmaker v2 support

* unet: refactor the refactoring

* Refactor: fix controlnet and tae

* refactor: upscaler

* Refactor: fix runtime type override

* upscaler: use fp16 again

* Refactor: Flexible sd3 arch

* Refactor: Flexible Flux arch

* format code

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-11-30 14:18:53 +08:00
leejet
4570715727 fix: use ggml_nn_attention in vae 2024-11-24 18:21:31 +08:00
stduhpf
53b415f787
fix: remove default variables in c headers (#478) 2024-11-24 18:10:25 +08:00
leejet
c3eeb669cd sync: update ggml 2024-11-23 13:29:32 +08:00
leejet
b5f4932696 refactor: add some sd vesion helper functions 2024-11-23 13:02:44 +08:00
Erik Scholz
1c168d98a5
fix: repair flash attention support (#386)
* repair flash attention in _ext
this does not fix the currently broken fa behind the define, which is only used by VAE

Co-authored-by: FSSRepo <FSSRepo@users.noreply.github.com>

* make flash attention in the diffusion model a runtime flag
no support for sd3 or video

* remove old flash attention option and switch vae over to attn_ext

* update docs

* format code

---------

Co-authored-by: FSSRepo <FSSRepo@users.noreply.github.com>
Co-authored-by: leejet <leejet714@gmail.com>
2024-11-23 12:39:08 +08:00
William Murray
ea9b647080
docs: update readme, add python bindings (#423) 2024-11-23 11:52:33 +08:00
bssrdf
2b1bc06477
feat: add PhotoMaker Version 2 support (#358)
* first attempt at updating to photomaker v2

* continue adding photomaker v2 modules

* finishing the last few pieces for photomaker v2; id_embeds need to be done by a manual step and pass as an input file

* added a name converter for Photomaker V2; build ok

* more debugging underway

* failing at cuda mat_mul

* updated chunk_half to be more efficient; redo feedforward

* fixed a bug: carefully using ggml_view_4d to get chunks of a tensor; strides need to be recalculated or set properly; still failing at soft_max cuda op

* redo weight calculation and weight*v

* fixed a bug now Photomaker V2 kinds of working

* add python script for face detection (Photomaker V2 needs)

* updated readme for photomaker

* fixed a bug causing PMV1 crashing; both V1 and V2 work

* fixed clean_input_ids for PMV2

* fixed a double counting bug in tokenize_with_trigger_token

* updated photomaker readme

* removed some commented code

* improved reconstructing class word free prompt

* changed reading id_embed to raw binary using existing load tensor function; this is more efficient than using model load and also makes it easier to work with sd server

* minor clean up

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-11-23 11:50:14 +08:00
Flavio Bizzarri
b99cbfe4dc
docs: update README.md (#452) 2024-11-23 11:46:50 +08:00
Plamen Minev
8c7719fe9a
fix: typo in clip-g encoder arg (#472) 2024-11-23 11:46:00 +08:00
LostRuins Concedo
8f94efafa3
feat: add support for loading F8_E5M2 weights (#460) 2024-11-23 11:45:11 +08:00
fszontagh
07585448ad
docs: update readme (#462) 2024-11-23 11:42:12 +08:00
stduhpf
6ea812256e
feat: add flux 1 lite 8B (freepik) support (#474)
* Flux Lite (Freepik) support

* format code

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-11-23 11:41:30 +08:00
stduhpf
9b1d90bc23
fix: improve clip text_projection support (#397) 2024-11-23 11:19:27 +08:00
stduhpf
65fa646684
feat: add sd3.5 medium and skip layer guidance support (#451)
* mmdit-x

* add support for sd3.5 medium

* add skip layer guidance support (mmdit only)

* ignore slg if slg_scale is zero (optimization)

* init out_skip once

* slg support for flux (expermiental)

* warn if version doesn't support slg

* refactor slg cli args

* set default slg_scale to 0 (oops)

* format code

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-11-23 11:15:31 +08:00
leejet
ac54e00760
feat: add sd3.5 support (#445) 2024-10-24 21:58:03 +08:00
stduhpf
14206fd488
fix: fix clip tokenizer (#383) 2024-09-02 22:31:46 +08:00
zhentaoyu
e410aeb534
sync: update ggml to fix large image generation with SYCL backend (#380)
* turn off fast-math on host in SYCL backend

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* update ggml for sync some sycl ops

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* update sycl readme and ggml

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

---------

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-09-02 22:29:35 +08:00
leejet
58d54738e2 docs: add star history 2024-08-28 00:27:54 +08:00
leejet
4f87b232c2 docs: add Vulkan build command 2024-08-28 00:25:31 +08:00
Erik Scholz
e71ddcedad
fix: improve VAE tiling (#372)
* fix and improve: VAE tiling
- properly handle the upper left corner interpolating both x and y
- refactor out lerp
- use smootherstep to preserve more detail and spend less area blending

* actually fix vae tile merging

Co-authored-by: stduhpf <stephduh@live.fr>

* remove the now unused lerp function

---------

Co-authored-by: stduhpf <stephduh@live.fr>
2024-08-28 00:21:12 +08:00
stduhpf
f4c937cb94
fix: add some missing cli args to usage (#363) 2024-08-28 00:17:46 +08:00
Daniele
0362cc4874
fix: fix some typos (#361) 2024-08-28 00:15:37 +08:00
Yu Xing
6c88ad3fd6
fix: resolve naming conflict while llama.cpp and sd.cpp both build (#351) 2024-08-28 00:14:41 +08:00
Daniele
dc0882cdc9
feat: add exponential scheduler (#346)
* feat: added exponential scheduler

* updated README

* improved exponential formatting

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-08-28 00:13:35 +08:00
Daniele
d00c94844d
feat: add ipndm and ipndm_v samplers (#344) 2024-08-28 00:03:41 +08:00
Daniele
2d4a2f7982
feat: add GITS scheduler (#343) 2024-08-28 00:02:17 +08:00
Tim Miller
353ee93e2d
fix: add enum type to sd_type_t (#293) 2024-08-27 23:57:24 +08:00
soham
2027b16fda
feat: add vulkan backend support (#291)
* Fix includes and init vulkan the same as llama.cpp

* Add Windows Vulkan CI

* Updated ggml submodule

* support epsilon as a parameter for ggml_group_norm

---------

Co-authored-by: Cloudwalk <cloudwalk@icculus.org>
Co-authored-by: Oleg Skutte <00.00.oleg.00.00@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
2024-08-27 23:56:09 +08:00
leejet
8847114abf fix: fix issue when applying lora 2024-08-25 22:39:39 +08:00
leejet
5c561eab31 feat: do not convert more flux tensors 2024-08-25 16:01:36 +08:00
leejet
f5997a1951 fix: do not force using f32 for some flux layers
This sometimes leads to worse result
2024-08-25 14:07:22 +08:00
leejet
1bdc767aaf feat: force using f32 for some layers 2024-08-25 13:53:16 +08:00
leejet
79c9fe9556 feat: do not convert some tensors 2024-08-25 13:37:37 +08:00
leejet
28a614769a docs: update docs/flux.md 2024-08-25 13:11:34 +08:00
leejet
c837c5d9cc style: format code 2024-08-25 00:19:37 +08:00
leejet
d08d7fa632 docs: update README.md 2024-08-24 14:38:44 +08:00
leejet
64d231f384
feat: add flux support (#356)
* add flux support

* avoid build failures in non-CUDA environments

* fix schnell support

* add k quants support

* add support for applying lora to quantized tensors

* add inplace conversion support for f8_e4m3 (#359)

in the same way it is done for bf16
like how bf16 converts losslessly to fp32,
f8_e4m3 converts losslessly to fp16

* add xlabs flux comfy converted lora support

* update docs

---------

Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com>
2024-08-24 14:29:52 +08:00
zhentaoyu
697d000f49
feat: add SYCL Backend Support for Intel GPUs (#330)
* update ggml and add SYCL CMake option

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* hacky CMakeLists.txt for updating ggml in cpu backend

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* rebase and clean code

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* add sycl in README

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* rebase ggml commit

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* refine README

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

* update ggml for supporting sycl tsembd op

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>

---------

Signed-off-by: zhentaoyu <zhentao.yu@intel.com>
2024-08-10 13:42:50 +08:00
leejet
5b8d16aa68 docs: reorganize README.md 2024-08-03 12:06:34 +08:00
leejet
3d854f7917 sync: update ggml submodule url 2024-08-03 11:42:12 +08:00
leejet
4a6e36edc5 sync: update ggml 2024-07-28 18:30:35 +08:00
leejet
73c2176648
feat: add sd3 support (#298) 2024-07-28 15:44:08 +08:00
Phu Tran
9c51d8787f
chore: fix cuda CI (#286) 2024-06-12 23:13:24 +08:00
leejet
f9f0d4685b fix: sample_k_diffusion should be static 2024-06-10 23:04:02 +08:00
leejet
8d2050a5cf sync: update ggml 2024-06-10 22:59:36 +08:00
leejet
08f5b41956 refector: make the sampling module more independent 2024-06-10 22:42:15 +08:00
Eugene
b6daf5c55b
fix: use PRI64 instead of %i for some log (#269) 2024-06-01 14:01:58 +08:00
leejet
be6cd1a4bf sync: update ggml 2024-06-01 13:44:09 +08:00
Justine Tunney
e1384defca
perf: make crc32 100x faster on x86-64 (#278)
This change makes checkpoints load significantly faster by optimizing
pkzip's cyclic redundancy check. This code was developed by Intel and
Google and Mozilla. See Chromium's zlib codebase for further details.
2024-06-01 12:58:30 +08:00
Phu Tran
814280343c
chore: update artifact actions (#267) 2024-06-01 12:33:13 +08:00
leejet
1d2af5ca3f fix: set n_dims of tensor storage to 1 when it's 0 2024-05-14 23:06:52 +08:00
Grauho
ce1bcc74a6
feat: add AYS(Align Your Steps) scheduler (#241)
Added NVIDEA's new "Align Your Steps" style scheduler in accordance with their
quick start guide. Currently has handling for SD1.5, SDXL, and SVD, using the
noise levels from their paper to generate the sigma values. Can be selected
using the --schedule ays command line switch. Updates the main.cpp help
message and README to reflect this option, also they now inform the user
of the --color switch as well.

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-04-29 23:21:32 +08:00
Eugene
760cfaa618
fix: ignore tensors with the particular dim while loading (#233) 2024-04-29 23:04:27 +08:00
Eugene
6d16f6853e
fix: correct upscale progressbar (#232) 2024-04-29 22:59:46 +08:00
leejet
036ba9e6d8 feat: enable controlnet and photo maker for img2img mode 2024-04-14 16:36:08 +08:00
leejet
ec82d5279a refector: remove some useless code 2024-04-14 14:04:52 +08:00
bssrdf
afea457eda
fix: support more SDXL LoRA names (#216)
* apply pmid lora only once for multiple txt2img calls

* add better support for SDXL LoRA

* fix for some sdxl lora, like lcm-lora-xl

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
2024-04-06 17:12:03 +08:00
null-define
646e77638e
fix: fix tiles_ctx not freed in sd_tiling (#219) 2024-04-06 16:51:48 +08:00
leejet
3ac48ea1a7 fix: use static implementation of stb_image_resize 2024-04-06 16:37:08 +08:00
Phu Tran
607e39489f
docs: add Jellybox as UI using sd.cpp (#214) 2024-04-02 12:31:54 +08:00
delldu
ccae95aec9
feat: support RGBA image input of flexible size (#212)
* Support png image and resize image with 64 pixels in img2img mode

* update the error information

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-04-02 12:29:18 +08:00
bssrdf
90e9178d18
fix: apply pmid lora only once for multiple txt2img calls (#208)
Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-04-02 11:58:29 +08:00
Grauho
48bcce493f
fix: avoid double free and fix sdxl lora naming conversion
* Fixed a double free issue when running multiple backends on the CPU, eg: CLIP
and the primary backend, as this would result in the *_backend pointers both
pointing to the same thing resulting in a segfault when calling the
StableDiffusionGGML destructor.

* Improve logging to allow for a color switch on the command line interface.
Changed the base log_printf function to not bake the log level directly into
the log buffer as that information is already passed the logging function via
the level parameter and it's easier to add in there than strip it out.

* Added a fix for certain SDXL LoRAs that don't seem to follow the expected
naming convention, converts over the tensor name during the LoRA model
loading. Added some logging of useful LoRA loading information. Had to
increase the base size of the GGML graph as the existing size results in an
insufficient graph memory error when using SDXL LoRAs.

* small fixes

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-03-20 22:00:22 +08:00
bssrdf
a469688e30
feat: add TencentARC PhotoMaker support (#179)
* first efforts at implementing photomaker; lots more to do

* added PhotoMakerIDEncoder model in SD

* fixed soem bugs; now photomaker model weights can be loaded into their tensor buffers

* added input id image loading

* added preprocessing inpit id images

* finished get_num_tensors

* fixed a bug in remove_duplicates

* add a get_learned_condition_with_trigger function to do photomaker stuff

* add a convert_token_to_id function for photomaker to extract trigger word's token id

* making progress; need to implement tokenizer decoder

* making more progress; finishing vision model forward

* debugging vision_model outputs

* corrected clip vision model output

* continue making progress in id fusion process

* finished stacked id embedding; to be tested

* remove garbage file

* debuging graph compute

* more progress; now alloc buffer failed

* fixed wtype issue; input images can only be 1 because issue with transformer when batch size > 1 (to be investigated)

* added delayed subject conditioning; now photomaker runs and generates images

* fixed stat_merge_step

* added photomaker lora model (to be tested)

* reworked pmid lora

* finished applying pmid lora; to be tested

* finalized pmid lora

* add a few print tensor; tweak in sample again

* small tweak; still not getting ID faces

* fixed a bug in FuseBlock forward; also remove diag_mask op in for vision transformer; getting better results

* disable pmid lora apply for now; 1 input image seems working; > 1 not working

* turn pmid lora apply back on

* fixed a decode bug

* fixed a bug in ggml's conv_2d, and now > 1 input images working

* add style_ratio as a cli param; reworked encode with trigger for attention weights

* merge commit fixing lora free param buffer error

* change default style ratio to 10%

* added an option to offload vae decoder to CPU for mem-limited gpus

* removing image normalization step seems making ID fidelity much higher

* revert default style ratio back ro 20%

* added an option for normalizing input ID images; cleaned up debugging code

* more clean up

* fixed bugs; now failed with cuda error; likely out-of-mem on GPU

* free pmid model params when required

* photomaker working properly now after merging and adapting to GGMLBlock API

* remove tensor renaming;  fixing names in the photomaker model file

* updated README.md to include instructions and notes for running PhotoMaker

* a bit clean up

* remove -DGGML_CUDA_FORCE_MMQ; more clean up and README update

* add input image requirement in README

* bring back freeing pmid lora params buffer; simply pooled output of CLIPvision

* remove MultiheadAttention2; customized MultiheadAttention

* added a WIN32 get_files_from_dir; turn off Photomakder if receiving no input images

* update docs

* fix ci error

* make stable-diffusion.h a pure c header file

This reverts commit 27887b630db6a92f269f0aef8de9bc9832ab50a9.

* fix ci error

* format code

* reuse get_learned_condition

* reuse pad_tokens

* reuse CLIPVisionModel

* reuse LoraModel

* add --clip-on-cpu

* fix lora name conversion for SDXL

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
2024-03-12 23:15:17 +08:00
leejet
61980171a1 sync: update ggml 2024-03-10 17:23:11 +08:00
Cyberhan123
583cc5bba2
docs: add binding (#189) 2024-03-03 13:27:07 +08:00
Phu Tran
1ce9470f27
fix: fix building shared library (#188) 2024-03-03 13:24:59 +08:00
leejet
a65c410463 sync: update ggml 2024-03-02 19:49:41 +08:00
leejet
a17ae7b7d2 sync: update ggml 2024-03-02 19:23:11 +08:00
leejet
e1b37b4ef6 fix: update ggml submodule url 2024-03-02 17:34:08 +08:00
fszontagh
7be65faa7c
feat: add progress callback (#170) 2024-03-02 17:28:41 +08:00
Phu Tran
d164236b2a
fix: fix metal build issues (#183) 2024-03-02 17:17:57 +08:00
leejet
ef5c3f7401 feat: add support for prompt longer than 77 2024-03-02 17:13:18 +08:00
Cyberhan123
b7870a0f89
chore: improve ci (#150)
---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-02-26 22:01:34 +08:00
leejet
4a8190405a fix: fix the issue with dynamic linking 2024-02-25 21:39:01 +08:00
leejet
730585d515
sync: update ggml (#180) 2024-02-25 21:11:01 +08:00
Sean Bailey
193fb620b1
feat: add capability to repeatedly run the upscaler in a row (#174)
* Add in upscale repeater logic

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-02-24 21:31:01 +08:00
leejet
b6368868d9
feat: introduce GGMLBlock and implement SVD(Broken) (#159)
* introduce GGMLBlock and implement SVD(Broken)

* add sdxl vae warning
2024-02-24 20:06:39 +08:00
leejet
349439f239 style: format code 2024-01-29 23:05:18 +08:00
Steward Garcia
36ec16ac99
feat: Control Net support + Textual Inversion (embeddings) (#131)
* add controlnet to pipeline

* add cli params

* control strength cli param

* cli param keep controlnet in cpu

* add Textual Inversion

* add canny preprocessor

* refactor: change ggml_type_sizef to ggml_row_size

* process hint once time

* ignore the embedding name case

---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-01-29 22:38:51 +08:00
旺旺碎冰冰
c6071fa82f
feat: add hipBlas support (#94) 2024-01-14 11:53:42 +08:00
leejet
5c614e4bc2
feat: add convert api (#142) 2024-01-14 11:43:24 +08:00
leejet
2b6ec97fe2
sync: update ggml (#134) 2024-01-05 23:18:41 +08:00
leejet
db382348cc fix: change GGML_MAX_NAME to 128 2024-01-03 22:42:42 +08:00
leejet
7cb41b190f fix: avoid encountering 'std::set undefined' in some environments 2024-01-02 22:37:01 +08:00
leejet
7fb8a51318 chore: make SD_BUILD_DLL visible only to SD_LIB 2024-01-02 22:31:40 +08:00
leejet
2c5f3fc53a chore: add support for building shared library 2024-01-02 21:05:44 +08:00
Erik Scholz
f2e4d9793b
fix: avoid some memory leaks (#136)
---------

Co-authored-by: leejet <leejet714@gmail.com>
2024-01-01 23:27:29 +08:00
Erik Scholz
4a5e7b58e2
fix: never use a log message as a format string (#135) 2024-01-01 20:43:47 +08:00
leejet
2e79a82f85
refactor: reorganize code and use c api (#133) 2024-01-01 16:22:18 +08:00
86 changed files with 2446357 additions and 4947 deletions

View File

@ -3,7 +3,6 @@ UseTab: Never
IndentWidth: 4
TabWidth: 4
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false
ColumnLimit: 0
AccessModifierOffset: -4
NamespaceIndentation: All

View File

@ -4,17 +4,36 @@ on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
description: "Create new release"
required: true
type: boolean
push:
branches:
- master
- ci
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
paths:
[
".github/workflows/**",
"**/CMakeLists.txt",
"**/Makefile",
"**/*.h",
"**/*.hpp",
"**/*.c",
"**/*.cpp",
"**/*.cu",
]
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
paths:
[
"**/CMakeLists.txt",
"**/Makefile",
"**/*.h",
"**/*.hpp",
"**/*.c",
"**/*.cpp",
"**/*.cu",
]
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
@ -30,7 +49,6 @@ jobs:
with:
submodules: recursive
- name: Dependencies
id: depends
run: |
@ -42,14 +60,37 @@ jobs:
run: |
mkdir build
cd build
cmake ..
cmake .. -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON
cmake --build . --config Release
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest --verbose --timeout 900
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/main' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Fetch system info
id: system-info
run: |
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
echo "OS_NAME=`lsb_release -s -i`" >> "$GITHUB_OUTPUT"
echo "OS_VERSION=`lsb_release -s -r`" >> "$GITHUB_OUTPUT"
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp ggml/LICENSE ./build/bin/ggml.txt
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
macOS-latest-cmake:
runs-on: macos-latest
@ -63,9 +104,8 @@ jobs:
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install zip
- name: Build
id: cmake_build
@ -73,30 +113,61 @@ jobs:
sysctl -a
mkdir build
cd build
cmake ..
cmake .. -DGGML_AVX2=ON -DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" -DSD_BUILD_SHARED_LIBS=ON
cmake --build . --config Release
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest --verbose --timeout 900
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/main' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Fetch system info
id: system-info
run: |
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
echo "OS_NAME=`sw_vers -productName`" >> "$GITHUB_OUTPUT"
echo "OS_VERSION=`sw_vers -productVersion`" >> "$GITHUB_OUTPUT"
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp ggml/LICENSE ./build/bin/ggml.txt
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
windows-latest-cmake:
runs-on: windows-latest
runs-on: windows-2025
env:
VULKAN_VERSION: 1.3.261.1
strategy:
matrix:
include:
- build: 'noavx'
defines: '-DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
- build: 'avx2'
defines: '-DGGML_AVX2=ON'
- build: 'avx'
defines: '-DGGML_AVX2=OFF'
- build: 'avx512'
defines: '-DGGML_AVX512=ON'
- build: "noavx"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx2"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX=ON -DGGML_AVX2=OFF -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx512"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX512=ON -DGGML_AVX=ON -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
- build: "cuda12"
defines: "-DSD_CUDA=ON -DSD_BUILD_SHARED_LIBS=ON -DCMAKE_CUDA_ARCHITECTURES=90;89;80;75"
# - build: "rocm5.5"
# defines: '-G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS="gfx1100;gfx1102;gfx1030" -DSD_BUILD_SHARED_LIBS=ON'
- build: 'vulkan'
defines: "-DSD_VULKAN=ON -DSD_BUILD_SHARED_LIBS=ON"
steps:
- name: Clone
id: checkout
@ -104,6 +175,37 @@ jobs:
with:
submodules: recursive
- name: Install cuda-toolkit
id: cuda-toolkit
if: ${{ matrix.build == 'cuda12' }}
uses: Jimver/cuda-toolkit@v0.2.19
with:
cuda: "12.6.2"
method: "network"
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
- name: Install rocm-toolkit
id: rocm-toolkit
if: ${{ matrix.build == 'rocm5.5' }}
uses: Cyberhan123/rocm-toolkit@v0.1.0
with:
rocm: "5.5.0"
- name: Install Ninja
id: install-ninja
if: ${{ matrix.build == 'rocm5.5' }}
uses: urkle/action-get-ninja@v1
with:
version: 1.11.1
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'vulkan' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
- name: Build
id: cmake_build
run: |
@ -125,12 +227,6 @@ jobs:
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest -C Release --verbose --timeout 900
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@ -140,14 +236,44 @@ jobs:
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
Copy-Item ggml/LICENSE .\build\bin\Release\ggml.txt
Copy-Item LICENSE .\build\bin\Release\stable-diffusion.cpp.txt
7z a sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
$filePath = ".\build\bin\Release\*"
if (Test-Path $filePath) {
echo "Exists at path $filePath"
Copy-Item ggml/LICENSE .\build\bin\Release\ggml.txt
Copy-Item LICENSE .\build\bin\Release\stable-diffusion.cpp.txt
} elseif (Test-Path ".\build\bin\stable-diffusion.dll") {
$filePath = ".\build\bin\*"
echo "Exists at path $filePath"
Copy-Item ggml/LICENSE .\build\bin\ggml.txt
Copy-Item LICENSE .\build\bin\stable-diffusion.cpp.txt
} else {
ls .\build\bin
throw "Can't find stable-diffusion.dll"
}
7z a sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip $filePath
- name: Copy and pack Cuda runtime
id: pack_cuda_runtime
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' && matrix.build == 'cuda12' ) || github.event.inputs.create_release == 'true' }}
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
$dst='.\build\bin\cudart\'
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-sd-bin-win-cu12-x64.zip $dst\*
- name: Upload Cuda runtime
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' && matrix.build == 'cuda12' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-cudart-sd-bin-win-cu12-x64.zip
path: |
cudart-sd-bin-win-cu12-x64.zip
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
@ -164,7 +290,11 @@ jobs:
steps:
- name: Download artifacts
id: download-artifact
uses: actions/download-artifact@v3
uses: actions/download-artifact@v4
with:
path: ./artifact
pattern: sd-*
merge-multiple: true
- name: Get commit hash
id: commit

1
.gitignore vendored
View File

@ -10,5 +10,4 @@ test/
*.gguf
output*.png
models*
!taesd-model.gguf
*.log

2
.gitmodules vendored
View File

@ -1,3 +1,3 @@
[submodule "ggml"]
path = ggml
url = https://github.com/leejet/ggml.git
url = https://github.com/ggerganov/ggml.git

View File

@ -24,44 +24,111 @@ endif()
# general
#option(SD_BUILD_TESTS "sd: build tests" ${SD_STANDALONE})
option(SD_BUILD_EXAMPLES "sd: build examples" ${SD_STANDALONE})
option(SD_CUBLAS "sd: cuda backend" OFF)
option(SD_CUDA "sd: cuda backend" OFF)
option(SD_HIPBLAS "sd: rocm backend" OFF)
option(SD_METAL "sd: metal backend" OFF)
option(SD_FLASH_ATTN "sd: use flash attention for x4 less memory usage" OFF)
option(SD_VULKAN "sd: vulkan backend" OFF)
option(SD_OPENCL "sd: opencl backend" OFF)
option(SD_SYCL "sd: sycl backend" OFF)
option(SD_MUSA "sd: musa backend" OFF)
option(SD_FAST_SOFTMAX "sd: x1.5 faster softmax, indeterministic (sometimes, same seed don't generate same image), cuda only" OFF)
option(BUILD_SHARED_LIBS "sd: build shared libs" OFF)
option(SD_BUILD_SHARED_LIBS "sd: build shared libs" OFF)
#option(SD_BUILD_SERVER "sd: build server example" ON)
if(SD_CUBLAS)
message("Use CUBLAS as backend stable-diffusion")
set(GGML_CUBLAS ON)
add_definitions(-DSD_USE_CUBLAS)
if(SD_CUDA)
message("-- Use CUDA as backend stable-diffusion")
set(GGML_CUDA ON)
add_definitions(-DSD_USE_CUDA)
endif()
if(SD_METAL)
message("-- Use Metal as backend stable-diffusion")
set(GGML_METAL ON)
add_definitions(-DSD_USE_METAL)
endif()
if (SD_VULKAN)
message("-- Use Vulkan as backend stable-diffusion")
set(GGML_VULKAN ON)
add_definitions(-DSD_USE_VULKAN)
endif ()
if (SD_OPENCL)
message("-- Use OpenCL as backend stable-diffusion")
set(GGML_OPENCL ON)
add_definitions(-DSD_USE_OPENCL)
endif ()
if (SD_HIPBLAS)
message("-- Use HIPBLAS as backend stable-diffusion")
set(GGML_HIP ON)
add_definitions(-DSD_USE_CUDA)
if(SD_FAST_SOFTMAX)
set(GGML_CUDA_FAST_SOFTMAX ON)
endif()
endif ()
if(SD_MUSA)
message("-- Use MUSA as backend stable-diffusion")
set(GGML_MUSA ON)
add_definitions(-DSD_USE_CUDA)
if(SD_FAST_SOFTMAX)
set(GGML_CUDA_FAST_SOFTMAX ON)
endif()
endif()
if(SD_METAL)
message("Use Metal as backend stable-diffusion")
set(GGML_METAL ON)
add_definitions(-DSD_USE_METAL)
set(SD_LIB stable-diffusion)
file(GLOB SD_LIB_SOURCES
"*.h"
"*.cpp"
"*.hpp"
)
# we can get only one share lib
if(SD_BUILD_SHARED_LIBS)
message("-- Build shared library")
message(${SD_LIB_SOURCES})
set(BUILD_SHARED_LIBS OFF)
add_library(${SD_LIB} SHARED ${SD_LIB_SOURCES})
add_definitions(-DSD_BUILD_SHARED_LIB)
target_compile_definitions(${SD_LIB} PRIVATE -DSD_BUILD_DLL)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
else()
message("-- Build static library")
set(BUILD_SHARED_LIBS OFF)
add_library(${SD_LIB} STATIC ${SD_LIB_SOURCES})
endif()
if(SD_FLASH_ATTN)
message("Use Flash Attention for memory optimization")
add_definitions(-DSD_USE_FLASH_ATTENTION)
if(SD_SYCL)
message("-- Use SYCL as backend stable-diffusion")
set(GGML_SYCL ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
add_definitions(-DSD_USE_SYCL)
# disable fast-math on host, see:
# https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/fp-model-fp.html
if (WIN32)
set(SYCL_COMPILE_OPTIONS /fp:precise)
else()
set(SYCL_COMPILE_OPTIONS -fp-model=precise)
endif()
message("-- Turn off fast-math for host in SYCL backend")
target_compile_options(${SD_LIB} PRIVATE ${SYCL_COMPILE_OPTIONS})
endif()
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
# see https://github.com/ggerganov/ggml/pull/682
add_definitions(-DGGML_MAX_NAME=128)
# deps
add_subdirectory(ggml)
# Only add ggml if it hasn't been added yet
if (NOT TARGET ggml)
add_subdirectory(ggml)
endif()
add_subdirectory(thirdparty)
set(SD_LIB stable-diffusion)
add_library(${SD_LIB} stable-diffusion.h stable-diffusion.cpp model.h model.cpp util.h util.cpp upscaler.cpp
ggml_extend.hpp clip.hpp common.hpp unet.hpp tae.hpp esrgan.hpp lora.hpp denoiser.hpp rng.hpp rng_philox.hpp)
target_link_libraries(${SD_LIB} PUBLIC ggml zip)
target_include_directories(${SD_LIB} PUBLIC . thirdparty)
target_compile_features(${SD_LIB} PUBLIC cxx_std_11)

22
Dockerfile.musa Normal file
View File

@ -0,0 +1,22 @@
ARG MUSA_VERSION=rc3.1.1
FROM mthreads/musa:${MUSA_VERSION}-devel-ubuntu22.04 as build
RUN apt-get update && apt-get install -y ccache cmake git
WORKDIR /sd.cpp
COPY . .
RUN mkdir build && cd build && \
cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_FLAGS="${CMAKE_C_FLAGS} -fopenmp -I/usr/lib/llvm-14/lib/clang/14.0.0/include -L/usr/lib/llvm-14/lib" \
-DCMAKE_CXX_FLAGS="${CMAKE_CXX_FLAGS} -fopenmp -I/usr/lib/llvm-14/lib/clang/14.0.0/include -L/usr/lib/llvm-14/lib" \
-DSD_MUSA=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build . --config Release
FROM mthreads/musa:${MUSA_VERSION}-runtime-ubuntu22.04 as runtime
COPY --from=build /sd.cpp/build/bin/sd /sd
ENTRYPOINT [ "/sd" ]

346
README.md
View File

@ -1,28 +1,31 @@
<p align="center">
<img src="./assets/a%20lovely%20cat.png" width="256x">
<img src="./assets/cat_with_sd_cpp_42.png" width="360x">
</p>
# stable-diffusion.cpp
Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in pure C/C++
Inference of Stable Diffusion and Flux in pure C/C++
## Features
- Plain C/C++ implementation based on [ggml](https://github.com/ggerganov/ggml), working in the same way as [llama.cpp](https://github.com/ggerganov/llama.cpp)
- Super lightweight and without external dependencies
- SD1.x, SD2.x and SDXL support
- SD1.x, SD2.x, SDXL and [SD3/SD3.5](./docs/sd3.md) support
- !!!The VAE in SDXL encounters NaN issues under FP16, but unfortunately, the ggml_conv_2d only operates under FP16. Hence, a parameter is needed to specify the VAE that has fixed the FP16 NaN issue. You can find it here: [SDXL VAE FP16 Fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors).
- [Flux-dev/Flux-schnell Support](./docs/flux.md)
- [FLUX.1-Kontext-dev](./docs/kontext.md)
- [Chroma](./docs/chroma.md)
- [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) and [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) support
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker) support.
- 16-bit, 32-bit float support
- 4-bit, 5-bit and 8-bit integer quantization support
- 2-bit, 3-bit, 4-bit, 5-bit and 8-bit integer quantization support
- Accelerated memory-efficient CPU inference
- Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image, enabling Flash Attention just requires ~1.8GB.
- AVX, AVX2 and AVX512 support for x86 architectures
- Full CUDA and Metal backend for GPU acceleration.
- Full CUDA, Metal, Vulkan, OpenCL and SYCL backend for GPU acceleration.
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs models
- No need to convert to `.ggml` or `.gguf` anymore!
- Flash Attention for memory usage optimization (only cpu for now)
- Flash Attention for memory usage optimization
- Original `txt2img` and `img2img` mode
- Negative prompt
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) style tokenizer (not all the features, only token weighting for now)
@ -31,6 +34,7 @@ Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in
- Faster and memory efficient latent decoding with [TAESD](https://github.com/madebyollin/taesd)
- Upscale images generated with [ESRGAN](https://github.com/xinntao/Real-ESRGAN)
- VAE tiling processing for reduce memory usage
- Control Net support with SD 1.5
- Sampling method
- `Euler A`
- `Euler`
@ -46,21 +50,21 @@ Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in
- Linux
- Mac OS
- Windows
- Android (via Termux)
- Android (via Termux, [Local Diffusion](https://github.com/rmatif/Local-Diffusion))
### TODO
- [ ] More sampling methods
- [ ] Make inference faster
- The current implementation of ggml_conv_2d is slow and has high memory usage
- Implement Winograd Convolution 2D for 3x3 kernel filtering
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
- [ ] Implement Textual Inversion (embeddings)
- [ ] Implement Inpainting support
- [ ] k-quants support
## Usage
For most users, you can download the built executable program from the latest [release](https://github.com/leejet/stable-diffusion.cpp/releases/latest).
If the built product does not meet your requirements, you can choose to build it manually.
### Get the Code
```
@ -83,11 +87,13 @@ git submodule update
- Stable Diffusion v1.4 from https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
- Stable Diffusion v1.5 from https://huggingface.co/runwayml/stable-diffusion-v1-5
- Stable Diffuison v2.1 from https://huggingface.co/stabilityai/stable-diffusion-2-1
- Stable Diffusion 3 2B from https://huggingface.co/stabilityai/stable-diffusion-3-medium
```shell
curl -L -O https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
# curl -L -O https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors
# curl -L -O https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-nonema-pruned.safetensors
# curl -L -O https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/sd3_medium_incl_clips_t5xxlfp16.safetensors
```
### Build
@ -108,12 +114,31 @@ cmake .. -DGGML_OPENBLAS=ON
cmake --build . --config Release
```
##### Using CUBLAS
##### Using CUDA
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). Recommended to have at least 4 GB of VRAM.
```
cmake .. -DSD_CUBLAS=ON
cmake .. -DSD_CUDA=ON
cmake --build . --config Release
```
##### Using HipBLAS
This provides BLAS acceleration using the ROCm cores of your AMD GPU. Make sure to have the ROCm toolkit installed.
Windows User Refer to [docs/hipBLAS_on_Windows.md](docs%2FhipBLAS_on_Windows.md) for a comprehensive guide.
```
cmake .. -G "Ninja" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=gfx1100
cmake --build . --config Release
```
##### Using MUSA
This provides BLAS acceleration using the MUSA cores of your Moore Threads GPU. Make sure to have the MUSA toolkit installed.
```bash
cmake .. -DCMAKE_C_COMPILER=/usr/local/musa/bin/clang -DCMAKE_CXX_COMPILER=/usr/local/musa/bin/clang++ -DSD_MUSA=ON -DCMAKE_BUILD_TYPE=Release
cmake --build . --config Release
```
@ -126,15 +151,130 @@ cmake .. -DSD_METAL=ON
cmake --build . --config Release
```
### Using Flash Attention
##### Using Vulkan
Enabling flash attention reduces memory usage by at least 400 MB. At the moment, it is not supported when CUBLAS is enabled because the kernel implementation is missing.
Install Vulkan SDK from https://www.lunarg.com/vulkan-sdk/.
```
cmake .. -DSD_FLASH_ATTN=ON
cmake .. -DSD_VULKAN=ON
cmake --build . --config Release
```
##### Using OpenCL (for Adreno GPU)
Currently, it supports only Adreno GPUs and is primarily optimized for Q4_0 type
To build for Windows ARM please refers to [Windows 11 Arm64
](https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/OPENCL.md#windows-11-arm64)
Building for Android:
Android NDK:
Download and install the Android NDK from the [official Android developer site](https://developer.android.com/ndk/downloads).
Setup OpenCL Dependencies for NDK:
You need to provide OpenCL headers and the ICD loader library to your NDK sysroot.
* OpenCL Headers:
```bash
# In a temporary working directory
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
# Replace <YOUR_NDK_PATH> with your actual NDK installation path
# e.g., cp -r CL /path/to/android-ndk-r26c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
sudo cp -r CL <YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ..
```
* OpenCL ICD Loader:
```bash
# In the same temporary working directory
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
cd OpenCL-ICD-Loader
mkdir build_ndk && cd build_ndk
# Replace <YOUR_NDK_PATH> in the CMAKE_TOOLCHAIN_FILE and OPENCL_ICD_LOADER_HEADERS_DIR
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=<YOUR_NDK_PATH>/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=<YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared
ninja
# Replace <YOUR_NDK_PATH>
# e.g., cp libOpenCL.so /path/to/android-ndk-r26c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
sudo cp libOpenCL.so <YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
cd ../..
```
Build `stable-diffusion.cpp` for Android with OpenCL:
```bash
mkdir build-android && cd build-android
# Replace <YOUR_NDK_PATH> with your actual NDK installation path
# e.g., -DCMAKE_TOOLCHAIN_FILE=/path/to/android-ndk-r26c/build/cmake/android.toolchain.cmake
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=<YOUR_NDK_PATH>/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DGGML_OPENMP=OFF \
-DSD_OPENCL=ON
ninja
```
*(Note: Don't forget to include `LD_LIBRARY_PATH=/vendor/lib64` in your command line before running the binary)*
##### Using SYCL
Using SYCL makes the computation run on the Intel GPU. Please make sure you have installed the related driver and [Intel® oneAPI Base toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) before start. More details and steps can refer to [llama.cpp SYCL backend](https://github.com/ggerganov/llama.cpp/blob/master/docs/backend/SYCL.md#linux).
```
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake .. -DSD_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake .. -DSD_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake --build . --config Release
```
Example of text2img by using SYCL backend:
- download `stable-diffusion` model weight, refer to [download-weight](#download-weights).
- run `./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors --cfg-scale 5 --steps 30 --sampling-method euler -H 1024 -W 1024 --seed 42 -p "fantasy medieval village world inside a glass sphere , high detail, fantasy, realistic, light effect, hyper detail, volumetric lighting, cinematic, macro, depth of field, blur, red light and clouds from the back, highly detailed epic cinematic concept art cg render made in maya, blender and photoshop, octane render, excellent composition, dynamic dramatic cinematic lighting, aesthetic, very inspirational, world inside a glass sphere by james gurney by artgerm with james jean, joe fenton and tristan eaton by ross tran, fine details, 4k resolution"`
<p align="center">
<img src="./assets/sycl_sd3_output.png" width="360x">
</p>
##### Using Flash Attention
Enabling flash attention for the diffusion model reduces memory usage by varying amounts of MB.
eg.:
- flux 768x768 ~600mb
- SD2 768x768 ~1400mb
For most backends, it slows things down, but for cuda it generally speeds it up too.
At the moment, it is only supported for some models and some backends (like cpu, cuda/rocm, metal).
Run by adding `--diffusion-fa` to the arguments and watch for:
```
[INFO ] stable-diffusion.cpp:312 - Using flash attention in the diffusion model
```
and the compute buffer shrink in the debug log:
```
[DEBUG] ggml_extend.hpp:1004 - flux compute buffer size: 650.00 MB(VRAM)
```
### Run
```
@ -142,53 +282,83 @@ usage: ./bin/sd [arguments]
arguments:
-h, --help show this help message and exit
-M, --mode [txt2img or img2img] generation mode (default: txt2img)
-t, --threads N number of threads to use during computation (default: -1).
-M, --mode [MODE] run mode, one of: [img_gen, convert], default: img_gen
-t, --threads N number of threads to use during computation (default: -1)
If threads <= 0, then threads will be set to the number of CPU physical cores
-m, --model [MODEL] path to model
-m, --model [MODEL] path to full model
--diffusion-model path to the standalone diffusion model
--clip_l path to the clip-l text encoder
--clip_g path to the clip-g text encoder
--t5xxl path to the t5xxl text encoder
--vae [VAE] path to vae
--taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)
--upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now.
--type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0)
If not specified, the default is the type of the weight file.
--control-net [CONTROL_PATH] path to control net model
--embd-dir [EMBEDDING_PATH] path to embeddings
--stacked-id-embd-dir [DIR] path to PHOTOMAKER stacked id embeddings
--input-id-images-dir [DIR] path to PHOTOMAKER input id images dir
--normalize-input normalize PHOTOMAKER input id images
--upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now
--upscale-repeats Run the ESRGAN upscaler this many times (default 1)
--type [TYPE] weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K)
If not specified, the default is the type of the weight file
--tensor-type-rules [EXPRESSION] weight type per tensor pattern (example: "^vae\.=f16,model\.=q8_0")
--lora-model-dir [DIR] lora model directory
-i, --init-img [IMAGE] path to the input image, required by img2img
--mask [MASK] path to the mask image, required by img2img with mask
--control-image [IMAGE] path to image condition, control net
-r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times)
-o, --output OUTPUT path to write result image to (default: ./output.png)
-p, --prompt [PROMPT] the prompt to render
-n, --negative-prompt PROMPT the negative prompt (default: "")
--cfg-scale SCALE unconditional guidance scale: (default: 7.0)
--img-cfg-scale SCALE image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)
--guidance SCALE distilled guidance scale for models with guidance input (default: 3.5)
--slg-scale SCALE skip layer guidance (SLG) scale, only for DiT models: (default: 0)
0 means disabled, a value of 2.5 is nice for sd3.5 medium
--eta SCALE eta in DDIM, only for DDIM and TCD: (default: 0)
--skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])
--skip-layer-start START SLG enabling point: (default: 0.01)
--skip-layer-end END SLG disabling point: (default: 0.2)
SLG will be enabled at step int([STEPS]*[START]) and disabled at int([STEPS]*[END])
--strength STRENGTH strength for noising/unnoising (default: 0.75)
--style-ratio STYLE-RATIO strength for keeping input identity (default: 20)
--control-strength STRENGTH strength to apply Control Net (default: 0.9)
1.0 corresponds to full destruction of information in init image
-H, --height H image height, in pixel space (default: 512)
-W, --width W image width, in pixel space (default: 512)
--sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, lcm}
--sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}
sampling method (default: "euler_a")
--steps STEPS number of sample steps (default: 20)
--rng {std_default, cuda} RNG (default: cuda)
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
-b, --batch-count COUNT number of images to generate.
--schedule {discrete, karras} Denoiser sigma schedule (default: discrete)
--clip-skip N number of layers to skip of clip model (default: 0)
-b, --batch-count COUNT number of images to generate
--schedule {discrete, karras, exponential, ays, gits} Denoiser sigma schedule (default: discrete)
--clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
--vae-tiling process vae in tiles to reduce memory usage
--vae-on-cpu keep vae in cpu (for low vram)
--clip-on-cpu keep clip in cpu (for low vram)
--diffusion-fa use flash attention in the diffusion model (for low vram)
Might lower quality, since it implies converting k and v to f16.
This might crash if it is not supported by the backend.
--control-net-cpu keep controlnet in cpu (for low vram)
--canny apply canny preprocessor (edge detection)
--color colors the logging tags according to level
--chroma-disable-dit-mask disable dit mask for chroma
--chroma-enable-t5-mask enable t5 mask for chroma
--chroma-t5-mask-pad PAD_SIZE t5 mask pad size of chroma
-v, --verbose print extra info
```
#### Quantization
You can specify the model weight type using the `--type` parameter. The weights are automatically converted when loading the model.
- `f16` for 16-bit floating-point
- `f32` for 32-bit floating-point
- `q8_0` for 8-bit integer quantization
- `q5_0` or `q5_1` for 5-bit integer quantization
- `q4_0` or `q4_1` for 4-bit integer quantization
#### txt2img example
```sh
./bin/sd -m ../models/sd-v1-4.ckpt -p "a lovely cat"
# ./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
# ./bin/sd -m ../models/sd_xl_base_1.0.safetensors --vae ../models/sdxl_vae-fp16-fix.safetensors -H 1024 -W 1024 -p "a lovely cat" -v
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
# ./bin/sd -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
```
Using formats of different precisions will yield results of varying quality.
@ -203,93 +373,42 @@ Using formats of different precisions will yield results of varying quality.
```
./bin/sd --mode img2img -m ../models/sd-v1-4.ckpt -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4
./bin/sd -m ../models/sd-v1-4.ckpt -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4
```
<p align="center">
<img src="./assets/img2img_output.png" width="256x">
</p>
#### with LoRA
## More Guides
- You can specify the directory where the lora weights are stored via `--lora-model-dir`. If not specified, the default is the current working directory.
- [LoRA](./docs/lora.md)
- [LCM/LCM-LoRA](./docs/lcm.md)
- [Using PhotoMaker to personalize image generation](./docs/photo_maker.md)
- [Using ESRGAN to upscale results](./docs/esrgan.md)
- [Using TAESD to faster decoding](./docs/taesd.md)
- [Docker](./docs/docker.md)
- [Quantization and GGUF](./docs/quantization_and_gguf.md)
- LoRA is specified via prompt, just like [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#lora).
## Bindings
Here's a simple example:
These projects wrap `stable-diffusion.cpp` for easier use in other languages/frameworks.
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:marblesh:1>" --lora-model-dir ../models
```
* Golang (non-cgo): [seasonjs/stable-diffusion](https://github.com/seasonjs/stable-diffusion)
* Golang (cgo): [Binozo/GoStableDiffusion](https://github.com/Binozo/GoStableDiffusion)
* C#: [DarthAffe/StableDiffusion.NET](https://github.com/DarthAffe/StableDiffusion.NET)
* Python: [william-murray1204/stable-diffusion-cpp-python](https://github.com/william-murray1204/stable-diffusion-cpp-python)
* Rust: [newfla/diffusion-rs](https://github.com/newfla/diffusion-rs)
* Flutter/Dart: [rmatif/Local-Diffusion](https://github.com/rmatif/Local-Diffusion)
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model
## UIs
#### LCM/LCM-LoRA
These projects use `stable-diffusion.cpp` as a backend for their image generation.
- Download LCM-LoRA form https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
- Specify LCM-LoRA by adding `<lora:lcm-lora-sdv1-5:1>` to prompt
- It's advisable to set `--cfg-scale` to `1.0` instead of the default `7.0`. For `--steps`, a range of `2-8` steps is recommended. For `--sampling-method`, `lcm`/`euler_a` is recommended.
Here's a simple example:
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:lcm-lora-sdv1-5:1>" --steps 4 --lora-model-dir ../models -v --cfg-scale 1
```
| without LCM-LoRA (--cfg-scale 7) | with LCM-LoRA (--cfg-scale 1) |
| ---- |---- |
| ![](./assets/without_lcm.png) |![](./assets/with_lcm.png) |
## Using TAESD to faster decoding
You can use TAESD to accelerate the decoding of latent images by following these steps:
- Download the model [weights](https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors).
Or curl
```bash
curl -L -O https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors
```
- Specify the model path using the `--taesd PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors
```
## Using ESRGAN to upscale results
You can use ESRGAN to upscale the generated images. At the moment, only the [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) model is supported. Support for more models of this architecture will be added soon.
- Specify the model path using the `--upscale-model PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --upscale-model ../models/RealESRGAN_x4plus_anime_6B.pth
```
### Docker
#### Building using Docker
```shell
docker build -t sd .
```
#### Run
```shell
docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
# For example
# docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```
## Memory Requirements
| precision | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 |
| ---- | ---- |---- |---- |---- |---- |---- |---- |
| **Memory** (txt2img - 512 x 512) | ~2.8G | ~2.3G | ~2.1G | ~2.0G | ~2.0G | ~2.0G | ~2.0G |
| **Memory** (txt2img - 512 x 512) *with Flash Attention* | ~2.4G | ~1.9G | ~1.6G | ~1.5G | ~1.5G | ~1.5G | ~1.5G |
- [Jellybox](https://jellybox.com)
- [Stable Diffusion GUI](https://github.com/fszontagh/sd.cpp.gui.wx)
- [Stable Diffusion CLI-GUI](https://github.com/piallai/stable-diffusion.cpp)
- [Local Diffusion](https://github.com/rmatif/Local-Diffusion)
## Contributors
@ -297,12 +416,19 @@ Thank you to all the people who have already contributed to stable-diffusion.cpp
[![Contributors](https://contrib.rocks/image?repo=leejet/stable-diffusion.cpp)](https://github.com/leejet/stable-diffusion.cpp/graphs/contributors)
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=leejet/stable-diffusion.cpp&type=Date)](https://star-history.com/#leejet/stable-diffusion.cpp&Date)
## References
- [ggml](https://github.com/ggerganov/ggml)
- [stable-diffusion](https://github.com/CompVis/stable-diffusion)
- [sd3-ref](https://github.com/Stability-AI/sd3-ref)
- [stable-diffusion-stability-ai](https://github.com/Stability-AI/stablediffusion)
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
- [ComfyUI](https://github.com/comfyanonymous/ComfyUI)
- [k-diffusion](https://github.com/crowsonkb/k-diffusion)
- [latent-consistency-model](https://github.com/luosiallen/latent-consistency-model)
- [generative-models](https://github.com/Stability-AI/generative-models/)
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker)

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

BIN
assets/control.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 KiB

BIN
assets/control_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

BIN
assets/control_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
assets/flux/chroma_v40.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 539 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 416 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 490 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 464 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 468 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 566 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 475 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 481 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 496 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 311 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

BIN
assets/sd3.5_large.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

BIN
assets/sycl_sd3_output.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

1192
clip.hpp

File diff suppressed because it is too large Load Diff

View File

@ -3,84 +3,521 @@
#include "ggml_extend.hpp"
struct DownSample {
// hparams
class DownSampleBlock : public GGMLBlock {
protected:
int channels;
int out_channels;
bool vae_downsample;
// conv2d params
struct ggml_tensor* op_w; // [out_channels, channels, 3, 3]
struct ggml_tensor* op_b; // [out_channels,]
bool vae_downsample = false;
size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w
mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b
return static_cast<size_t>(mem_size);
}
void init_params(struct ggml_context* ctx, ggml_type wtype) {
op_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels);
op_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
}
void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
public:
DownSampleBlock(int channels,
int out_channels,
bool vae_downsample = false)
: channels(channels),
out_channels(out_channels),
vae_downsample(vae_downsample) {
if (vae_downsample) {
tensors[prefix + "conv.weight"] = op_w;
tensors[prefix + "conv.bias"] = op_b;
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {2, 2}, {0, 0}));
} else {
tensors[prefix + "op.weight"] = op_w;
tensors[prefix + "op.bias"] = op_b;
blocks["op"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {2, 2}, {1, 1}));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
struct ggml_tensor* c = NULL;
if (vae_downsample) {
c = ggml_pad(ctx, x, 1, 1, 0, 0);
c = ggml_nn_conv_2d(ctx, c, op_w, op_b, 2, 2, 0, 0);
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
x = ggml_pad(ctx, x, 1, 1, 0, 0);
x = conv->forward(ctx, x);
} else {
c = ggml_nn_conv_2d(ctx, x, op_w, op_b, 2, 2, 1, 1);
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["op"]);
x = conv->forward(ctx, x);
}
return c; // [N, out_channels, h/2, w/2]
return x; // [N, out_channels, h/2, w/2]
}
};
struct UpSample {
// hparams
class UpSampleBlock : public GGMLBlock {
protected:
int channels;
int out_channels;
// conv2d params
struct ggml_tensor* conv_w; // [out_channels, channels, 3, 3]
struct ggml_tensor* conv_b; // [out_channels,]
size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w
mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b
return static_cast<size_t>(mem_size);
}
void init_params(struct ggml_context* ctx, ggml_type wtype) {
conv_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels);
conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
}
void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
tensors[prefix + "conv.weight"] = conv_w;
tensors[prefix + "conv.bias"] = conv_b;
public:
UpSampleBlock(int channels,
int out_channels)
: channels(channels),
out_channels(out_channels) {
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
x = ggml_upscale(ctx, x, 2); // [N, channels, h*2, w*2]
x = ggml_nn_conv_2d(ctx, x, conv_w, conv_b, 1, 1, 1, 1); // [N, out_channels, h*2, w*2]
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
x = ggml_upscale(ctx, x, 2, GGML_SCALE_MODE_NEAREST); // [N, channels, h*2, w*2]
x = conv->forward(ctx, x); // [N, out_channels, h*2, w*2]
return x;
}
};
#endif // __COMMON_HPP__
class ResBlock : public GGMLBlock {
protected:
// network hparams
int64_t channels; // model_channels * (1, 1, 1, 2, 2, 4, 4, 4)
int64_t emb_channels; // time_embed_dim
int64_t out_channels; // mult * model_channels
std::pair<int, int> kernel_size;
int dims;
bool skip_t_emb;
bool exchange_temb_dims;
std::shared_ptr<GGMLBlock> conv_nd(int dims,
int64_t in_channels,
int64_t out_channels,
std::pair<int, int> kernel_size,
std::pair<int, int> padding) {
GGML_ASSERT(dims == 2 || dims == 3);
if (dims == 3) {
return std::shared_ptr<GGMLBlock>(new Conv3dnx1x1(in_channels, out_channels, kernel_size.first, 1, padding.first));
} else {
return std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, out_channels, kernel_size, {1, 1}, padding));
}
}
public:
ResBlock(int64_t channels,
int64_t emb_channels,
int64_t out_channels,
std::pair<int, int> kernel_size = {3, 3},
int dims = 2,
bool exchange_temb_dims = false,
bool skip_t_emb = false)
: channels(channels),
emb_channels(emb_channels),
out_channels(out_channels),
kernel_size(kernel_size),
dims(dims),
skip_t_emb(skip_t_emb),
exchange_temb_dims(exchange_temb_dims) {
std::pair<int, int> padding = {kernel_size.first / 2, kernel_size.second / 2};
blocks["in_layers.0"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(channels));
// in_layer_1 is nn.SILU()
blocks["in_layers.2"] = conv_nd(dims, channels, out_channels, kernel_size, padding);
if (!skip_t_emb) {
// emb_layer_0 is nn.SILU()
blocks["emb_layers.1"] = std::shared_ptr<GGMLBlock>(new Linear(emb_channels, out_channels));
}
blocks["out_layers.0"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(out_channels));
// out_layer_1 is nn.SILU()
// out_layer_2 is nn.Dropout(), skip for inference
blocks["out_layers.3"] = conv_nd(dims, out_channels, out_channels, kernel_size, padding);
if (out_channels != channels) {
blocks["skip_connection"] = conv_nd(dims, channels, out_channels, {1, 1}, {0, 0});
}
}
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* emb = NULL) {
// For dims==3, we reduce dimension from 5d to 4d by merging h and w, in order not to change ggml
// [N, c, t, h, w] => [N, c, t, h * w]
// x: [N, channels, h, w] if dims == 2 else [N, channels, t, h, w]
// emb: [N, emb_channels] if dims == 2 else [N, t, emb_channels]
auto in_layers_0 = std::dynamic_pointer_cast<GroupNorm32>(blocks["in_layers.0"]);
auto in_layers_2 = std::dynamic_pointer_cast<UnaryBlock>(blocks["in_layers.2"]);
auto out_layers_0 = std::dynamic_pointer_cast<GroupNorm32>(blocks["out_layers.0"]);
auto out_layers_3 = std::dynamic_pointer_cast<UnaryBlock>(blocks["out_layers.3"]);
if (emb == NULL) {
GGML_ASSERT(skip_t_emb);
}
// in_layers
auto h = in_layers_0->forward(ctx, x);
h = ggml_silu_inplace(ctx, h);
h = in_layers_2->forward(ctx, h); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
// emb_layers
if (!skip_t_emb) {
auto emb_layer_1 = std::dynamic_pointer_cast<Linear>(blocks["emb_layers.1"]);
auto emb_out = ggml_silu(ctx, emb);
emb_out = emb_layer_1->forward(ctx, emb_out); // [N, out_channels] if dims == 2 else [N, t, out_channels]
if (dims == 2) {
emb_out = ggml_reshape_4d(ctx, emb_out, 1, 1, emb_out->ne[0], emb_out->ne[1]); // [N, out_channels, 1, 1]
} else {
emb_out = ggml_reshape_4d(ctx, emb_out, 1, emb_out->ne[0], emb_out->ne[1], emb_out->ne[2]); // [N, t, out_channels, 1]
if (exchange_temb_dims) {
// emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
emb_out = ggml_cont(ctx, ggml_permute(ctx, emb_out, 0, 2, 1, 3)); // [N, out_channels, t, 1]
}
}
h = ggml_add(ctx, h, emb_out); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
}
// out_layers
h = out_layers_0->forward(ctx, h);
h = ggml_silu_inplace(ctx, h);
// dropout, skip for inference
h = out_layers_3->forward(ctx, h);
// skip connection
if (out_channels != channels) {
auto skip_connection = std::dynamic_pointer_cast<UnaryBlock>(blocks["skip_connection"]);
x = skip_connection->forward(ctx, x); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
}
h = ggml_add(ctx, h, x);
return h; // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
}
};
class GEGLU : public GGMLBlock {
protected:
int64_t dim_in;
int64_t dim_out;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
enum ggml_type wtype = (tensor_types.find(prefix + "proj.weight") != tensor_types.end()) ? tensor_types[prefix + "proj.weight"] : GGML_TYPE_F32;
enum ggml_type bias_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "proj.bias") != tensor_types.end()) ? tensor_types[prefix + "proj.bias"] : GGML_TYPE_F32;
params["proj.weight"] = ggml_new_tensor_2d(ctx, wtype, dim_in, dim_out * 2);
params["proj.bias"] = ggml_new_tensor_1d(ctx, bias_wtype, dim_out * 2);
}
public:
GEGLU(int64_t dim_in, int64_t dim_out)
: dim_in(dim_in), dim_out(dim_out) {}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [ne3, ne2, ne1, dim_in]
// return: [ne3, ne2, ne1, dim_out]
struct ggml_tensor* w = params["proj.weight"];
struct ggml_tensor* b = params["proj.bias"];
auto x_w = ggml_view_2d(ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], 0); // [dim_out, dim_in]
auto x_b = ggml_view_1d(ctx, b, b->ne[0] / 2, 0); // [dim_out, dim_in]
auto gate_w = ggml_view_2d(ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], w->nb[1] * w->ne[1] / 2); // [dim_out, ]
auto gate_b = ggml_view_1d(ctx, b, b->ne[0] / 2, b->nb[0] * b->ne[0] / 2); // [dim_out, ]
auto x_in = x;
x = ggml_nn_linear(ctx, x_in, x_w, x_b); // [ne3, ne2, ne1, dim_out]
auto gate = ggml_nn_linear(ctx, x_in, gate_w, gate_b); // [ne3, ne2, ne1, dim_out]
gate = ggml_gelu_inplace(ctx, gate);
x = ggml_mul(ctx, x, gate); // [ne3, ne2, ne1, dim_out]
return x;
}
};
class FeedForward : public GGMLBlock {
public:
FeedForward(int64_t dim,
int64_t dim_out,
int64_t mult = 4) {
int64_t inner_dim = dim * mult;
blocks["net.0"] = std::shared_ptr<GGMLBlock>(new GEGLU(dim, inner_dim));
// net_1 is nn.Dropout(), skip for inference
blocks["net.2"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim_out));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [ne3, ne2, ne1, dim]
// return: [ne3, ne2, ne1, dim_out]
auto net_0 = std::dynamic_pointer_cast<GEGLU>(blocks["net.0"]);
auto net_2 = std::dynamic_pointer_cast<Linear>(blocks["net.2"]);
x = net_0->forward(ctx, x); // [ne3, ne2, ne1, inner_dim]
x = net_2->forward(ctx, x); // [ne3, ne2, ne1, dim_out]
return x;
}
};
class CrossAttention : public GGMLBlock {
protected:
int64_t query_dim;
int64_t context_dim;
int64_t n_head;
int64_t d_head;
bool flash_attn;
public:
CrossAttention(int64_t query_dim,
int64_t context_dim,
int64_t n_head,
int64_t d_head,
bool flash_attn = false)
: n_head(n_head),
d_head(d_head),
query_dim(query_dim),
context_dim(context_dim),
flash_attn(flash_attn) {
int64_t inner_dim = d_head * n_head;
blocks["to_q"] = std::shared_ptr<GGMLBlock>(new Linear(query_dim, inner_dim, false));
blocks["to_k"] = std::shared_ptr<GGMLBlock>(new Linear(context_dim, inner_dim, false));
blocks["to_v"] = std::shared_ptr<GGMLBlock>(new Linear(context_dim, inner_dim, false));
blocks["to_out.0"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, query_dim));
// to_out_1 is nn.Dropout(), skip for inference
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
auto to_q = std::dynamic_pointer_cast<Linear>(blocks["to_q"]);
auto to_k = std::dynamic_pointer_cast<Linear>(blocks["to_k"]);
auto to_v = std::dynamic_pointer_cast<Linear>(blocks["to_v"]);
auto to_out_0 = std::dynamic_pointer_cast<Linear>(blocks["to_out.0"]);
int64_t n = x->ne[2];
int64_t n_token = x->ne[1];
int64_t n_context = context->ne[1];
int64_t inner_dim = d_head * n_head;
auto q = to_q->forward(ctx, x); // [N, n_token, inner_dim]
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, false, false, flash_attn); // [N, n_token, inner_dim]
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
return x;
}
};
class BasicTransformerBlock : public GGMLBlock {
protected:
int64_t n_head;
int64_t d_head;
bool ff_in;
public:
BasicTransformerBlock(int64_t dim,
int64_t n_head,
int64_t d_head,
int64_t context_dim,
bool ff_in = false,
bool flash_attn = false)
: n_head(n_head), d_head(d_head), ff_in(ff_in) {
// disable_self_attn is always False
// disable_temporal_crossattention is always False
// switch_temporal_ca_to_sa is always False
// inner_dim is always None or equal to dim
// gated_ff is always True
blocks["attn1"] = std::shared_ptr<GGMLBlock>(new CrossAttention(dim, dim, n_head, d_head, flash_attn));
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new CrossAttention(dim, context_dim, n_head, d_head, flash_attn));
blocks["ff"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim));
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm3"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
if (ff_in) {
blocks["norm_in"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["ff_in"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
auto attn1 = std::dynamic_pointer_cast<CrossAttention>(blocks["attn1"]);
auto attn2 = std::dynamic_pointer_cast<CrossAttention>(blocks["attn2"]);
auto ff = std::dynamic_pointer_cast<FeedForward>(blocks["ff"]);
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
auto norm3 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm3"]);
if (ff_in) {
auto norm_in = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_in"]);
auto ff_in = std::dynamic_pointer_cast<FeedForward>(blocks["ff_in"]);
auto x_skip = x;
x = norm_in->forward(ctx, x);
x = ff_in->forward(ctx, x);
// self.is_res is always True
x = ggml_add(ctx, x, x_skip);
}
auto r = x;
x = norm1->forward(ctx, x);
x = attn1->forward(ctx, x, x); // self-attention
x = ggml_add(ctx, x, r);
r = x;
x = norm2->forward(ctx, x);
x = attn2->forward(ctx, x, context); // cross-attention
x = ggml_add(ctx, x, r);
r = x;
x = norm3->forward(ctx, x);
x = ff->forward(ctx, x);
x = ggml_add(ctx, x, r);
return x;
}
};
class SpatialTransformer : public GGMLBlock {
protected:
int64_t in_channels; // mult * model_channels
int64_t n_head;
int64_t d_head;
int64_t depth = 1; // 1
int64_t context_dim = 768; // hidden_size, 1024 for VERSION_SD2
public:
SpatialTransformer(int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim,
bool flash_attn = false)
: in_channels(in_channels),
n_head(n_head),
d_head(d_head),
depth(depth),
context_dim(context_dim) {
// We will convert unet transformer linear to conv2d 1x1 when loading the weights, so use_linear is always False
// disable_self_attn is always False
int64_t inner_dim = n_head * d_head; // in_channels
blocks["norm"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(in_channels));
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, inner_dim, {1, 1}));
for (int i = 0; i < depth; i++) {
std::string name = "transformer_blocks." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new BasicTransformerBlock(inner_dim, n_head, d_head, context_dim, false, flash_attn));
}
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Conv2d(inner_dim, in_channels, {1, 1}));
}
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
// x: [N, in_channels, h, w]
// context: [N, max_position(aka n_token), hidden_size(aka context_dim)]
auto norm = std::dynamic_pointer_cast<GroupNorm32>(blocks["norm"]);
auto proj_in = std::dynamic_pointer_cast<Conv2d>(blocks["proj_in"]);
auto proj_out = std::dynamic_pointer_cast<Conv2d>(blocks["proj_out"]);
auto x_in = x;
int64_t n = x->ne[3];
int64_t h = x->ne[1];
int64_t w = x->ne[0];
int64_t inner_dim = n_head * d_head;
x = norm->forward(ctx, x);
x = proj_in->forward(ctx, x); // [N, inner_dim, h, w]
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
x = ggml_reshape_3d(ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
for (int i = 0; i < depth; i++) {
std::string name = "transformer_blocks." + std::to_string(i);
auto transformer_block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[name]);
x = transformer_block->forward(ctx, x, context);
}
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 0, 2, 3)); // [N, inner_dim, h * w]
x = ggml_reshape_4d(ctx, x, w, h, inner_dim, n); // [N, inner_dim, h, w]
// proj_out
x = proj_out->forward(ctx, x); // [N, in_channels, h, w]
x = ggml_add(ctx, x, x_in);
return x;
}
};
class AlphaBlender : public GGMLBlock {
protected:
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
// Get the type of the "mix_factor" tensor from the input tensors map with the specified prefix
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "mix_factor") != tensor_types.end()) ? tensor_types[prefix + "mix_factor"] : GGML_TYPE_F32;
params["mix_factor"] = ggml_new_tensor_1d(ctx, wtype, 1);
}
float get_alpha() {
// image_only_indicator is always tensor([0.]) and since mix_factor.shape is [1,]
// so learned_with_images is same as learned
float alpha = ggml_backend_tensor_get_f32(params["mix_factor"]);
return sigmoid(alpha);
}
public:
AlphaBlender() {
// merge_strategy is always learned_with_images
// for inference, we don't need to set alpha
// since mix_factor.shape is [1,], we don't need rearrange using rearrange_pattern
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x_spatial,
struct ggml_tensor* x_temporal) {
// image_only_indicator is always tensor([0.])
float alpha = get_alpha();
auto x = ggml_add(ctx,
ggml_scale(ctx, x_spatial, alpha),
ggml_scale(ctx, x_temporal, 1.0f - alpha));
return x;
}
};
class VideoResBlock : public ResBlock {
public:
VideoResBlock(int channels,
int emb_channels,
int out_channels,
std::pair<int, int> kernel_size = {3, 3},
int64_t video_kernel_size = 3,
int dims = 2) // always 2
: ResBlock(channels, emb_channels, out_channels, kernel_size, dims) {
blocks["time_stack"] = std::shared_ptr<GGMLBlock>(new ResBlock(out_channels, emb_channels, out_channels, kernel_size, 3, true));
blocks["time_mixer"] = std::shared_ptr<GGMLBlock>(new AlphaBlender());
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb,
int num_video_frames) {
// x: [N, channels, h, w] aka [b*t, channels, h, w]
// emb: [N, emb_channels] aka [b*t, emb_channels]
// image_only_indicator is always tensor([0.])
auto time_stack = std::dynamic_pointer_cast<ResBlock>(blocks["time_stack"]);
auto time_mixer = std::dynamic_pointer_cast<AlphaBlender>(blocks["time_mixer"]);
x = ResBlock::forward(ctx, x, emb);
int64_t T = num_video_frames;
int64_t B = x->ne[3] / T;
int64_t C = x->ne[2];
int64_t H = x->ne[1];
int64_t W = x->ne[0];
x = ggml_reshape_4d(ctx, x, W * H, C, T, B); // (b t) c h w -> b t c (h w)
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b t c (h w) -> b c t (h w)
auto x_mix = x;
emb = ggml_reshape_4d(ctx, emb, emb->ne[0], T, B, emb->ne[3]); // (b t) ... -> b t ...
x = time_stack->forward(ctx, x, emb); // b t c (h w)
x = time_mixer->forward(ctx, x_mix, x); // b t c (h w)
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
x = ggml_reshape_4d(ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
return x;
}
};
#endif // __COMMON_HPP__

1428
conditioner.hpp Normal file

File diff suppressed because it is too large Load Diff

458
control.hpp Normal file
View File

@ -0,0 +1,458 @@
#ifndef __CONTROL_HPP__
#define __CONTROL_HPP__
#include "common.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#define CONTROL_NET_GRAPH_SIZE 1536
/*
=================================== ControlNet ===================================
Reference: https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/cldm/cldm.py
*/
class ControlNetBlock : public GGMLBlock {
protected:
SDVersion version = VERSION_SD1;
// network hparams
int in_channels = 4;
int out_channels = 4;
int hint_channels = 3;
int num_res_blocks = 2;
std::vector<int> attention_resolutions = {4, 2, 1};
std::vector<int> channel_mult = {1, 2, 4, 4};
std::vector<int> transformer_depth = {1, 1, 1, 1};
int time_embed_dim = 1280; // model_channels*4
int num_heads = 8;
int num_head_channels = -1; // channels // num_heads
int context_dim = 768; // 1024 for VERSION_SD2, 2048 for VERSION_SDXL
public:
int model_channels = 320;
int adm_in_channels = 2816; // only for VERSION_SDXL
ControlNetBlock(SDVersion version = VERSION_SD1)
: version(version) {
if (sd_version_is_sd2(version)) {
context_dim = 1024;
num_head_channels = 64;
num_heads = -1;
} else if (sd_version_is_sdxl(version)) {
context_dim = 2048;
attention_resolutions = {4, 2};
channel_mult = {1, 2, 4};
transformer_depth = {1, 2, 10};
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SVD) {
in_channels = 8;
out_channels = 4;
context_dim = 1024;
adm_in_channels = 768;
num_head_channels = 64;
num_heads = -1;
}
blocks["time_embed.0"] = std::shared_ptr<GGMLBlock>(new Linear(model_channels, time_embed_dim));
// time_embed_1 is nn.SiLU()
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
if (sd_version_is_sdxl(version) || version == VERSION_SVD) {
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
// label_emb_1 is nn.SiLU()
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
}
// input_blocks
blocks["input_blocks.0.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, model_channels, {3, 3}, {1, 1}, {1, 1}));
std::vector<int> input_block_chans;
input_block_chans.push_back(model_channels);
int ch = model_channels;
int input_block_idx = 0;
int ds = 1;
auto get_resblock = [&](int64_t channels, int64_t emb_channels, int64_t out_channels) -> ResBlock* {
return new ResBlock(channels, emb_channels, out_channels);
};
auto get_attention_layer = [&](int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim) -> SpatialTransformer* {
return new SpatialTransformer(in_channels, n_head, d_head, depth, context_dim);
};
auto make_zero_conv = [&](int64_t channels) {
return new Conv2d(channels, channels, {1, 1});
};
blocks["zero_convs.0.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(model_channels));
blocks["input_hint_block.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(hint_channels, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 32, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.6"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 32, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.8"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 96, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.10"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 96, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.12"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 256, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.14"] = std::shared_ptr<GGMLBlock>(new Conv2d(256, model_channels, {3, 3}, {1, 1}, {1, 1}));
size_t len_mults = channel_mult.size();
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, mult * model_channels));
ch = mult * model_channels;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[i],
context_dim));
}
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
}
if (i != len_mults - 1) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new DownSampleBlock(ch, ch));
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
ds *= 2;
}
}
// middle blocks
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
// middle_block_out
blocks["middle_block_out.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
}
struct ggml_tensor* resblock_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb) {
auto block = std::dynamic_pointer_cast<ResBlock>(blocks[name]);
return block->forward(ctx, x, emb);
}
struct ggml_tensor* attention_layer_forward(std::string name,
struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
}
struct ggml_tensor* input_hint_block_forward(struct ggml_context* ctx,
struct ggml_tensor* hint,
struct ggml_tensor* emb,
struct ggml_tensor* context) {
int num_input_blocks = 15;
auto h = hint;
for (int i = 0; i < num_input_blocks; i++) {
if (i % 2 == 0) {
auto block = std::dynamic_pointer_cast<Conv2d>(blocks["input_hint_block." + std::to_string(i)]);
h = block->forward(ctx, h);
} else {
h = ggml_silu_inplace(ctx, h);
}
}
return h;
}
std::vector<struct ggml_tensor*> forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* guided_hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = NULL) {
// x: [N, in_channels, h, w] or [N, in_channels/2, h, w]
// timesteps: [N,]
// context: [N, max_position, hidden_size] or [1, max_position, hidden_size]. for example, [N, 77, 768]
// y: [N, adm_in_channels] or [1, adm_in_channels]
if (context != NULL) {
if (context->ne[2] != x->ne[3]) {
context = ggml_repeat(ctx, context, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, context->ne[0], context->ne[1], x->ne[3]));
}
}
if (y != NULL) {
if (y->ne[1] != x->ne[3]) {
y = ggml_repeat(ctx, y, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, y->ne[0], x->ne[3]));
}
}
auto time_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.0"]);
auto time_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.2"]);
auto input_blocks_0_0 = std::dynamic_pointer_cast<Conv2d>(blocks["input_blocks.0.0"]);
auto zero_convs_0 = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs.0.0"]);
auto middle_block_out = std::dynamic_pointer_cast<Conv2d>(blocks["middle_block_out.0"]);
auto t_emb = ggml_nn_timestep_embedding(ctx, timesteps, model_channels); // [N, model_channels]
auto emb = time_embed_0->forward(ctx, t_emb);
emb = ggml_silu_inplace(ctx, emb);
emb = time_embed_2->forward(ctx, emb); // [N, time_embed_dim]
// SDXL/SVD
if (y != NULL) {
auto label_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.0"]);
auto label_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.2"]);
auto label_emb = label_embed_0->forward(ctx, y);
label_emb = ggml_silu_inplace(ctx, label_emb);
label_emb = label_embed_2->forward(ctx, label_emb); // [N, time_embed_dim]
emb = ggml_add(ctx, emb, label_emb); // [N, time_embed_dim]
}
std::vector<struct ggml_tensor*> outs;
if (guided_hint == NULL) {
guided_hint = input_hint_block_forward(ctx, hint, emb, context);
}
outs.push_back(guided_hint);
// input_blocks
// input block 0
auto h = input_blocks_0_0->forward(ctx, x);
h = ggml_add(ctx, h, guided_hint);
outs.push_back(zero_convs_0->forward(ctx, h));
// input block 1-11
size_t len_mults = channel_mult.size();
int input_block_idx = 0;
int ds = 1;
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
h = resblock_forward(name, ctx, h, emb); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context); // [N, mult*model_channels, h, w]
}
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
if (i != len_mults - 1) {
ds *= 2;
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
auto block = std::dynamic_pointer_cast<DownSampleBlock>(blocks[name]);
h = block->forward(ctx, h); // [N, mult*model_channels, h/(2^(i+1)), w/(2^(i+1))]
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
}
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
// out
outs.push_back(middle_block_out->forward(ctx, h));
return outs;
}
};
struct ControlNet : public GGMLRunner {
SDVersion version = VERSION_SD1;
ControlNetBlock control_net;
ggml_backend_buffer_t control_buffer = NULL; // keep control output tensors in backend memory
ggml_context* control_ctx = NULL;
std::vector<struct ggml_tensor*> controls; // (12 input block outputs, 1 middle block output) SD 1.5
struct ggml_tensor* guided_hint = NULL; // guided_hint cache, for faster inference
bool guided_hint_cached = false;
ControlNet(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_SD1)
: GGMLRunner(backend), control_net(version) {
control_net.init(params_ctx, tensor_types, "");
}
~ControlNet() {
free_control_ctx();
}
void alloc_control_ctx(std::vector<struct ggml_tensor*> outs) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(outs.size() * ggml_tensor_overhead()) + 1024 * 1024;
params.mem_buffer = NULL;
params.no_alloc = true;
control_ctx = ggml_init(params);
controls.resize(outs.size() - 1);
size_t control_buffer_size = 0;
guided_hint = ggml_dup_tensor(control_ctx, outs[0]);
control_buffer_size += ggml_nbytes(guided_hint);
for (int i = 0; i < outs.size() - 1; i++) {
controls[i] = ggml_dup_tensor(control_ctx, outs[i + 1]);
control_buffer_size += ggml_nbytes(controls[i]);
}
control_buffer = ggml_backend_alloc_ctx_tensors(control_ctx, backend);
LOG_DEBUG("control buffer size %.2fMB", control_buffer_size * 1.f / 1024.f / 1024.f);
}
void free_control_ctx() {
if (control_buffer != NULL) {
ggml_backend_buffer_free(control_buffer);
control_buffer = NULL;
}
if (control_ctx != NULL) {
ggml_free(control_ctx);
control_ctx = NULL;
}
guided_hint = NULL;
guided_hint_cached = false;
controls.clear();
}
std::string get_desc() {
return "control_net";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
control_net.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = NULL) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, CONTROL_NET_GRAPH_SIZE, false);
x = to_backend(x);
if (guided_hint_cached) {
hint = NULL;
} else {
hint = to_backend(hint);
}
context = to_backend(context);
y = to_backend(y);
timesteps = to_backend(timesteps);
auto outs = control_net.forward(compute_ctx,
x,
hint,
guided_hint_cached ? guided_hint : NULL,
timesteps,
context,
y);
if (control_ctx == NULL) {
alloc_control_ctx(outs);
}
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[0], guided_hint));
for (int i = 0; i < outs.size() - 1; i++) {
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[i + 1], controls[i]));
}
return gf;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL) {
// x: [N, in_channels, h, w]
// timesteps: [N, ]
// context: [N, max_position, hidden_size]([N, 77, 768]) or [1, max_position, hidden_size]
// y: [N, adm_in_channels] or [1, adm_in_channels]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, hint, timesteps, context, y);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
guided_hint_cached = true;
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading control net from '%s'", file_path.c_str());
alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
control_net.get_param_tensors(tensors);
std::set<std::string> ignore_tensors;
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init control net model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(tensors, backend, ignore_tensors);
if (!success) {
LOG_ERROR("load control net tensors from model loader failed");
return false;
}
LOG_INFO("control net model loaded");
return success;
}
};
#endif // __CONTROL_HPP__

File diff suppressed because it is too large Load Diff

187
diffusion_model.hpp Normal file
View File

@ -0,0 +1,187 @@
#ifndef __DIFFUSION_MODEL_H__
#define __DIFFUSION_MODEL_H__
#include "flux.hpp"
#include "mmdit.hpp"
#include "unet.hpp"
struct DiffusionModel {
virtual void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) = 0;
virtual void alloc_params_buffer() = 0;
virtual void free_params_buffer() = 0;
virtual void free_compute_buffer() = 0;
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
virtual size_t get_params_buffer_size() = 0;
virtual int64_t get_adm_in_channels() = 0;
};
struct UNetModel : public DiffusionModel {
UNetModelRunner unet;
UNetModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_SD1,
bool flash_attn = false)
: unet(backend, tensor_types, "model.diffusion_model", version, flash_attn) {
}
void alloc_params_buffer() {
unet.alloc_params_buffer();
}
void free_params_buffer() {
unet.free_params_buffer();
}
void free_compute_buffer() {
unet.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
unet.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return unet.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return unet.unet.adm_in_channels;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
(void)skip_layers; // SLG doesn't work with UNet models
return unet.compute(n_threads, x, timesteps, context, c_concat, y, num_video_frames, controls, control_strength, output, output_ctx);
}
};
struct MMDiTModel : public DiffusionModel {
MMDiTRunner mmdit;
MMDiTModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types)
: mmdit(backend, tensor_types, "model.diffusion_model") {
}
void alloc_params_buffer() {
mmdit.alloc_params_buffer();
}
void free_params_buffer() {
mmdit.free_params_buffer();
}
void free_compute_buffer() {
mmdit.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
mmdit.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return mmdit.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return 768 + 1280;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return mmdit.compute(n_threads, x, timesteps, context, y, output, output_ctx, skip_layers);
}
};
struct FluxModel : public DiffusionModel {
Flux::FluxRunner flux;
FluxModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_FLUX,
bool flash_attn = false,
bool use_mask = false)
: flux(backend, tensor_types, "model.diffusion_model", version, flash_attn, use_mask) {
}
void alloc_params_buffer() {
flux.alloc_params_buffer();
}
void free_params_buffer() {
flux.free_params_buffer();
}
void free_compute_buffer() {
flux.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
flux.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return flux.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return 768;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return flux.compute(n_threads, x, timesteps, context, c_concat, y, guidance, ref_latents, output, output_ctx, skip_layers);
}
};
#endif

33
docs/chroma.md Normal file
View File

@ -0,0 +1,33 @@
# How to Use
You can run Chroma using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
## Download weights
- Download Chroma
- If you don't want to do the conversion yourself, download the preconverted gguf model from [silveroxides/Chroma-GGUF](https://huggingface.co/silveroxides/Chroma-GGUF)
- Otherwise, download chroma's safetensors from [lodestones/Chroma](https://huggingface.co/lodestones/Chroma)
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Convert Chroma weights
You can download the preconverted gguf weights from [silveroxides/Chroma-GGUF](https://huggingface.co/silveroxides/Chroma-GGUF), this way you don't have to do the conversion yourself.
```
.\bin\Release\sd.exe -M convert -m ..\..\ComfyUI\models\unet\chroma-unlocked-v40.safetensors -o ..\models\chroma-unlocked-v40-q8_0.gguf -v --type q8_0
```
## Run
### Example
For example:
```
.\bin\Release\sd.exe -diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask
```
![](../assets/flux/chroma_v40.png)

15
docs/docker.md Normal file
View File

@ -0,0 +1,15 @@
## Docker
### Building using Docker
```shell
docker build -t sd .
```
### Run
```shell
docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
# For example
# docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```

9
docs/esrgan.md Normal file
View File

@ -0,0 +1,9 @@
## Using ESRGAN to upscale results
You can use ESRGAN to upscale the generated images. At the moment, only the [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) model is supported. Support for more models of this architecture will be added soon.
- Specify the model path using the `--upscale-model PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --upscale-model ../models/RealESRGAN_x4plus_anime_6B.pth
```

66
docs/flux.md Normal file
View File

@ -0,0 +1,66 @@
# How to Use
You can run Flux using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
## Download weights
- Download flux
- If you don't want to do the conversion yourself, download the preconverted gguf model from [FLUX.1-dev-gguf](https://huggingface.co/leejet/FLUX.1-dev-gguf) or [FLUX.1-schnell](https://huggingface.co/leejet/FLUX.1-schnell-gguf)
- Otherwise, download flux-dev from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors or flux-schnell from https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/main/flux1-schnell.safetensors
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
- Download clip_l from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/clip_l.safetensors
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Convert flux weights
You can download the preconverted gguf weights from [FLUX.1-dev-gguf](https://huggingface.co/leejet/FLUX.1-dev-gguf) or [FLUX.1-schnell](https://huggingface.co/leejet/FLUX.1-schnell-gguf), this way you don't have to do the conversion yourself.
Using fp16 will lead to overflow, but ggml's support for bf16 is not yet fully developed. Therefore, we need to convert flux to gguf format here, which also saves VRAM. For example:
```
.\bin\Release\sd.exe -M convert -m ..\..\ComfyUI\models\unet\flux1-dev.sft -o ..\models\flux1-dev-q8_0.gguf -v --type q8_0
```
## Run
- `--cfg-scale` is recommended to be set to 1.
### Flux-dev
For example:
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
```
Using formats of different precisions will yield results of varying quality.
| Type | q8_0 | q4_0 | q4_k | q3_k | q2_k |
|---- | ---- |---- |---- |---- |---- |
| **Memory** | 12068.09 MB | 6394.53 MB | 6395.17 MB | 4888.16 MB | 3735.73 MB |
| **Result** | ![](../assets/flux/flux1-dev-q8_0.png) |![](../assets/flux/flux1-dev-q4_0.png) |![](../assets/flux/flux1-dev-q4_k.png) |![](../assets/flux/flux1-dev-q3_k.png) |![](../assets/flux/flux1-dev-q2_k.png)|
### Flux-schnell
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4
```
| q8_0 |
| ---- |
|![](../assets/flux/flux1-schnell-q8_0.png) |
## Run with LoRA
Since many flux LoRA training libraries have used various LoRA naming formats, it is possible that not all flux LoRA naming formats are supported. It is recommended to use LoRA with naming formats compatible with ComfyUI.
### Flux-dev q8_0 with LoRA
- LoRA model from https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main (using comfy converted version!!!)
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models
```
![output](../assets/flux/flux1-dev-q8_0%20with%20lora.png)

View File

@ -0,0 +1,85 @@
# Using hipBLAS on Windows
To get hipBLAS in `stable-diffusion.cpp` working on Windows, go through this guide section by section.
## Build Tools for Visual Studio 2022
Skip this step if you already have Build Tools installed.
To install Build Tools, go to [Visual Studio Downloads](https://visualstudio.microsoft.com/vs/), download `Visual Studio 2022 and other Products` and run the installer.
## CMake
Skip this step if you already have CMake installed: running `cmake --version` should output `cmake version x.y.z`.
Download latest `Windows x64 Installer` from [Download | CMake](https://cmake.org/download/) and run it.
## ROCm
Skip this step if you already have Build Tools installed.
The [validation tools](https://rocm.docs.amd.com/en/latest/reference/validation_tools.html) not support on Windows. So you should confirm the Version of `ROCM` by yourself.
Fortunately, `AMD` provides complete help documentation, you can use the help documentation to install [ROCM](https://rocm.docs.amd.com/en/latest/deploy/windows/quick_start.html)
>**If you encounter an error, if it is [AMD ROCm Windows Installation Error 215](https://github.com/RadeonOpenCompute/ROCm/issues/2363), don't worry about this error. ROCM has been installed correctly, but the vs studio plugin installation failed, we can ignore it.**
Then we must set `ROCM` as environment variables before running cmake.
Usually if you install according to the official tutorial and do not modify the ROCM path, then there is a high probability that it is here `C:\Program Files\AMD\ROCm\5.5\bin`
This is what I use to set the clang:
```Commandline
set CC=C:\Program Files\AMD\ROCm\5.5\bin\clang.exe
set CXX=C:\Program Files\AMD\ROCm\5.5\bin\clang++.exe
```
## Ninja
Skip this step if you already have Ninja installed: running `ninja --version` should output `1.11.1`.
Download latest `ninja-win.zip` from [GitHub Releases Page](https://github.com/ninja-build/ninja/releases/tag/v1.11.1) and unzip. Then set as environment variables. I unzipped it in `C:\Program Files\ninja`, so I set it like this:
```Commandline
set ninja=C:\Program Files\ninja\ninja.exe
```
## Building stable-diffusion.cpp
The thing different from the regular CPU build is `-DSD_HIPBLAS=ON` ,
`-G "Ninja"`, `-DCMAKE_C_COMPILER=clang`, `-DCMAKE_CXX_COMPILER=clang++`, `-DAMDGPU_TARGETS=gfx1100`
>**Notice**: check the `clang` and `clang++` information:
```Commandline
clang --version
clang++ --version
```
If you see like this, we can continue:
```
clang version 17.0.0 (git@github.amd.com:Compute-Mirrors/llvm-project e3201662d21c48894f2156d302276eb1cf47c7be)
Target: x86_64-pc-windows-msvc
Thread model: posix
InstalledDir: C:\Program Files\AMD\ROCm\5.5\bin
```
```
clang version 17.0.0 (git@github.amd.com:Compute-Mirrors/llvm-project e3201662d21c48894f2156d302276eb1cf47c7be)
Target: x86_64-pc-windows-msvc
Thread model: posix
InstalledDir: C:\Program Files\AMD\ROCm\5.5\bin
```
>**Notice** that the `gfx1100` is the GPU architecture of my GPU, you can change it to your GPU architecture. Click here to see your architecture [LLVM Target](https://rocm.docs.amd.com/en/latest/release/windows_support.html#windows-supported-gpus)
My GPU is AMD Radeon™ RX 7900 XTX Graphics, so I set it to `gfx1100`.
option:
```commandline
mkdir build
cd build
cmake .. -G "Ninja" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=gfx1100
cmake --build . --config Release
```
If everything went OK, `build\bin\sd.exe` file should appear.

39
docs/kontext.md Normal file
View File

@ -0,0 +1,39 @@
# How to Use
You can run Kontext using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
## Download weights
- Download Kontext
- If you don't want to do the conversion yourself, download the preconverted gguf model from [FLUX.1-Kontext-dev-GGUF](https://huggingface.co/QuantStack/FLUX.1-Kontext-dev-GGUF)
- Otherwise, download FLUX.1-Kontext-dev from https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev/blob/main/flux1-kontext-dev.safetensors
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
- Download clip_l from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/clip_l.safetensors
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Convert Kontext weights
You can download the preconverted gguf weights from [FLUX.1-Kontext-dev-GGUF](https://huggingface.co/QuantStack/FLUX.1-Kontext-dev-GGUF), this way you don't have to do the conversion yourself.
```
.\bin\Release\sd.exe -M convert -m ..\..\ComfyUI\models\unet\flux1-kontext-dev.safetensors -o ..\models\flux1-kontext-dev-q8_0.gguf -v --type q8_0
```
## Run
- `--cfg-scale` is recommended to be set to 1.
### Example
For example:
```
.\bin\Release\sd.exe -r .\flux1-dev-q8_0.png --diffusion-model ..\models\flux1-kontext-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "change 'flux.cpp' to 'kontext.cpp'" --cfg-scale 1.0 --sampling-method euler -v
```
| ref_image | prompt | output |
| ---- | ---- |---- |
| ![](../assets/flux/flux1-dev-q8_0.png) | change 'flux.cpp' to 'kontext.cpp' |![](../assets/flux/kontext1_dev_output.png) |

15
docs/lcm.md Normal file
View File

@ -0,0 +1,15 @@
## LCM/LCM-LoRA
- Download LCM-LoRA form https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
- Specify LCM-LoRA by adding `<lora:lcm-lora-sdv1-5:1>` to prompt
- It's advisable to set `--cfg-scale` to `1.0` instead of the default `7.0`. For `--steps`, a range of `2-8` steps is recommended. For `--sampling-method`, `lcm`/`euler_a` is recommended.
Here's a simple example:
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:lcm-lora-sdv1-5:1>" --steps 4 --lora-model-dir ../models -v --cfg-scale 1
```
| without LCM-LoRA (--cfg-scale 7) | with LCM-LoRA (--cfg-scale 1) |
| ---- |---- |
| ![](../assets/without_lcm.png) |![](../assets/with_lcm.png) |

13
docs/lora.md Normal file
View File

@ -0,0 +1,13 @@
## LoRA
- You can specify the directory where the lora weights are stored via `--lora-model-dir`. If not specified, the default is the current working directory.
- LoRA is specified via prompt, just like [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#lora).
Here's a simple example:
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:marblesh:1>" --lora-model-dir ../models
```
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model

54
docs/photo_maker.md Normal file
View File

@ -0,0 +1,54 @@
## Using PhotoMaker to personalize image generation
You can use [PhotoMaker](https://github.com/TencentARC/PhotoMaker) to personalize generated images with your own ID.
**NOTE**, currently PhotoMaker **ONLY** works with **SDXL** (any SDXL model files will work).
Download PhotoMaker model file (in safetensor format) [here](https://huggingface.co/bssrdf/PhotoMaker). The official release of the model file (in .bin format) does not work with ```stablediffusion.cpp```.
- Specify the PhotoMaker model path using the `--stacked-id-embd-dir PATH` parameter.
- Specify the input images path using the `--input-id-images-dir PATH` parameter.
- input images **must** have the same width and height for preprocessing (to be improved)
In prompt, make sure you have a class word followed by the trigger word ```"img"``` (hard-coded for now). The class word could be one of ```"man, woman, girl, boy"```. If input ID images contain asian faces, add ```Asian``` before the class
word.
Another PhotoMaker specific parameter:
- ```--style-ratio (0-100)%```: default is 20 and 10-20 typically gets good results. Lower ratio means more faithfully following input ID (not necessarily better quality).
Other parameters recommended for running Photomaker:
- ```--cfg-scale 5.0```
- ```-H 1024```
- ```-W 1024```
If on low memory GPUs (<= 8GB), recommend running with ```--vae-on-cpu``` option to get artifact free images.
Example:
```bash
bin/sd -m ../models/sdxlUnstableDiffusers_v11.safetensors --vae ../models/sdxl_vae.safetensors --stacked-id-embd-dir ../models/photomaker-v1.safetensors --input-id-images-dir ../assets/photomaker_examples/scarletthead_woman -p "a girl img, retro futurism, retro game art style but extremely beautiful, intricate details, masterpiece, best quality, space-themed, cosmic, celestial, stars, galaxies, nebulas, planets, science fiction, highly detailed" -n "realistic, photo-realistic, worst quality, greyscale, bad anatomy, bad hands, error, text" --cfg-scale 5.0 --sampling-method euler -H 1024 -W 1024 --style-ratio 10 --vae-on-cpu -o output.png
```
## PhotoMaker Version 2
[PhotoMaker Version 2 (PMV2)](https://github.com/TencentARC/PhotoMaker/blob/main/README_pmv2.md) has some key improvements. Unfortunately it has a very heavy dependency which makes running it a bit involved in ```SD.cpp```.
Running PMV2 is now a two-step process:
- Run a python script ```face_detect.py``` to obtain **id_embeds** for the given input images
```
python face_detect.py input_image_dir
```
An ```id_embeds.safetensors``` file will be generated in ```input_images_dir```
**Note: this step is only needed to run once; the same ```id_embeds``` can be reused**
- Run the same command as in version 1 but replacing ```photomaker-v1.safetensors``` with ```photomaker-v2.safetensors```.
You can download ```photomaker-v2.safetensors``` from [here](https://huggingface.co/bssrdf/PhotoMakerV2)
- All the command line parameters from Version 1 remain the same for Version 2

View File

@ -0,0 +1,27 @@
## Quantization
You can specify the model weight type using the `--type` parameter. The weights are automatically converted when loading the model.
- `f16` for 16-bit floating-point
- `f32` for 32-bit floating-point
- `q8_0` for 8-bit integer quantization
- `q5_0` or `q5_1` for 5-bit integer quantization
- `q4_0` or `q4_1` for 4-bit integer quantization
### Memory Requirements of Stable Diffusion 1.x
| precision | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 |
| ---- | ---- |---- |---- |---- |---- |---- |---- |
| **Memory** (txt2img - 512 x 512) | ~2.8G | ~2.3G | ~2.1G | ~2.0G | ~2.0G | ~2.0G | ~2.0G |
| **Memory** (txt2img - 512 x 512) *with Flash Attention* | ~2.4G | ~1.9G | ~1.6G | ~1.5G | ~1.5G | ~1.5G | ~1.5G |
## Convert to GGUF
You can also convert weights in the formats `ckpt/safetensors/diffusers` to gguf and perform quantization in advance, avoiding the need for quantization every time you load them.
For example:
```sh
./bin/sd -M convert -m ../models/v1-5-pruned-emaonly.safetensors -o ../models/v1-5-pruned-emaonly.q8_0.gguf -v --type q8_0
```

20
docs/sd3.md Normal file
View File

@ -0,0 +1,20 @@
# How to Use
## Download weights
- Download sd3.5_large from https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/sd3.5_large.safetensors
- Download clip_g from https://huggingface.co/Comfy-Org/stable-diffusion-3.5-fp8/blob/main/text_encoders/clip_g.safetensors
- Download clip_l from https://huggingface.co/Comfy-Org/stable-diffusion-3.5-fp8/blob/main/text_encoders/clip_l.safetensors
- Download t5xxl from https://huggingface.co/Comfy-Org/stable-diffusion-3.5-fp8/blob/main/text_encoders/t5xxl_fp16.safetensors
## Run
### SD3.5 Large
For example:
```
.\bin\Release\sd.exe -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
```
![](../assets/sd3.5_large.png)

17
docs/taesd.md Normal file
View File

@ -0,0 +1,17 @@
## Using TAESD to faster decoding
You can use TAESD to accelerate the decoding of latent images by following these steps:
- Download the model [weights](https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors).
Or curl
```bash
curl -L -O https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors
```
- Specify the model path using the `--taesd PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors
```

View File

@ -12,279 +12,151 @@
*/
struct ResidualDenseBlock {
int num_features;
class ResidualDenseBlock : public GGMLBlock {
protected:
int num_feat;
int num_grow_ch;
ggml_tensor* conv1_w; // [num_grow_ch, num_features, 3, 3]
ggml_tensor* conv1_b; // [num_grow_ch]
ggml_tensor* conv2_w; // [num_grow_ch, num_features + num_grow_ch, 3, 3]
ggml_tensor* conv2_b; // [num_grow_ch]
ggml_tensor* conv3_w; // [num_grow_ch, num_features + 2 * num_grow_ch, 3, 3]
ggml_tensor* conv3_b; // [num_grow_ch]
ggml_tensor* conv4_w; // [num_grow_ch, num_features + 3 * num_grow_ch, 3, 3]
ggml_tensor* conv4_b; // [num_grow_ch]
ggml_tensor* conv5_w; // [num_features, num_features + 4 * num_grow_ch, 3, 3]
ggml_tensor* conv5_b; // [num_features]
ResidualDenseBlock() {}
ResidualDenseBlock(int num_feat, int n_grow_ch) {
num_features = num_feat;
num_grow_ch = n_grow_ch;
public:
ResidualDenseBlock(int num_feat = 64, int num_grow_ch = 32)
: num_feat(num_feat), num_grow_ch(num_grow_ch) {
blocks["conv1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv3"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv4"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv5"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 4 * num_grow_ch, num_feat, {3, 3}, {1, 1}, {1, 1}));
}
size_t calculate_mem_size() {
size_t mem_size = num_features * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv1_w
mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv1_b
mem_size += (num_features + num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv2_w
mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv2_b
mem_size += (num_features + 2 * num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv3_w
mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv3_w
mem_size += (num_features + 3 * num_grow_ch) * num_grow_ch * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv4_w
mem_size += num_grow_ch * ggml_type_size(GGML_TYPE_F32); // conv4_w
mem_size += (num_features + 4 * num_grow_ch) * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv5_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv5_w
return mem_size;
struct ggml_tensor* lrelu(struct ggml_context* ctx, struct ggml_tensor* x) {
return ggml_leaky_relu(ctx, x, 0.2f, true);
}
int get_num_tensors() {
int num_tensors = 10;
return num_tensors;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_feat, h, w]
// return: [n, num_feat, h, w]
void init_params(ggml_context* ctx) {
conv1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features, num_grow_ch);
conv1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch);
conv2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + num_grow_ch, num_grow_ch);
conv2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch);
conv3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 2 * num_grow_ch, num_grow_ch);
conv3_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch);
conv4_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 3 * num_grow_ch, num_grow_ch);
conv4_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_grow_ch);
conv5_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, num_features + 4 * num_grow_ch, num_features);
conv5_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_features);
}
auto conv1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv1"]);
auto conv2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv2"]);
auto conv3 = std::dynamic_pointer_cast<Conv2d>(blocks["conv3"]);
auto conv4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv4"]);
auto conv5 = std::dynamic_pointer_cast<Conv2d>(blocks["conv5"]);
void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
tensors[prefix + "conv1.weight"] = conv1_w;
tensors[prefix + "conv1.bias"] = conv1_b;
auto x1 = lrelu(ctx, conv1->forward(ctx, x));
auto x_cat = ggml_concat(ctx, x, x1, 2);
auto x2 = lrelu(ctx, conv2->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x2, 2);
auto x3 = lrelu(ctx, conv3->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x3, 2);
auto x4 = lrelu(ctx, conv4->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x4, 2);
auto x5 = conv5->forward(ctx, x_cat);
tensors[prefix + "conv2.weight"] = conv2_w;
tensors[prefix + "conv2.bias"] = conv2_b;
tensors[prefix + "conv3.weight"] = conv3_w;
tensors[prefix + "conv3.bias"] = conv3_b;
tensors[prefix + "conv4.weight"] = conv4_w;
tensors[prefix + "conv4.bias"] = conv4_b;
tensors[prefix + "conv5.weight"] = conv5_w;
tensors[prefix + "conv5.bias"] = conv5_b;
}
ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x /* feat */) {
// x1 = self.lrelu(self.conv1(x))
ggml_tensor* x1 = ggml_nn_conv_2d(ctx, x, conv1_w, conv1_b, 1, 1, 1, 1);
x1 = ggml_leaky_relu(ctx, x1, 0.2f, true);
// x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
ggml_tensor* x_cat = ggml_concat(ctx, x, x1);
ggml_tensor* x2 = ggml_nn_conv_2d(ctx, x_cat, conv2_w, conv2_b, 1, 1, 1, 1);
x2 = ggml_leaky_relu(ctx, x2, 0.2f, true);
// x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x_cat = ggml_concat(ctx, x_cat, x2);
ggml_tensor* x3 = ggml_nn_conv_2d(ctx, x_cat, conv3_w, conv3_b, 1, 1, 1, 1);
x3 = ggml_leaky_relu(ctx, x3, 0.2f, true);
// x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x_cat = ggml_concat(ctx, x_cat, x3);
ggml_tensor* x4 = ggml_nn_conv_2d(ctx, x_cat, conv4_w, conv4_b, 1, 1, 1, 1);
x4 = ggml_leaky_relu(ctx, x4, 0.2f, true);
// self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
x_cat = ggml_concat(ctx, x_cat, x4);
ggml_tensor* x5 = ggml_nn_conv_2d(ctx, x_cat, conv5_w, conv5_b, 1, 1, 1, 1);
// return x5 * 0.2 + x
x5 = ggml_add(ctx, ggml_scale(ctx, x5, out_scale), x);
x5 = ggml_add(ctx, ggml_scale(ctx, x5, 0.2f), x);
return x5;
}
};
struct EsrganBlock {
ResidualDenseBlock rd_blocks[3];
int num_residual_blocks = 3;
EsrganBlock() {}
EsrganBlock(int num_feat, int num_grow_ch) {
for (int i = 0; i < num_residual_blocks; i++) {
rd_blocks[i] = ResidualDenseBlock(num_feat, num_grow_ch);
}
class RRDB : public GGMLBlock {
public:
RRDB(int num_feat, int num_grow_ch = 32) {
blocks["rdb1"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
blocks["rdb2"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
blocks["rdb3"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
}
int get_num_tensors() {
int num_tensors = 0;
for (int i = 0; i < num_residual_blocks; i++) {
num_tensors += rd_blocks[i].get_num_tensors();
}
return num_tensors;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_feat, h, w]
// return: [n, num_feat, h, w]
size_t calculate_mem_size() {
size_t mem_size = 0;
for (int i = 0; i < num_residual_blocks; i++) {
mem_size += rd_blocks[i].calculate_mem_size();
}
return mem_size;
}
auto rdb1 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb1"]);
auto rdb2 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb2"]);
auto rdb3 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb3"]);
void init_params(ggml_context* ctx) {
for (int i = 0; i < num_residual_blocks; i++) {
rd_blocks[i].init_params(ctx);
}
}
auto out = rdb1->forward(ctx, x);
out = rdb2->forward(ctx, out);
out = rdb3->forward(ctx, out);
void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
for (int i = 0; i < num_residual_blocks; i++) {
rd_blocks[i].map_by_name(tensors, prefix + "rdb" + std::to_string(i + 1) + ".");
}
}
ggml_tensor* forward(ggml_context* ctx, ggml_tensor* out_scale, ggml_tensor* x) {
ggml_tensor* out = x;
for (int i = 0; i < num_residual_blocks; i++) {
// out = self.rdb...(x)
out = rd_blocks[i].forward(ctx, out_scale, out);
}
// return out * 0.2 + x
out = ggml_add(ctx, ggml_scale(ctx, out, out_scale), x);
out = ggml_add(ctx, ggml_scale(ctx, out, 0.2f), x);
return out;
}
};
struct ESRGAN : public GGMLModule {
int scale = 4; // default RealESRGAN_x4plus_anime_6B
int num_blocks = 6; // default RealESRGAN_x4plus_anime_6B
int in_channels = 3;
int out_channels = 3;
int num_features = 64; // default RealESRGAN_x4plus_anime_6B
int num_grow_ch = 32; // default RealESRGAN_x4plus_anime_6B
int tile_size = 128; // avoid cuda OOM for 4gb VRAM
class RRDBNet : public GGMLBlock {
protected:
int scale = 4; // default RealESRGAN_x4plus_anime_6B
int num_block = 6; // default RealESRGAN_x4plus_anime_6B
int num_in_ch = 3;
int num_out_ch = 3;
int num_feat = 64; // default RealESRGAN_x4plus_anime_6B
int num_grow_ch = 32; // default RealESRGAN_x4plus_anime_6B
ggml_tensor* conv_first_w; // [num_features, in_channels, 3, 3]
ggml_tensor* conv_first_b; // [num_features]
EsrganBlock body_blocks[6];
ggml_tensor* conv_body_w; // [num_features, num_features, 3, 3]
ggml_tensor* conv_body_b; // [num_features]
// upsample
ggml_tensor* conv_up1_w; // [num_features, num_features, 3, 3]
ggml_tensor* conv_up1_b; // [num_features]
ggml_tensor* conv_up2_w; // [num_features, num_features, 3, 3]
ggml_tensor* conv_up2_b; // [num_features]
ggml_tensor* conv_hr_w; // [num_features, num_features, 3, 3]
ggml_tensor* conv_hr_b; // [num_features]
ggml_tensor* conv_last_w; // [out_channels, num_features, 3, 3]
ggml_tensor* conv_last_b; // [out_channels]
bool decode_only = false;
ESRGAN() {
name = "esrgan";
for (int i = 0; i < num_blocks; i++) {
body_blocks[i] = EsrganBlock(num_features, num_grow_ch);
public:
RRDBNet() {
blocks["conv_first"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_in_ch, num_feat, {3, 3}, {1, 1}, {1, 1}));
for (int i = 0; i < num_block; i++) {
std::string name = "body." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new RRDB(num_feat, num_grow_ch));
}
}
size_t calculate_mem_size() {
size_t mem_size = num_features * in_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_first_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_first_b
for (int i = 0; i < num_blocks; i++) {
mem_size += body_blocks[i].calculate_mem_size();
}
mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_body_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_body_w
blocks["conv_body"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
// upsample
mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_up1_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_up1_b
mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_up2_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_up2_b
mem_size += num_features * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_hr_w
mem_size += num_features * ggml_type_size(GGML_TYPE_F32); // conv_hr_b
mem_size += out_channels * num_features * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_last_w
mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_last_b
return mem_size;
blocks["conv_up1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_up2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_hr"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_last"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_out_ch, {3, 3}, {1, 1}, {1, 1}));
}
size_t get_num_tensors() {
size_t num_tensors = 12;
for (int i = 0; i < num_blocks; i++) {
num_tensors += body_blocks[i].get_num_tensors();
}
return num_tensors;
struct ggml_tensor* lrelu(struct ggml_context* ctx, struct ggml_tensor* x) {
return ggml_leaky_relu(ctx, x, 0.2f, true);
}
void init_params() {
ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer);
conv_first_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, in_channels, num_features);
conv_first_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, num_features);
conv_body_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, num_features, num_features);
conv_body_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, num_features);
conv_up1_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, num_features, num_features);
conv_up1_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, num_features);
conv_up2_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, num_features, num_features);
conv_up2_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, num_features);
conv_hr_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, num_features, num_features);
conv_hr_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, num_features);
conv_last_w = ggml_new_tensor_4d(params_ctx, GGML_TYPE_F16, 3, 3, num_features, out_channels);
conv_last_b = ggml_new_tensor_1d(params_ctx, GGML_TYPE_F32, out_channels);
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_in_ch, h, w]
// return: [n, num_out_ch, h*4, w*4]
auto conv_first = std::dynamic_pointer_cast<Conv2d>(blocks["conv_first"]);
auto conv_body = std::dynamic_pointer_cast<Conv2d>(blocks["conv_body"]);
auto conv_up1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up1"]);
auto conv_up2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up2"]);
auto conv_hr = std::dynamic_pointer_cast<Conv2d>(blocks["conv_hr"]);
auto conv_last = std::dynamic_pointer_cast<Conv2d>(blocks["conv_last"]);
for (int i = 0; i < num_blocks; i++) {
body_blocks[i].init_params(params_ctx);
}
auto feat = conv_first->forward(ctx, x);
auto body_feat = feat;
for (int i = 0; i < num_block; i++) {
std::string name = "body." + std::to_string(i);
auto block = std::dynamic_pointer_cast<RRDB>(blocks[name]);
// alloc all tensors linked to this context
for (struct ggml_tensor* t = ggml_get_first_tensor(params_ctx); t != NULL; t = ggml_get_next_tensor(params_ctx, t)) {
if (t->data == NULL) {
ggml_allocr_alloc(alloc, t);
}
body_feat = block->forward(ctx, body_feat);
}
ggml_allocr_free(alloc);
body_feat = conv_body->forward(ctx, body_feat);
feat = ggml_add(ctx, feat, body_feat);
// upsample
feat = lrelu(ctx, conv_up1->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
feat = lrelu(ctx, conv_up2->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
auto out = conv_last->forward(ctx, lrelu(ctx, conv_hr->forward(ctx, feat)));
return out;
}
};
struct ESRGAN : public GGMLRunner {
RRDBNet rrdb_net;
int scale = 4;
int tile_size = 128; // avoid cuda OOM for 4gb VRAM
ESRGAN(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types)
: GGMLRunner(backend) {
rrdb_net.init(params_ctx, tensor_types, "");
}
bool load_from_file(const std::string& file_path, ggml_backend_t backend) {
std::string get_desc() {
return "esrgan";
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading esrgan from '%s'", file_path.c_str());
if (!alloc_params_buffer(backend)) {
return false;
}
alloc_params_buffer();
std::map<std::string, ggml_tensor*> esrgan_tensors;
// prepare memory for the weights
{
init_params();
map_by_name(esrgan_tensors);
}
rrdb_net.get_param_tensors(esrgan_tensors);
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
@ -303,120 +175,22 @@ struct ESRGAN : public GGMLModule {
return success;
}
void map_by_name(std::map<std::string, ggml_tensor*>& tensors) {
tensors["conv_first.weight"] = conv_first_w;
tensors["conv_first.bias"] = conv_first_b;
for (int i = 0; i < num_blocks; i++) {
body_blocks[i].map_by_name(tensors, "body." + std::to_string(i) + ".");
}
tensors["conv_body.weight"] = conv_body_w;
tensors["conv_body.bias"] = conv_body_b;
tensors["conv_up1.weight"] = conv_up1_w;
tensors["conv_up1.bias"] = conv_up1_b;
tensors["conv_up2.weight"] = conv_up2_w;
tensors["conv_up2.bias"] = conv_up2_b;
tensors["conv_hr.weight"] = conv_hr_w;
tensors["conv_hr.bias"] = conv_hr_b;
tensors["conv_last.weight"] = conv_last_w;
tensors["conv_last.bias"] = conv_last_b;
}
ggml_tensor* forward(ggml_context* ctx0, ggml_tensor* out_scale, ggml_tensor* x /* feat */) {
// feat = self.conv_first(feat)
auto h = ggml_nn_conv_2d(ctx0, x, conv_first_w, conv_first_b, 1, 1, 1, 1);
auto body_h = h;
// self.body(feat)
for (int i = 0; i < num_blocks; i++) {
body_h = body_blocks[i].forward(ctx0, out_scale, body_h);
}
// body_feat = self.conv_body(self.body(feat))
body_h = ggml_nn_conv_2d(ctx0, body_h, conv_body_w, conv_body_b, 1, 1, 1, 1);
// feat = feat + body_feat
h = ggml_add(ctx0, h, body_h);
// upsample
// feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
h = ggml_upscale(ctx0, h, 2);
h = ggml_nn_conv_2d(ctx0, h, conv_up1_w, conv_up1_b, 1, 1, 1, 1);
h = ggml_leaky_relu(ctx0, h, 0.2f, true);
// feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
h = ggml_upscale(ctx0, h, 2);
h = ggml_nn_conv_2d(ctx0, h, conv_up2_w, conv_up2_b, 1, 1, 1, 1);
h = ggml_leaky_relu(ctx0, h, 0.2f, true);
// out = self.conv_last(self.lrelu(self.conv_hr(feat)))
h = ggml_nn_conv_2d(ctx0, h, conv_hr_w, conv_hr_b, 1, 1, 1, 1);
h = ggml_leaky_relu(ctx0, h, 0.2f, true);
h = ggml_nn_conv_2d(ctx0, h, conv_last_w, conv_last_b, 1, 1, 1, 1);
return h;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x) {
// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
static size_t buf_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params = {
/*.mem_size =*/buf_size,
/*.mem_buffer =*/buf.data(),
/*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
struct ggml_context* ctx0 = ggml_init(params);
struct ggml_cgraph* gf = ggml_new_graph(ctx0);
struct ggml_tensor* x_ = NULL;
struct ggml_tensor* os = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(compute_allocr, os);
if (!ggml_allocr_is_measure(compute_allocr)) {
float scale = 0.2f;
ggml_backend_tensor_set(os, &scale, 0, sizeof(scale));
}
// it's performing a compute, check if backend isn't cpu
if (!ggml_backend_is_cpu(backend)) {
// pass input tensors to gpu memory
x_ = ggml_dup_tensor(ctx0, x);
ggml_allocr_alloc(compute_allocr, x_);
// pass data to device backend
if (!ggml_allocr_is_measure(compute_allocr)) {
ggml_backend_tensor_set(x_, x->data, 0, ggml_nbytes(x));
}
} else {
x_ = x;
}
struct ggml_tensor* out = forward(ctx0, os, x);
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
x = to_backend(x);
struct ggml_tensor* out = rrdb_net.forward(compute_ctx, x);
ggml_build_forward_expand(gf, out);
ggml_free(ctx0);
return gf;
}
void alloc_compute_buffer(struct ggml_tensor* x) {
void compute(const int n_threads,
struct ggml_tensor* x,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x);
};
GGMLModule::alloc_compute_buffer(get_graph);
}
void compute(struct ggml_tensor* work_result, const int n_threads, struct ggml_tensor* x) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x);
};
GGMLModule::compute(get_graph, n_threads, work_result);
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};

File diff suppressed because it is too large Load Diff

88
face_detect.py Normal file
View File

@ -0,0 +1,88 @@
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
# pip install insightface==0.7.3
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
from safetensors.torch import save_file
###
# https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/165#issue-2055829543
###
class FaceAnalysis2(FaceAnalysis):
# NOTE: allows setting det_size for each detection call.
# the model allows it but the wrapping code from insightface
# doesn't show it, and people end up loading duplicate models
# for different sizes where there is absolutely no need to
def get(self, img, max_num=0, det_size=(640, 640)):
if det_size is not None:
self.det_model.input_size = det_size
return super().get(img, max_num)
def analyze_faces(face_analysis: FaceAnalysis, img_data: np.ndarray, det_size=(640, 640)):
# NOTE: try detect faces, if no faces detected, lower det_size until it does
detection_sizes = [None] + [(size, size) for size in range(640, 256, -64)] + [(256, 256)]
for size in detection_sizes:
faces = face_analysis.get(img_data, det_size=size)
if len(faces) > 0:
return faces
return []
if __name__ == "__main__":
#face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
#input_folder_name = './scarletthead_woman'
input_folder_name = sys.argv[1]
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# for r in id_embeds:
# print(r)
# #torch.save(id_embeds, input_folder_name+'/id_embeds.pt');
# weights = dict()
# weights["id_embeds"] = id_embeds
# save_file(weights, input_folder_name+'/id_embeds.safetensors')
binary_data = id_embeds.numpy().tobytes()
two = 4
zero = 0
one = 1
tensor_name = "id_embeds"
# Write binary data to a file
with open(input_folder_name+'/id_embeds.bin', "wb") as f:
f.write(two.to_bytes(4, byteorder='little'))
f.write((len(tensor_name)).to_bytes(4, byteorder='little'))
f.write(zero.to_bytes(4, byteorder='little'))
f.write((id_embeds.shape[1]).to_bytes(4, byteorder='little'))
f.write((id_embeds.shape[0]).to_bytes(4, byteorder='little'))
f.write(one.to_bytes(4, byteorder='little'))
f.write(one.to_bytes(4, byteorder='little'))
f.write(tensor_name.encode('ascii'))
f.write(binary_data)

1279
flux.hpp Normal file

File diff suppressed because it is too large Load Diff

2
ggml

@ -1 +1 @@
Subproject commit e5d3412fa2ea3de8c4a696c03dce73c470442dc1
Subproject commit 9e4bee1c5afc2d677a5b32ecb90cbdb483e81fff

File diff suppressed because it is too large Load Diff

349
gits_noise.inl Normal file
View File

@ -0,0 +1,349 @@
#ifndef GITS_NOISE_INL
#define GITS_NOISE_INL
const std::vector<std::vector<float>> GITS_NOISE_0_80 = {
{ 14.61464119f, 7.49001646f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 6.77309084f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 3.07277966f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 2.05039096f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 2.05039096f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 8.75849152f, 7.49001646f, 5.85520077f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 8.75849152f, 7.49001646f, 5.85520077f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 8.75849152f, 7.49001646f, 5.85520077f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 5.85520077f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.07277966f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.75859547f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.19567990f, 1.98035145f, 0.86115354f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.75859547f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.19567990f, 1.98035145f, 0.86115354f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.75859547f, 9.24142551f, 8.75849152f, 8.30717278f, 7.88507891f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.07277966f, 1.84880662f, 0.83188516f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_0_85 = {
{ 14.61464119f, 7.49001646f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 1.84880662f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 6.77309084f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.11996698f, 3.07277966f, 1.24153244f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.09240818f, 2.84484982f, 0.95350921f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.09240818f, 2.84484982f, 0.95350921f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.58536053f, 3.19567990f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 8.75849152f, 7.49001646f, 5.58536053f, 3.19567990f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 8.75849152f, 7.49001646f, 6.14220476f, 4.65472794f, 3.07277966f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 8.75849152f, 7.49001646f, 6.14220476f, 4.65472794f, 3.07277966f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.65472794f, 3.07277966f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.65472794f, 3.07277966f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.65472794f, 3.07277966f, 1.84880662f, 0.803307f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.60512662f, 2.63833880f, 1.56271636f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.46139455f, 2.45070267f, 1.56271636f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.46139455f, 2.45070267f, 1.56271636f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.46139455f, 2.45070267f, 1.56271636f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.75859547f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.46139455f, 2.45070267f, 1.56271636f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.90732002f, 10.31284904f, 9.75859547f, 9.24142551f, 8.75849152f, 8.30717278f, 7.88507891f, 7.49001646f, 6.77309084f, 5.85520077f, 4.65472794f, 3.46139455f, 2.45070267f, 1.56271636f, 0.72133851f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_0_90 = {
{ 14.61464119f, 6.77309084f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 3.07277966f, 0.95350921f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.54230714f, 0.89115214f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 4.86714602f, 2.54230714f, 0.89115214f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.09240818f, 3.07277966f, 1.61558151f, 0.69515091f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.11996698f, 4.86714602f, 3.07277966f, 1.61558151f, 0.69515091f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 2.95596409f, 1.61558151f, 0.69515091f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.19988537f, 1.24153244f, 0.57119018f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 10.90732002f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.19988537f, 1.24153244f, 0.57119018f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 9.24142551f, 8.30717278f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.19988537f, 1.24153244f, 0.57119018f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.75677586f, 2.84484982f, 1.84880662f, 1.08895338f, 0.52423614f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 4.86714602f, 3.75677586f, 2.84484982f, 1.84880662f, 1.08895338f, 0.52423614f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.44769001f, 5.58536053f, 4.45427561f, 3.32507086f, 2.45070267f, 1.61558151f, 0.95350921f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.44769001f, 5.58536053f, 4.45427561f, 3.32507086f, 2.45070267f, 1.61558151f, 0.95350921f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.86714602f, 3.91689563f, 3.07277966f, 2.27973175f, 1.56271636f, 0.95350921f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.86714602f, 3.91689563f, 3.07277966f, 2.27973175f, 1.56271636f, 0.95350921f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 4.86714602f, 3.91689563f, 3.07277966f, 2.27973175f, 1.56271636f, 0.95350921f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.96784878f, 12.23089790f, 11.54541874f, 10.31284904f, 9.24142551f, 8.75849152f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 5.09240818f, 4.45427561f, 3.60512662f, 2.95596409f, 2.19988537f, 1.51179266f, 0.89115214f, 0.43325692f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_0_95 = {
{ 14.61464119f, 6.77309084f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 2.84484982f, 0.89115214f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.36326075f, 0.803307f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.95596409f, 1.56271636f, 0.64427125f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 4.86714602f, 2.95596409f, 1.56271636f, 0.64427125f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 4.86714602f, 3.07277966f, 1.91321158f, 1.08895338f, 0.50118381f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.07277966f, 1.91321158f, 1.08895338f, 0.50118381f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 3.07277966f, 1.91321158f, 1.08895338f, 0.50118381f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.19988537f, 1.41535246f, 0.803307f, 0.38853383f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 8.75849152f, 7.49001646f, 5.85520077f, 4.65472794f, 3.46139455f, 2.63833880f, 1.84880662f, 1.24153244f, 0.72133851f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 10.90732002f, 8.75849152f, 7.49001646f, 5.85520077f, 4.65472794f, 3.46139455f, 2.63833880f, 1.84880662f, 1.24153244f, 0.72133851f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 10.90732002f, 8.75849152f, 7.49001646f, 6.14220476f, 4.86714602f, 3.75677586f, 2.95596409f, 2.19988537f, 1.56271636f, 1.05362725f, 0.64427125f, 0.32104823f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 10.90732002f, 8.75849152f, 7.49001646f, 6.44769001f, 5.58536053f, 4.65472794f, 3.60512662f, 2.95596409f, 2.19988537f, 1.56271636f, 1.05362725f, 0.64427125f, 0.32104823f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 9.24142551f, 8.30717278f, 7.49001646f, 6.44769001f, 5.58536053f, 4.65472794f, 3.60512662f, 2.95596409f, 2.19988537f, 1.56271636f, 1.05362725f, 0.64427125f, 0.32104823f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 9.24142551f, 8.30717278f, 7.49001646f, 6.44769001f, 5.58536053f, 4.65472794f, 3.75677586f, 3.07277966f, 2.45070267f, 1.78698075f, 1.24153244f, 0.83188516f, 0.50118381f, 0.22545385f, 0.02916753f },
{ 14.61464119f, 12.96784878f, 11.54541874f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 5.09240818f, 4.45427561f, 3.60512662f, 2.95596409f, 2.36326075f, 1.72759056f, 1.24153244f, 0.83188516f, 0.50118381f, 0.22545385f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 5.09240818f, 4.45427561f, 3.60512662f, 2.95596409f, 2.36326075f, 1.72759056f, 1.24153244f, 0.83188516f, 0.50118381f, 0.22545385f, 0.02916753f },
{ 14.61464119f, 13.76078796f, 12.23089790f, 10.90732002f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 5.09240818f, 4.45427561f, 3.75677586f, 3.07277966f, 2.45070267f, 1.91321158f, 1.46270394f, 1.05362725f, 0.72133851f, 0.43325692f, 0.19894916f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_00 = {
{ 14.61464119f, 1.56271636f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 0.95350921f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 2.36326075f, 0.803307f, 0.02916753f },
{ 14.61464119f, 7.11996698f, 3.07277966f, 1.56271636f, 0.59516323f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.84484982f, 1.41535246f, 0.57119018f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.84484982f, 1.61558151f, 0.86115354f, 0.38853383f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 4.86714602f, 2.84484982f, 1.61558151f, 0.86115354f, 0.38853383f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 4.86714602f, 3.07277966f, 1.98035145f, 1.24153244f, 0.72133851f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.07277966f, 1.98035145f, 1.24153244f, 0.72133851f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.27973175f, 1.51179266f, 0.95350921f, 0.54755926f, 0.25053367f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.36326075f, 1.61558151f, 1.08895338f, 0.72133851f, 0.41087446f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.36326075f, 1.61558151f, 1.08895338f, 0.72133851f, 0.41087446f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.84484982f, 2.12350607f, 1.56271636f, 1.08895338f, 0.72133851f, 0.41087446f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.84484982f, 2.19988537f, 1.61558151f, 1.162866f, 0.803307f, 0.50118381f, 0.27464288f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 5.85520077f, 4.65472794f, 3.75677586f, 3.07277966f, 2.45070267f, 1.84880662f, 1.36964464f, 1.01931262f, 0.72133851f, 0.45573691f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 6.14220476f, 5.09240818f, 4.26497746f, 3.46139455f, 2.84484982f, 2.19988537f, 1.67050016f, 1.24153244f, 0.92192322f, 0.64427125f, 0.43325692f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.75849152f, 7.49001646f, 6.14220476f, 5.09240818f, 4.26497746f, 3.60512662f, 2.95596409f, 2.45070267f, 1.91321158f, 1.51179266f, 1.12534678f, 0.83188516f, 0.59516323f, 0.38853383f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 9.24142551f, 8.30717278f, 7.49001646f, 6.14220476f, 5.09240818f, 4.26497746f, 3.60512662f, 2.95596409f, 2.45070267f, 1.91321158f, 1.51179266f, 1.12534678f, 0.83188516f, 0.59516323f, 0.38853383f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 12.23089790f, 9.24142551f, 8.30717278f, 7.49001646f, 6.77309084f, 5.85520077f, 5.09240818f, 4.26497746f, 3.60512662f, 2.95596409f, 2.45070267f, 1.91321158f, 1.51179266f, 1.12534678f, 0.83188516f, 0.59516323f, 0.38853383f, 0.22545385f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_05 = {
{ 14.61464119f, 0.95350921f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 0.89115214f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 2.05039096f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 2.84484982f, 1.28281462f, 0.52423614f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.07277966f, 1.61558151f, 0.803307f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.84484982f, 1.56271636f, 0.803307f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.84484982f, 1.61558151f, 0.95350921f, 0.52423614f, 0.22545385f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 1.98035145f, 1.24153244f, 0.74807048f, 0.41087446f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.27973175f, 1.51179266f, 0.95350921f, 0.59516323f, 0.34370604f, 0.13792117f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.09240818f, 3.46139455f, 2.45070267f, 1.61558151f, 1.08895338f, 0.72133851f, 0.45573691f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.09240818f, 3.46139455f, 2.45070267f, 1.61558151f, 1.08895338f, 0.72133851f, 0.45573691f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.36326075f, 1.61558151f, 1.08895338f, 0.72133851f, 0.45573691f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.45070267f, 1.72759056f, 1.24153244f, 0.86115354f, 0.59516323f, 0.38853383f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.84484982f, 2.19988537f, 1.61558151f, 1.162866f, 0.83188516f, 0.59516323f, 0.38853383f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.84484982f, 2.19988537f, 1.67050016f, 1.28281462f, 0.95350921f, 0.72133851f, 0.52423614f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.95596409f, 2.36326075f, 1.84880662f, 1.41535246f, 1.08895338f, 0.83188516f, 0.61951244f, 0.45573691f, 0.32104823f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.65472794f, 3.60512662f, 2.95596409f, 2.45070267f, 1.91321158f, 1.51179266f, 1.20157266f, 0.95350921f, 0.74807048f, 0.57119018f, 0.43325692f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.30717278f, 7.11996698f, 5.85520077f, 4.65472794f, 3.60512662f, 2.95596409f, 2.45070267f, 1.91321158f, 1.51179266f, 1.20157266f, 0.95350921f, 0.74807048f, 0.57119018f, 0.43325692f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 8.30717278f, 7.11996698f, 5.85520077f, 4.65472794f, 3.60512662f, 2.95596409f, 2.45070267f, 1.98035145f, 1.61558151f, 1.32549286f, 1.08895338f, 0.86115354f, 0.69515091f, 0.54755926f, 0.41087446f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_10 = {
{ 14.61464119f, 0.89115214f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 1.61558151f, 0.57119018f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 2.45070267f, 1.08895338f, 0.45573691f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 2.95596409f, 1.56271636f, 0.803307f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.07277966f, 1.61558151f, 0.89115214f, 0.4783645f, 0.19894916f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.07277966f, 1.84880662f, 1.08895338f, 0.64427125f, 0.34370604f, 0.13792117f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.84484982f, 1.61558151f, 0.95350921f, 0.54755926f, 0.27464288f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.95596409f, 1.91321158f, 1.24153244f, 0.803307f, 0.4783645f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 2.05039096f, 1.41535246f, 0.95350921f, 0.64427125f, 0.41087446f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.27973175f, 1.61558151f, 1.12534678f, 0.803307f, 0.54755926f, 0.36617002f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.32507086f, 2.45070267f, 1.72759056f, 1.24153244f, 0.89115214f, 0.64427125f, 0.45573691f, 0.32104823f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.09240818f, 3.60512662f, 2.84484982f, 2.05039096f, 1.51179266f, 1.08895338f, 0.803307f, 0.59516323f, 0.43325692f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.09240818f, 3.60512662f, 2.84484982f, 2.12350607f, 1.61558151f, 1.24153244f, 0.95350921f, 0.72133851f, 0.54755926f, 0.41087446f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.45070267f, 1.84880662f, 1.41535246f, 1.08895338f, 0.83188516f, 0.64427125f, 0.50118381f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.85520077f, 4.45427561f, 3.19567990f, 2.45070267f, 1.91321158f, 1.51179266f, 1.20157266f, 0.95350921f, 0.74807048f, 0.59516323f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 5.85520077f, 4.45427561f, 3.46139455f, 2.84484982f, 2.19988537f, 1.72759056f, 1.36964464f, 1.08895338f, 0.86115354f, 0.69515091f, 0.54755926f, 0.43325692f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.46139455f, 2.84484982f, 2.19988537f, 1.72759056f, 1.36964464f, 1.08895338f, 0.86115354f, 0.69515091f, 0.54755926f, 0.43325692f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 11.54541874f, 7.49001646f, 5.85520077f, 4.45427561f, 3.46139455f, 2.84484982f, 2.19988537f, 1.72759056f, 1.36964464f, 1.08895338f, 0.89115214f, 0.72133851f, 0.59516323f, 0.4783645f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_15 = {
{ 14.61464119f, 0.83188516f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.59516323f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 1.56271636f, 0.52423614f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 1.91321158f, 0.83188516f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.24153244f, 0.59516323f, 0.25053367f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.51179266f, 0.803307f, 0.41087446f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.56271636f, 0.89115214f, 0.50118381f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.07277966f, 1.84880662f, 1.12534678f, 0.72133851f, 0.43325692f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.07277966f, 1.91321158f, 1.24153244f, 0.803307f, 0.52423614f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 2.95596409f, 1.91321158f, 1.24153244f, 0.803307f, 0.52423614f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 2.05039096f, 1.36964464f, 0.95350921f, 0.69515091f, 0.4783645f, 0.32104823f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 2.12350607f, 1.51179266f, 1.08895338f, 0.803307f, 0.59516323f, 0.43325692f, 0.29807833f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 2.12350607f, 1.51179266f, 1.08895338f, 0.803307f, 0.59516323f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.07277966f, 2.19988537f, 1.61558151f, 1.24153244f, 0.95350921f, 0.74807048f, 0.59516323f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.45070267f, 1.78698075f, 1.32549286f, 1.01931262f, 0.803307f, 0.64427125f, 0.50118381f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.45070267f, 1.78698075f, 1.32549286f, 1.01931262f, 0.803307f, 0.64427125f, 0.52423614f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.45070267f, 1.84880662f, 1.41535246f, 1.12534678f, 0.89115214f, 0.72133851f, 0.59516323f, 0.4783645f, 0.38853383f, 0.32104823f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.86714602f, 3.19567990f, 2.45070267f, 1.84880662f, 1.41535246f, 1.12534678f, 0.89115214f, 0.72133851f, 0.59516323f, 0.50118381f, 0.41087446f, 0.34370604f, 0.29807833f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_20 = {
{ 14.61464119f, 0.803307f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.52423614f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 0.92192322f, 0.36617002f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.24153244f, 0.59516323f, 0.25053367f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.05039096f, 0.95350921f, 0.45573691f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.24153244f, 0.64427125f, 0.29807833f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.36964464f, 0.803307f, 0.45573691f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 0.95350921f, 0.59516323f, 0.36617002f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.67050016f, 1.08895338f, 0.74807048f, 0.50118381f, 0.32104823f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.84880662f, 1.24153244f, 0.83188516f, 0.59516323f, 0.41087446f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 3.07277966f, 1.98035145f, 1.36964464f, 0.95350921f, 0.69515091f, 0.50118381f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.46139455f, 2.36326075f, 1.56271636f, 1.08895338f, 0.803307f, 0.59516323f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 6.77309084f, 3.46139455f, 2.45070267f, 1.61558151f, 1.162866f, 0.86115354f, 0.64427125f, 0.50118381f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.12350607f, 1.51179266f, 1.08895338f, 0.83188516f, 0.64427125f, 0.50118381f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.12350607f, 1.51179266f, 1.08895338f, 0.83188516f, 0.64427125f, 0.50118381f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.12350607f, 1.51179266f, 1.08895338f, 0.83188516f, 0.64427125f, 0.50118381f, 0.41087446f, 0.34370604f, 0.27464288f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.19988537f, 1.61558151f, 1.20157266f, 0.92192322f, 0.72133851f, 0.57119018f, 0.45573691f, 0.36617002f, 0.29807833f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.19988537f, 1.61558151f, 1.24153244f, 0.95350921f, 0.74807048f, 0.59516323f, 0.4783645f, 0.38853383f, 0.32104823f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 7.49001646f, 4.65472794f, 3.07277966f, 2.19988537f, 1.61558151f, 1.24153244f, 0.95350921f, 0.74807048f, 0.59516323f, 0.50118381f, 0.41087446f, 0.34370604f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_25 = {
{ 14.61464119f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.50118381f, 0.02916753f },
{ 14.61464119f, 2.05039096f, 0.803307f, 0.32104823f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 0.95350921f, 0.43325692f, 0.17026083f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.24153244f, 0.59516323f, 0.27464288f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.51179266f, 0.803307f, 0.43325692f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.36326075f, 1.24153244f, 0.72133851f, 0.41087446f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.36964464f, 0.83188516f, 0.52423614f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 0.98595673f, 0.64427125f, 0.43325692f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.67050016f, 1.08895338f, 0.74807048f, 0.52423614f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.72759056f, 1.162866f, 0.803307f, 0.59516323f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.84880662f, 1.24153244f, 0.86115354f, 0.64427125f, 0.4783645f, 0.36617002f, 0.27464288f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.84880662f, 1.28281462f, 0.92192322f, 0.69515091f, 0.52423614f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.91321158f, 1.32549286f, 0.95350921f, 0.72133851f, 0.54755926f, 0.43325692f, 0.34370604f, 0.27464288f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.91321158f, 1.32549286f, 0.95350921f, 0.72133851f, 0.57119018f, 0.45573691f, 0.36617002f, 0.29807833f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.95596409f, 1.91321158f, 1.32549286f, 0.95350921f, 0.74807048f, 0.59516323f, 0.4783645f, 0.38853383f, 0.32104823f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 3.07277966f, 2.05039096f, 1.41535246f, 1.05362725f, 0.803307f, 0.61951244f, 0.50118381f, 0.41087446f, 0.34370604f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 3.07277966f, 2.05039096f, 1.41535246f, 1.05362725f, 0.803307f, 0.64427125f, 0.52423614f, 0.43325692f, 0.36617002f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 3.07277966f, 2.05039096f, 1.46270394f, 1.08895338f, 0.83188516f, 0.66947293f, 0.54755926f, 0.45573691f, 0.38853383f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_30 = {
{ 14.61464119f, 0.72133851f, 0.02916753f },
{ 14.61464119f, 1.24153244f, 0.43325692f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.59516323f, 0.22545385f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.803307f, 0.36617002f, 0.13792117f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 1.01931262f, 0.52423614f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.36964464f, 0.74807048f, 0.41087446f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.56271636f, 0.89115214f, 0.54755926f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.61558151f, 0.95350921f, 0.61951244f, 0.41087446f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.36964464f, 0.83188516f, 0.54755926f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.41535246f, 0.92192322f, 0.64427125f, 0.45573691f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.6383388f, 1.56271636f, 1.01931262f, 0.72133851f, 0.50118381f, 0.36617002f, 0.27464288f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 1.05362725f, 0.74807048f, 0.54755926f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 1.08895338f, 0.77538133f, 0.57119018f, 0.43325692f, 0.34370604f, 0.27464288f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 1.08895338f, 0.803307f, 0.59516323f, 0.45573691f, 0.36617002f, 0.29807833f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.61558151f, 1.08895338f, 0.803307f, 0.59516323f, 0.4783645f, 0.38853383f, 0.32104823f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.72759056f, 1.162866f, 0.83188516f, 0.64427125f, 0.50118381f, 0.41087446f, 0.34370604f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.72759056f, 1.162866f, 0.83188516f, 0.64427125f, 0.52423614f, 0.43325692f, 0.36617002f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.78698075f, 1.24153244f, 0.92192322f, 0.72133851f, 0.57119018f, 0.45573691f, 0.38853383f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.84484982f, 1.78698075f, 1.24153244f, 0.92192322f, 0.72133851f, 0.57119018f, 0.4783645f, 0.41087446f, 0.36617002f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_35 = {
{ 14.61464119f, 0.69515091f, 0.02916753f },
{ 14.61464119f, 0.95350921f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.57119018f, 0.19894916f, 0.02916753f },
{ 14.61464119f, 1.61558151f, 0.69515091f, 0.29807833f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.83188516f, 0.43325692f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.162866f, 0.64427125f, 0.36617002f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.36964464f, 0.803307f, 0.50118381f, 0.32104823f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.41535246f, 0.83188516f, 0.54755926f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 0.95350921f, 0.64427125f, 0.45573691f, 0.32104823f, 0.22545385f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 0.95350921f, 0.64427125f, 0.45573691f, 0.34370604f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.61558151f, 1.01931262f, 0.72133851f, 0.52423614f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.61558151f, 1.01931262f, 0.72133851f, 0.52423614f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.61558151f, 1.05362725f, 0.74807048f, 0.54755926f, 0.43325692f, 0.34370604f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.72759056f, 1.12534678f, 0.803307f, 0.59516323f, 0.45573691f, 0.36617002f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 3.07277966f, 1.72759056f, 1.12534678f, 0.803307f, 0.59516323f, 0.4783645f, 0.38853383f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.45070267f, 1.51179266f, 1.01931262f, 0.74807048f, 0.57119018f, 0.45573691f, 0.36617002f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.6383388f, 1.61558151f, 1.08895338f, 0.803307f, 0.61951244f, 0.50118381f, 0.41087446f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.6383388f, 1.61558151f, 1.08895338f, 0.803307f, 0.64427125f, 0.52423614f, 0.43325692f, 0.36617002f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 5.85520077f, 2.6383388f, 1.61558151f, 1.08895338f, 0.803307f, 0.64427125f, 0.52423614f, 0.45573691f, 0.38853383f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_40 = {
{ 14.61464119f, 0.59516323f, 0.02916753f },
{ 14.61464119f, 0.95350921f, 0.34370604f, 0.02916753f },
{ 14.61464119f, 1.08895338f, 0.43325692f, 0.13792117f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.64427125f, 0.27464288f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.61558151f, 0.803307f, 0.43325692f, 0.22545385f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.05039096f, 0.95350921f, 0.54755926f, 0.34370604f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.24153244f, 0.72133851f, 0.43325692f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.24153244f, 0.74807048f, 0.50118381f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.803307f, 0.52423614f, 0.36617002f, 0.27464288f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.803307f, 0.54755926f, 0.38853383f, 0.29807833f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.41535246f, 0.86115354f, 0.59516323f, 0.43325692f, 0.32104823f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.51179266f, 0.95350921f, 0.64427125f, 0.45573691f, 0.34370604f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.51179266f, 0.95350921f, 0.64427125f, 0.4783645f, 0.36617002f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 0.98595673f, 0.69515091f, 0.52423614f, 0.41087446f, 0.34370604f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 1.01931262f, 0.72133851f, 0.54755926f, 0.43325692f, 0.36617002f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.61558151f, 1.05362725f, 0.74807048f, 0.57119018f, 0.45573691f, 0.38853383f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.61558151f, 1.08895338f, 0.803307f, 0.61951244f, 0.50118381f, 0.41087446f, 0.36617002f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.61558151f, 1.08895338f, 0.803307f, 0.61951244f, 0.50118381f, 0.43325692f, 0.38853383f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.61558151f, 1.08895338f, 0.803307f, 0.64427125f, 0.52423614f, 0.45573691f, 0.41087446f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_45 = {
{ 14.61464119f, 0.59516323f, 0.02916753f },
{ 14.61464119f, 0.803307f, 0.25053367f, 0.02916753f },
{ 14.61464119f, 0.95350921f, 0.34370604f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.24153244f, 0.54755926f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.72133851f, 0.36617002f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.61558151f, 0.803307f, 0.45573691f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.91321158f, 0.95350921f, 0.57119018f, 0.36617002f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.19988537f, 1.08895338f, 0.64427125f, 0.41087446f, 0.27464288f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.24153244f, 0.74807048f, 0.50118381f, 0.34370604f, 0.25053367f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.24153244f, 0.74807048f, 0.50118381f, 0.36617002f, 0.27464288f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.803307f, 0.54755926f, 0.41087446f, 0.32104823f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.803307f, 0.57119018f, 0.43325692f, 0.34370604f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.83188516f, 0.59516323f, 0.45573691f, 0.36617002f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.28281462f, 0.83188516f, 0.59516323f, 0.45573691f, 0.36617002f, 0.32104823f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.51179266f, 0.95350921f, 0.69515091f, 0.52423614f, 0.41087446f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.51179266f, 0.95350921f, 0.69515091f, 0.52423614f, 0.43325692f, 0.36617002f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 0.98595673f, 0.72133851f, 0.54755926f, 0.45573691f, 0.38853383f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 1.01931262f, 0.74807048f, 0.57119018f, 0.4783645f, 0.41087446f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.84484982f, 1.56271636f, 1.01931262f, 0.74807048f, 0.59516323f, 0.50118381f, 0.43325692f, 0.38853383f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<std::vector<float>> GITS_NOISE_1_50 = {
{ 14.61464119f, 0.54755926f, 0.02916753f },
{ 14.61464119f, 0.803307f, 0.25053367f, 0.02916753f },
{ 14.61464119f, 0.86115354f, 0.32104823f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.24153244f, 0.54755926f, 0.25053367f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.56271636f, 0.72133851f, 0.36617002f, 0.19894916f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.61558151f, 0.803307f, 0.45573691f, 0.27464288f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.61558151f, 0.83188516f, 0.52423614f, 0.34370604f, 0.25053367f, 0.17026083f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.95350921f, 0.59516323f, 0.38853383f, 0.27464288f, 0.19894916f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.95350921f, 0.59516323f, 0.41087446f, 0.29807833f, 0.22545385f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 1.84880662f, 0.95350921f, 0.61951244f, 0.43325692f, 0.32104823f, 0.25053367f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.19988537f, 1.12534678f, 0.72133851f, 0.50118381f, 0.36617002f, 0.27464288f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.19988537f, 1.12534678f, 0.72133851f, 0.50118381f, 0.36617002f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 1.24153244f, 0.803307f, 0.57119018f, 0.43325692f, 0.34370604f, 0.29807833f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 1.24153244f, 0.803307f, 0.57119018f, 0.43325692f, 0.34370604f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 1.24153244f, 0.803307f, 0.59516323f, 0.45573691f, 0.36617002f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.36326075f, 1.24153244f, 0.803307f, 0.59516323f, 0.45573691f, 0.38853383f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.32549286f, 0.86115354f, 0.64427125f, 0.50118381f, 0.41087446f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.36964464f, 0.92192322f, 0.69515091f, 0.54755926f, 0.45573691f, 0.41087446f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f },
{ 14.61464119f, 2.45070267f, 1.41535246f, 0.95350921f, 0.72133851f, 0.57119018f, 0.4783645f, 0.43325692f, 0.38853383f, 0.36617002f, 0.34370604f, 0.32104823f, 0.29807833f, 0.27464288f, 0.25053367f, 0.22545385f, 0.19894916f, 0.17026083f, 0.13792117f, 0.09824532f, 0.02916753f }
};
const std::vector<const std::vector<std::vector<float>>*> GITS_NOISE = {
&GITS_NOISE_0_80,
&GITS_NOISE_0_85,
&GITS_NOISE_0_90,
&GITS_NOISE_0_95,
&GITS_NOISE_1_00,
&GITS_NOISE_1_05,
&GITS_NOISE_1_10,
&GITS_NOISE_1_15,
&GITS_NOISE_1_20,
&GITS_NOISE_1_25,
&GITS_NOISE_1_30,
&GITS_NOISE_1_35,
&GITS_NOISE_1_40,
&GITS_NOISE_1_45,
&GITS_NOISE_1_50
};
#endif // GITS_NOISE_INL

905
lora.hpp
View File

@ -3,35 +3,117 @@
#include "ggml_extend.hpp"
#define LORA_GRAPH_SIZE 10240
#define LORA_GRAPH_BASE_SIZE 10240
struct LoraModel : public GGMLRunner {
enum lora_t {
REGULAR = 0,
DIFFUSERS = 1,
DIFFUSERS_2 = 2,
DIFFUSERS_3 = 3,
TRANSFORMERS = 4,
LORA_TYPE_COUNT
};
const std::string lora_ups[LORA_TYPE_COUNT] = {
".lora_up",
"_lora.up",
".lora_B",
".lora.up",
".lora_linear_layer.up",
};
const std::string lora_downs[LORA_TYPE_COUNT] = {
".lora_down",
"_lora.down",
".lora_A",
".lora.down",
".lora_linear_layer.down",
};
const std::string lora_pre[LORA_TYPE_COUNT] = {
"lora.",
"",
"",
"",
"",
};
const std::map<std::string, std::string> alt_names = {
// mmdit
{"final_layer.adaLN_modulation.1", "norm_out.linear"},
{"pos_embed", "pos_embed.proj"},
{"final_layer.linear", "proj_out"},
{"y_embedder.mlp.0", "time_text_embed.text_embedder.linear_1"},
{"y_embedder.mlp.2", "time_text_embed.text_embedder.linear_2"},
{"t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1"},
{"t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2"},
{"x_block.mlp.fc1", "ff.net.0.proj"},
{"x_block.mlp.fc2", "ff.net.2"},
{"context_block.mlp.fc1", "ff_context.net.0.proj"},
{"context_block.mlp.fc2", "ff_context.net.2"},
{"x_block.adaLN_modulation.1", "norm1.linear"},
{"context_block.adaLN_modulation.1", "norm1_context.linear"},
{"context_block.attn.proj", "attn.to_add_out"},
{"x_block.attn.proj", "attn.to_out.0"},
{"x_block.attn2.proj", "attn2.to_out.0"},
// flux
// singlestream
{"linear2", "proj_out"},
{"modulation.lin", "norm.linear"},
// doublestream
{"txt_attn.proj", "attn.to_add_out"},
{"img_attn.proj", "attn.to_out.0"},
{"txt_mlp.0", "ff_context.net.0.proj"},
{"txt_mlp.2", "ff_context.net.2"},
{"img_mlp.0", "ff.net.0.proj"},
{"img_mlp.2", "ff.net.2"},
{"txt_mod.lin", "norm1_context.linear"},
{"img_mod.lin", "norm1.linear"},
};
const std::map<std::string, std::string> qkv_prefixes = {
// mmdit
{"context_block.attn.qkv", "attn.add_"}, // suffix "_proj"
{"x_block.attn.qkv", "attn.to_"},
{"x_block.attn2.qkv", "attn2.to_"},
// flux
// doublestream
{"txt_attn.qkv", "attn.add_"}, // suffix "_proj"
{"img_attn.qkv", "attn.to_"},
};
const std::map<std::string, std::string> qkvm_prefixes = {
// flux
// singlestream
{"linear1", ""},
};
const std::string* type_fingerprints = lora_ups;
struct LoraModel : public GGMLModule {
float multiplier = 1.0f;
std::map<std::string, struct ggml_tensor*> lora_tensors;
std::string file_path;
ModelLoader model_loader;
bool load_failed = false;
bool load_failed = false;
bool applied = false;
std::vector<int> zero_index_vec = {0};
ggml_tensor* zero_index = NULL;
enum lora_t type = REGULAR;
LoraModel(const std::string file_path = "")
: file_path(file_path) {
name = "lora";
if (!model_loader.init_from_file(file_path)) {
LoraModel(ggml_backend_t backend,
const std::string& file_path = "",
const std::string prefix = "")
: file_path(file_path), GGMLRunner(backend) {
if (!model_loader.init_from_file(file_path, prefix)) {
load_failed = true;
}
}
size_t get_num_tensors() {
return LORA_GRAPH_SIZE;
std::string get_desc() {
return "lora";
}
size_t calculate_mem_size() {
return model_loader.cal_mem_size(NULL);
}
bool load_from_file(ggml_backend_t backend) {
if (!alloc_params_buffer(backend)) {
return false;
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading LoRA from '%s'", file_path.c_str());
if (load_failed) {
@ -39,147 +121,726 @@ struct LoraModel : public GGMLModule {
return false;
}
ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer);
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
struct ggml_tensor* real = ggml_new_tensor(params_ctx, tensor_storage.type, tensor_storage.n_dims, tensor_storage.ne);
ggml_allocr_alloc(alloc, real);
if (filter_tensor && !contains(name, "lora")) {
// LOG_INFO("skipping LoRA tesnor '%s'", name.c_str());
return true;
}
// LOG_INFO("%s", name.c_str());
for (int i = 0; i < LORA_TYPE_COUNT; i++) {
if (name.find(type_fingerprints[i]) != std::string::npos) {
type = (lora_t)i;
break;
}
}
*dst_tensor = real;
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
lora_tensors[name] = real;
} else {
auto real = lora_tensors[name];
*dst_tensor = real;
}
lora_tensors[name] = real;
return true;
};
model_loader.load_tensors(on_new_tensor_cb, backend);
alloc_params_buffer();
// exit(0);
dry_run = false;
model_loader.load_tensors(on_new_tensor_cb, backend);
LOG_DEBUG("lora type: \"%s\"/\"%s\"", lora_downs[type].c_str(), lora_ups[type].c_str());
LOG_DEBUG("finished loaded lora");
ggml_allocr_free(alloc);
return true;
}
struct ggml_cgraph* build_graph(std::map<std::string, struct ggml_tensor*> model_tensors) {
// make a graph to compute all lora, expected lora and models tensors are in the same backend
// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
static size_t buf_size = ggml_tensor_overhead() * LORA_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) {
auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a));
out = ggml_get_rows(ctx, out, zero_index);
out = ggml_reshape(ctx, out, a);
return out;
}
struct ggml_init_params params = {
/*.mem_size =*/buf_size,
/*.mem_buffer =*/buf.data(),
/*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
// LOG_DEBUG("mem_size %u ", params.mem_size);
std::vector<std::string> to_lora_keys(std::string blk_name, SDVersion version) {
std::vector<std::string> keys;
// if (!sd_version_is_sd3(version) || blk_name != "model.diffusion_model.pos_embed") {
size_t k_pos = blk_name.find(".weight");
if (k_pos == std::string::npos) {
return keys;
}
blk_name = blk_name.substr(0, k_pos);
// }
keys.push_back(blk_name);
keys.push_back("lora." + blk_name);
if (sd_version_is_dit(version)) {
if (blk_name.find("model.diffusion_model") != std::string::npos) {
blk_name.replace(blk_name.find("model.diffusion_model"), sizeof("model.diffusion_model") - 1, "transformer");
}
struct ggml_context* ctx0 = ggml_init(params);
struct ggml_cgraph* gf = ggml_new_graph_custom(ctx0, LORA_GRAPH_SIZE, false);
if (blk_name.find(".single_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".single_blocks"), sizeof(".single_blocks") - 1, ".single_transformer_blocks");
}
if (blk_name.find(".double_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".double_blocks"), sizeof(".double_blocks") - 1, ".transformer_blocks");
}
if (blk_name.find(".joint_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".joint_blocks"), sizeof(".joint_blocks") - 1, ".transformer_blocks");
}
if (blk_name.find("text_encoders.clip_l") != std::string::npos) {
blk_name.replace(blk_name.find("text_encoders.clip_l"), sizeof("text_encoders.clip_l") - 1, "cond_stage_model");
}
for (const auto& item : alt_names) {
size_t match = blk_name.find(item.first);
if (match != std::string::npos) {
blk_name = blk_name.substr(0, match) + item.second;
}
}
for (const auto& prefix : qkv_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
for (const auto& prefix : qkvm_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT_L|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
keys.push_back(blk_name);
}
std::vector<std::string> ret;
for (std::string& key : keys) {
ret.push_back(key);
replace_all_chars(key, '.', '_');
// fix for some sdxl lora, like lcm-lora-xl
if (key == "model_diffusion_model_output_blocks_2_2_conv") {
ret.push_back("model_diffusion_model_output_blocks_2_1_conv");
}
ret.push_back(key);
}
return ret;
}
struct ggml_cgraph* build_lora_graph(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version) {
size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10;
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false);
zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1);
set_backend_tensor_data(zero_index, zero_index_vec.data());
ggml_build_forward_expand(gf, zero_index);
std::set<std::string> applied_lora_tensors;
for (auto it : model_tensors) {
std::string k_tensor = it.first;
struct ggml_tensor* weight = model_tensors[it.first];
size_t k_pos = k_tensor.find(".weight");
if (k_pos == std::string::npos) {
std::vector<std::string> keys = to_lora_keys(k_tensor, version);
if (keys.size() == 0)
continue;
for (auto& key : keys) {
bool is_qkv_split = starts_with(key, "SPLIT|");
if (is_qkv_split) {
key = key.substr(sizeof("SPLIT|") - 1);
}
bool is_qkvm_split = starts_with(key, "SPLIT_L|");
if (is_qkvm_split) {
key = key.substr(sizeof("SPLIT_L|") - 1);
}
struct ggml_tensor* updown = NULL;
float scale_value = 1.0f;
std::string fk = lora_pre[type] + key;
if (lora_tensors.find(fk + ".hada_w1_a") != lora_tensors.end()) {
// LoHa mode
// TODO: split qkv convention for LoHas (is it ever used?)
if (is_qkv_split || is_qkvm_split) {
LOG_ERROR("Split qkv isn't supported for LoHa models.");
break;
}
std::string alpha_name = "";
ggml_tensor* hada_1_mid = NULL; // tau for tucker decomposition
ggml_tensor* hada_1_up = NULL;
ggml_tensor* hada_1_down = NULL;
ggml_tensor* hada_2_mid = NULL; // tau for tucker decomposition
ggml_tensor* hada_2_up = NULL;
ggml_tensor* hada_2_down = NULL;
std::string hada_1_mid_name = "";
std::string hada_1_down_name = "";
std::string hada_1_up_name = "";
std::string hada_2_mid_name = "";
std::string hada_2_down_name = "";
std::string hada_2_up_name = "";
hada_1_down_name = fk + ".hada_w1_b";
hada_1_up_name = fk + ".hada_w1_a";
hada_1_mid_name = fk + ".hada_t1";
if (lora_tensors.find(hada_1_down_name) != lora_tensors.end()) {
hada_1_down = to_f32(compute_ctx, lora_tensors[hada_1_down_name]);
}
if (lora_tensors.find(hada_1_up_name) != lora_tensors.end()) {
hada_1_up = to_f32(compute_ctx, lora_tensors[hada_1_up_name]);
}
if (lora_tensors.find(hada_1_mid_name) != lora_tensors.end()) {
hada_1_mid = to_f32(compute_ctx, lora_tensors[hada_1_mid_name]);
applied_lora_tensors.insert(hada_1_mid_name);
hada_1_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_1_up));
}
hada_2_down_name = fk + ".hada_w2_b";
hada_2_up_name = fk + ".hada_w2_a";
hada_2_mid_name = fk + ".hada_t2";
if (lora_tensors.find(hada_2_down_name) != lora_tensors.end()) {
hada_2_down = to_f32(compute_ctx, lora_tensors[hada_2_down_name]);
}
if (lora_tensors.find(hada_2_up_name) != lora_tensors.end()) {
hada_2_up = to_f32(compute_ctx, lora_tensors[hada_2_up_name]);
}
if (lora_tensors.find(hada_2_mid_name) != lora_tensors.end()) {
hada_2_mid = to_f32(compute_ctx, lora_tensors[hada_2_mid_name]);
applied_lora_tensors.insert(hada_2_mid_name);
hada_2_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_2_up));
}
alpha_name = fk + ".alpha";
applied_lora_tensors.insert(hada_1_down_name);
applied_lora_tensors.insert(hada_1_up_name);
applied_lora_tensors.insert(hada_2_down_name);
applied_lora_tensors.insert(hada_2_up_name);
applied_lora_tensors.insert(alpha_name);
if (hada_1_up == NULL || hada_1_down == NULL || hada_2_up == NULL || hada_2_down == NULL) {
continue;
}
struct ggml_tensor* updown_1 = ggml_merge_lora(compute_ctx, hada_1_down, hada_1_up, hada_1_mid);
struct ggml_tensor* updown_2 = ggml_merge_lora(compute_ctx, hada_2_down, hada_2_up, hada_2_mid);
updown = ggml_mul_inplace(compute_ctx, updown_1, updown_2);
// calc_scale
// TODO: .dora_scale?
int64_t rank = hada_1_down->ne[ggml_n_dims(hada_1_down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
} else if (lora_tensors.find(fk + ".lokr_w1") != lora_tensors.end() || lora_tensors.find(fk + ".lokr_w1_a") != lora_tensors.end()) {
// LoKr mode
// TODO: split qkv convention for LoKrs (is it ever used?)
if (is_qkv_split || is_qkvm_split) {
LOG_ERROR("Split qkv isn't supported for LoKr models.");
break;
}
std::string alpha_name = fk + ".alpha";
ggml_tensor* lokr_w1 = NULL;
ggml_tensor* lokr_w2 = NULL;
std::string lokr_w1_name = "";
std::string lokr_w2_name = "";
lokr_w1_name = fk + ".lokr_w1";
lokr_w2_name = fk + ".lokr_w2";
if (lora_tensors.find(lokr_w1_name) != lora_tensors.end()) {
lokr_w1 = to_f32(compute_ctx, lora_tensors[lokr_w1_name]);
applied_lora_tensors.insert(lokr_w1_name);
} else {
ggml_tensor* down = NULL;
ggml_tensor* up = NULL;
std::string down_name = lokr_w1_name + "_b";
std::string up_name = lokr_w1_name + "_a";
if (lora_tensors.find(down_name) != lora_tensors.end()) {
// w1 should not be low rank normally, sometimes w1 and w2 are swapped
down = to_f32(compute_ctx, lora_tensors[down_name]);
applied_lora_tensors.insert(down_name);
int64_t rank = down->ne[ggml_n_dims(down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
}
if (lora_tensors.find(up_name) != lora_tensors.end()) {
up = to_f32(compute_ctx, lora_tensors[up_name]);
applied_lora_tensors.insert(up_name);
}
lokr_w1 = ggml_merge_lora(compute_ctx, down, up);
}
if (lora_tensors.find(lokr_w2_name) != lora_tensors.end()) {
lokr_w2 = to_f32(compute_ctx, lora_tensors[lokr_w2_name]);
applied_lora_tensors.insert(lokr_w2_name);
} else {
ggml_tensor* down = NULL;
ggml_tensor* up = NULL;
std::string down_name = lokr_w2_name + "_b";
std::string up_name = lokr_w2_name + "_a";
if (lora_tensors.find(down_name) != lora_tensors.end()) {
down = to_f32(compute_ctx, lora_tensors[down_name]);
applied_lora_tensors.insert(down_name);
int64_t rank = down->ne[ggml_n_dims(down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
}
if (lora_tensors.find(up_name) != lora_tensors.end()) {
up = to_f32(compute_ctx, lora_tensors[up_name]);
applied_lora_tensors.insert(up_name);
}
lokr_w2 = ggml_merge_lora(compute_ctx, down, up);
}
// Technically it might be unused, but I believe it's the expected behavior
applied_lora_tensors.insert(alpha_name);
updown = ggml_kronecker(compute_ctx, lokr_w1, lokr_w2);
} else {
// LoRA mode
ggml_tensor* lora_mid = NULL; // tau for tucker decomposition
ggml_tensor* lora_up = NULL;
ggml_tensor* lora_down = NULL;
std::string alpha_name = "";
std::string scale_name = "";
std::string split_q_scale_name = "";
std::string lora_mid_name = "";
std::string lora_down_name = "";
std::string lora_up_name = "";
if (is_qkv_split) {
std::string suffix = "";
auto split_q_d_name = fk + "q" + suffix + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) == lora_tensors.end()) {
suffix = "_proj";
split_q_d_name = fk + "q" + suffix + lora_downs[type] + ".weight";
}
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
// print_ggml_tensor(it.second, true); //[3072, 21504, 1, 1]
// find qkv and mlp up parts in LoRA model
auto split_k_d_name = fk + "k" + suffix + lora_downs[type] + ".weight";
auto split_v_d_name = fk + "v" + suffix + lora_downs[type] + ".weight";
auto split_q_u_name = fk + "q" + suffix + lora_ups[type] + ".weight";
auto split_k_u_name = fk + "k" + suffix + lora_ups[type] + ".weight";
auto split_v_u_name = fk + "v" + suffix + lora_ups[type] + ".weight";
auto split_q_scale_name = fk + "q" + suffix + ".scale";
auto split_k_scale_name = fk + "k" + suffix + ".scale";
auto split_v_scale_name = fk + "v" + suffix + ".scale";
auto split_q_alpha_name = fk + "q" + suffix + ".alpha";
auto split_k_alpha_name = fk + "k" + suffix + ".alpha";
auto split_v_alpha_name = fk + "v" + suffix + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
// print_ggml_tensor(lora_q_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_k_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_v_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_q_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_k_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_v_up, true); //[R, 3072, 1, 1]
// these need to be stitched together this way:
// |q_up,0 ,0 |
// |0 ,k_up,0 |
// |0 ,0 ,v_up|
// (q_down,k_down,v_down) . (q ,k ,v)
// up_concat will be [9216, R*3, 1, 1]
// down_concat will be [R*3, 3072, 1, 1]
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), lora_v_down, 1);
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_scale(compute_ctx, z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, lora_q_up, zz, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), z, 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, zz, lora_v_up, 1);
// print_ggml_tensor(q_up, true); //[R, 9216, 1, 1]
// print_ggml_tensor(k_up, true); //[R, 9216, 1, 1]
// print_ggml_tensor(v_up, true); //[R, 9216, 1, 1]
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), v_up, 0);
// print_ggml_tensor(lora_up_concat, true); //[R*3, 9216, 1, 1]
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
}
} else if (is_qkvm_split) {
auto split_q_d_name = fk + "attn.to_q" + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
// print_ggml_tensor(it.second, true); //[3072, 21504, 1, 1]
// find qkv and mlp up parts in LoRA model
auto split_k_d_name = fk + "attn.to_k" + lora_downs[type] + ".weight";
auto split_v_d_name = fk + "attn.to_v" + lora_downs[type] + ".weight";
auto split_q_u_name = fk + "attn.to_q" + lora_ups[type] + ".weight";
auto split_k_u_name = fk + "attn.to_k" + lora_ups[type] + ".weight";
auto split_v_u_name = fk + "attn.to_v" + lora_ups[type] + ".weight";
auto split_m_d_name = fk + "proj_mlp" + lora_downs[type] + ".weight";
auto split_m_u_name = fk + "proj_mlp" + lora_ups[type] + ".weight";
auto split_q_scale_name = fk + "attn.to_q" + ".scale";
auto split_k_scale_name = fk + "attn.to_k" + ".scale";
auto split_v_scale_name = fk + "attn.to_v" + ".scale";
auto split_m_scale_name = fk + "proj_mlp" + ".scale";
auto split_q_alpha_name = fk + "attn.to_q" + ".alpha";
auto split_k_alpha_name = fk + "attn.to_k" + ".alpha";
auto split_v_alpha_name = fk + "attn.to_v" + ".alpha";
auto split_m_alpha_name = fk + "proj_mlp" + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
ggml_tensor* lora_m_down = NULL;
ggml_tensor* lora_m_up = NULL;
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
}
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
if (lora_tensors.find(split_m_d_name) != lora_tensors.end()) {
lora_m_down = to_f32(compute_ctx, lora_tensors[split_m_d_name]);
}
if (lora_tensors.find(split_m_u_name) != lora_tensors.end()) {
lora_m_up = to_f32(compute_ctx, lora_tensors[split_m_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float m_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
float lora_m_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_m_scale_name) != lora_tensors.end()) {
lora_m_scale = ggml_backend_tensor_get_f32(lora_tensors[split_m_scale_name]);
applied_lora_tensors.insert(split_m_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
if (lora_tensors.find(split_m_alpha_name) != lora_tensors.end()) {
float lora_m_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_m_alpha_name]);
applied_lora_tensors.insert(split_m_alpha_name);
lora_m_scale = lora_m_alpha / m_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
ggml_scale_inplace(compute_ctx, lora_m_down, lora_m_scale);
// print_ggml_tensor(lora_q_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_k_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_v_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_m_down, true); //[3072, R, 1, 1]
// print_ggml_tensor(lora_q_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_k_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_v_up, true); //[R, 3072, 1, 1]
// print_ggml_tensor(lora_m_up, true); //[R, 12288, 1, 1]
// these need to be stitched together this way:
// |q_up,0 ,0 ,0 |
// |0 ,k_up,0 ,0 |
// |0 ,0 ,v_up,0 |
// |0 ,0 ,0 ,m_up|
// (q_down,k_down,v_down,m_down) . (q ,k ,v ,m)
// up_concat will be [21504, R*4, 1, 1]
// down_concat will be [R*4, 3072, 1, 1]
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), ggml_concat(compute_ctx, lora_v_down, lora_m_down, 1), 1);
// print_ggml_tensor(lora_down_concat, true); //[3072, R*4, 1, 1]
// this also means that if rank is bigger than 672, it is less memory efficient to do it this way (should be fine)
// print_ggml_tensor(lora_q_up, true); //[3072, R, 1, 1]
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_tensor* mlp_z = ggml_dup_tensor(compute_ctx, lora_m_up);
ggml_scale(compute_ctx, z, 0);
ggml_scale(compute_ctx, mlp_z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_up, zz, 1), mlp_z, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), ggml_concat(compute_ctx, z, mlp_z, 1), 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, lora_v_up, 1), mlp_z, 1);
ggml_tensor* m_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, z, 1), lora_m_up, 1);
// print_ggml_tensor(q_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(k_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(v_up, true); //[R, 21504, 1, 1]
// print_ggml_tensor(m_up, true); //[R, 21504, 1, 1]
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), ggml_concat(compute_ctx, v_up, m_up, 0), 0);
// print_ggml_tensor(lora_up_concat, true); //[R*4, 21504, 1, 1]
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_m_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
applied_lora_tensors.insert(split_m_d_name);
}
} else {
lora_up_name = fk + lora_ups[type] + ".weight";
lora_down_name = fk + lora_downs[type] + ".weight";
lora_mid_name = fk + ".lora_mid.weight";
alpha_name = fk + ".alpha";
scale_name = fk + ".scale";
if (lora_tensors.find(lora_up_name) != lora_tensors.end()) {
lora_up = to_f32(compute_ctx, lora_tensors[lora_up_name]);
}
if (lora_tensors.find(lora_down_name) != lora_tensors.end()) {
lora_down = to_f32(compute_ctx, lora_tensors[lora_down_name]);
}
if (lora_tensors.find(lora_mid_name) != lora_tensors.end()) {
lora_mid = to_f32(compute_ctx, lora_tensors[lora_mid_name]);
applied_lora_tensors.insert(lora_mid_name);
}
applied_lora_tensors.insert(lora_up_name);
applied_lora_tensors.insert(lora_down_name);
applied_lora_tensors.insert(alpha_name);
applied_lora_tensors.insert(scale_name);
}
if (lora_up == NULL || lora_down == NULL) {
continue;
}
// calc_scale
// TODO: .dora_scale?
int64_t rank = lora_down->ne[ggml_n_dims(lora_down) - 1];
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
} else if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
updown = ggml_merge_lora(compute_ctx, lora_down, lora_up, lora_mid);
}
scale_value *= multiplier;
updown = ggml_reshape(compute_ctx, updown, weight);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight));
updown = ggml_scale_inplace(compute_ctx, updown, scale_value);
ggml_tensor* final_weight;
if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
// final_weight = ggml_new_tensor(compute_ctx, GGML_TYPE_F32, ggml_n_dims(weight), weight->ne);
// final_weight = ggml_cpy(compute_ctx, weight, final_weight);
final_weight = to_f32(compute_ctx, weight);
final_weight = ggml_add_inplace(compute_ctx, final_weight, updown);
final_weight = ggml_cpy(compute_ctx, final_weight, weight);
} else {
final_weight = ggml_add_inplace(compute_ctx, weight, updown);
}
// final_weight = ggml_add_inplace(compute_ctx, weight, updown); // apply directly
ggml_build_forward_expand(gf, final_weight);
break;
}
k_tensor = k_tensor.substr(0, k_pos);
replace_all_chars(k_tensor, '.', '_');
std::string lora_up_name = "lora." + k_tensor + ".lora_up.weight";
std::string lora_down_name = "lora." + k_tensor + ".lora_down.weight";
std::string alpha_name = "lora." + k_tensor + ".alpha";
std::string scale_name = "lora." + k_tensor + ".scale";
ggml_tensor* lora_up = NULL;
ggml_tensor* lora_down = NULL;
if (lora_tensors.find(lora_up_name) != lora_tensors.end()) {
lora_up = lora_tensors[lora_up_name];
}
if (lora_tensors.find(lora_down_name) != lora_tensors.end()) {
lora_down = lora_tensors[lora_down_name];
}
if (lora_up == NULL || lora_down == NULL) {
continue;
}
applied_lora_tensors.insert(lora_up_name);
applied_lora_tensors.insert(lora_down_name);
applied_lora_tensors.insert(alpha_name);
applied_lora_tensors.insert(scale_name);
// calc_cale
int64_t dim = lora_down->ne[lora_down->n_dims - 1];
float scale_value = 1.0f;
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
} else if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / dim;
}
scale_value *= multiplier;
ggml_tensor* lora_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(compute_allocr, lora_scale);
if (!ggml_allocr_is_measure(compute_allocr)) {
ggml_backend_tensor_set(lora_scale, &scale_value, 0, ggml_nbytes(lora_scale));
}
// flat lora tensors to multiply it
int64_t lora_up_rows = lora_up->ne[lora_up->n_dims - 1];
lora_up = ggml_reshape_2d(ctx0, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows);
int64_t lora_down_rows = lora_down->ne[lora_down->n_dims - 1];
lora_down = ggml_reshape_2d(ctx0, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows);
// ggml_mul_mat requires tensor b transposed
lora_down = ggml_cont(ctx0, ggml_transpose(ctx0, lora_down));
struct ggml_tensor* updown = ggml_mul_mat(ctx0, lora_up, lora_down);
updown = ggml_cont(ctx0, ggml_transpose(ctx0, updown));
updown = ggml_reshape(ctx0, updown, weight);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight));
updown = ggml_scale_inplace(ctx0, updown, lora_scale);
ggml_tensor* final_weight;
// if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
// final_weight = ggml_new_tensor(ctx0, GGML_TYPE_F32, weight->n_dims, weight->ne);
// final_weight = ggml_cpy_inplace(ctx0, weight, final_weight);
// final_weight = ggml_add_inplace(ctx0, final_weight, updown);
// final_weight = ggml_cpy_inplace(ctx0, final_weight, weight);
// } else {
// final_weight = ggml_add_inplace(ctx0, weight, updown);
// }
final_weight = ggml_add_inplace(ctx0, weight, updown); // apply directly
ggml_build_forward_expand(gf, final_weight);
}
size_t total_lora_tensors_count = 0;
size_t applied_lora_tensors_count = 0;
for (auto& kv : lora_tensors) {
total_lora_tensors_count++;
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
LOG_WARN("unused lora tensor %s", kv.first.c_str());
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
print_ggml_tensor(kv.second, true);
// exit(0);
} else {
applied_lora_tensors_count++;
}
}
/* Don't worry if this message shows up twice in the logs per LoRA,
* this function is called once to calculate the required buffer size
* and then again to actually generate a graph to be used */
if (applied_lora_tensors_count != total_lora_tensors_count) {
LOG_WARN("Only (%lu / %lu) LoRA tensors have been applied",
applied_lora_tensors_count, total_lora_tensors_count);
} else {
LOG_DEBUG("(%lu / %lu) LoRA tensors applied successfully",
applied_lora_tensors_count, total_lora_tensors_count);
}
return gf;
}
void alloc_compute_buffer(std::map<std::string, struct ggml_tensor*> model_tensors) {
void apply(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version, int n_threads) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(model_tensors);
return build_lora_graph(model_tensors, version);
};
GGMLModule::alloc_compute_buffer(get_graph);
}
void apply(std::map<std::string, struct ggml_tensor*> model_tensors, int n_threads) {
alloc_compute_buffer(model_tensors);
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(model_tensors);
};
GGMLModule::compute(get_graph, n_threads);
GGMLRunner::compute(get_graph, n_threads, true);
}
};
#endif // __LORA_HPP__
#endif // __LORA_HPP__

1002
mmdit.hpp Normal file

File diff suppressed because it is too large Load Diff

982
model.cpp

File diff suppressed because it is too large Load Diff

152
model.h
View File

@ -4,27 +4,106 @@
#include <functional>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include "ggml/ggml-backend.h"
#include "ggml/ggml.h"
#include "ggml-backend.h"
#include "ggml.h"
#include "gguf.h"
#include "json.hpp"
#include "zip.h"
#define SD_MAX_DIMS 5
enum SDVersion {
VERSION_1_x,
VERSION_2_x,
VERSION_XL,
VERSION_SD1,
VERSION_SD1_INPAINT,
VERSION_SD1_PIX2PIX,
VERSION_SD2,
VERSION_SD2_INPAINT,
VERSION_SDXL,
VERSION_SDXL_INPAINT,
VERSION_SDXL_PIX2PIX,
VERSION_SVD,
VERSION_SD3,
VERSION_FLUX,
VERSION_FLUX_FILL,
VERSION_COUNT,
};
static inline bool sd_version_is_flux(SDVersion version) {
if (version == VERSION_FLUX || version == VERSION_FLUX_FILL) {
return true;
}
return false;
}
static inline bool sd_version_is_sd3(SDVersion version) {
if (version == VERSION_SD3) {
return true;
}
return false;
}
static inline bool sd_version_is_sd1(SDVersion version) {
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX) {
return true;
}
return false;
}
static inline bool sd_version_is_sd2(SDVersion version) {
if (version == VERSION_SD2 || version == VERSION_SD2_INPAINT) {
return true;
}
return false;
}
static inline bool sd_version_is_sdxl(SDVersion version) {
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX) {
return true;
}
return false;
}
static inline bool sd_version_is_inpaint(SDVersion version) {
if (version == VERSION_SD1_INPAINT || version == VERSION_SD2_INPAINT || version == VERSION_SDXL_INPAINT || version == VERSION_FLUX_FILL) {
return true;
}
return false;
}
static inline bool sd_version_is_dit(SDVersion version) {
if (sd_version_is_flux(version) || sd_version_is_sd3(version)) {
return true;
}
return false;
}
static inline bool sd_version_is_unet_edit(SDVersion version) {
return version == VERSION_SD1_PIX2PIX || version == VERSION_SDXL_PIX2PIX;
}
static bool sd_version_is_inpaint_or_unet_edit(SDVersion version) {
return sd_version_is_unet_edit(version) || sd_version_is_inpaint(version);
}
enum PMVersion {
PM_VERSION_1,
PM_VERSION_2,
};
struct TensorStorage {
std::string name;
ggml_type type = GGML_TYPE_F32;
bool is_bf16 = false;
int64_t ne[4] = {1, 1, 1, 1};
int n_dims = 0;
ggml_type type = GGML_TYPE_F32;
bool is_bf16 = false;
bool is_f8_e4m3 = false;
bool is_f8_e5m2 = false;
int64_t ne[SD_MAX_DIMS] = {1, 1, 1, 1, 1};
int n_dims = 0;
size_t file_index = 0;
int index_in_zip = -1; // >= means stored in a zip file
@ -40,7 +119,11 @@ struct TensorStorage {
}
int64_t nelements() const {
return ne[0] * ne[1] * ne[2] * ne[3];
int64_t n = 1;
for (int i = 0; i < SD_MAX_DIMS; i++) {
n *= ne[i];
}
return n;
}
int64_t nbytes() const {
@ -48,7 +131,7 @@ struct TensorStorage {
}
int64_t nbytes_to_read() const {
if (is_bf16) {
if (is_bf16 || is_f8_e4m3 || is_f8_e5m2) {
return nbytes() / 2;
} else {
return nbytes();
@ -68,6 +151,7 @@ struct TensorStorage {
std::vector<TensorStorage> chunk(size_t n) {
std::vector<TensorStorage> chunks;
size_t chunk_size = nbytes_to_read() / n;
// printf("%d/%d\n", chunk_size, nbytes_to_read());
reverse_ne();
for (int i = 0; i < n; i++) {
TensorStorage chunk_i = *this;
@ -81,7 +165,7 @@ struct TensorStorage {
}
void reverse_ne() {
int64_t new_ne[4] = {1, 1, 1, 1};
int64_t new_ne[SD_MAX_DIMS] = {1, 1, 1, 1, 1};
for (int i = 0; i < n_dims; i++) {
new_ne[i] = ne[n_dims - 1 - i];
}
@ -89,10 +173,31 @@ struct TensorStorage {
ne[i] = new_ne[i];
}
}
std::string to_string() const {
std::stringstream ss;
const char* type_name = ggml_type_name(type);
if (is_bf16) {
type_name = "bf16";
} else if (is_f8_e4m3) {
type_name = "f8_e4m3";
} else if (is_f8_e5m2) {
type_name = "f8_e5m2";
}
ss << name << " | " << type_name << " | ";
ss << n_dims << " [";
for (int i = 0; i < SD_MAX_DIMS; i++) {
ss << ne[i];
if (i != SD_MAX_DIMS - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
};
typedef std::function<bool(const TensorStorage&, ggml_tensor**)> on_new_tensor_cb_t;
typedef std::function<void(const std::string&, int32_t)> on_new_token_cb_t;
class ModelLoader {
protected:
@ -104,7 +209,7 @@ protected:
zip_t* zip,
std::string dir,
size_t file_index,
const std::string& prefix);
const std::string prefix);
bool init_from_gguf_file(const std::string& file_path, const std::string& prefix = "");
bool init_from_safetensors_file(const std::string& file_path, const std::string& prefix = "");
@ -112,15 +217,28 @@ protected:
bool init_from_diffusers_file(const std::string& file_path, const std::string& prefix = "");
public:
std::map<std::string, enum ggml_type> tensor_storages_types;
bool init_from_file(const std::string& file_path, const std::string& prefix = "");
bool model_is_unet();
SDVersion get_sd_version();
ggml_type get_sd_wtype();
std::string load_merges();
ggml_type get_conditioner_wtype();
ggml_type get_diffusion_model_wtype();
ggml_type get_vae_wtype();
void set_wtype_override(ggml_type wtype, std::string prefix = "");
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend_t backend);
bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
ggml_backend_t backend,
std::set<std::string> ignore_tensors = {});
int64_t cal_mem_size(ggml_backend_t backend);
bool save_to_gguf_file(const std::string& file_path, ggml_type type, const std::string& tensor_type_rules);
bool tensor_should_be_converted(const TensorStorage& tensor_storage, ggml_type type);
int64_t get_params_mem_size(ggml_backend_t backend, ggml_type type = GGML_TYPE_COUNT);
~ModelLoader() = default;
static std::string load_merges();
static std::string load_t5_tokenizer_json();
};
#endif // __MODEL_H__
#endif // __MODEL_H__

845
pmid.hpp Normal file
View File

@ -0,0 +1,845 @@
#ifndef __PMI_HPP__
#define __PMI_HPP__
#include "ggml_extend.hpp"
#include "clip.hpp"
#include "lora.hpp"
struct FuseBlock : public GGMLBlock {
// network hparams
int in_dim;
int out_dim;
int hidden_dim;
bool use_residue;
public:
FuseBlock(int i_d, int o_d, int h_d, bool use_residue = true)
: in_dim(i_d), out_dim(o_d), hidden_dim(h_d), use_residue(use_residue) {
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true));
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, out_dim, true));
blocks["layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(in_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]);
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layernorm"]);
struct ggml_tensor* r = x;
// x = ggml_nn_layer_norm(ctx, x, ln_w, ln_b);
x = layer_norm->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
x = fc1->forward(ctx, x);
x = ggml_gelu_inplace(ctx, x);
x = fc2->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
if (use_residue)
x = ggml_add(ctx, x, r);
return x;
}
};
/*
class QFormerPerceiver(nn.Module):
def __init__(self, id_embeddings_dim, cross_attention_dim, num_tokens, embedding_dim=1024, use_residual=True, ratio=4):
super().__init__()
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.use_residual = use_residual
print(cross_attention_dim*num_tokens)
self.token_proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*ratio),
nn.GELU(),
nn.Linear(id_embeddings_dim*ratio, cross_attention_dim*num_tokens),
)
self.token_norm = nn.LayerNorm(cross_attention_dim)
self.perceiver_resampler = FacePerceiverResampler(
dim=cross_attention_dim,
depth=4,
dim_head=128,
heads=cross_attention_dim // 128,
embedding_dim=embedding_dim,
output_dim=cross_attention_dim,
ff_mult=4,
)
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
*/
struct PMFeedForward : public GGMLBlock {
// network hparams
int dim;
public:
PMFeedForward(int d, int multi = 4)
: dim(d) {
int inner_dim = dim * multi;
blocks["0"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["1"] = std::shared_ptr<GGMLBlock>(new Mlp(dim, inner_dim, dim, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x) {
auto norm = std::dynamic_pointer_cast<LayerNorm>(blocks["0"]);
auto ff = std::dynamic_pointer_cast<Mlp>(blocks["1"]);
x = norm->forward(ctx, x);
x = ff->forward(ctx, x);
return x;
}
};
struct PerceiverAttention : public GGMLBlock {
// network hparams
float scale; // = dim_head**-0.5
int dim_head; // = dim_head
int heads; // = heads
public:
PerceiverAttention(int dim, int dim_h = 64, int h = 8)
: scale(powf(dim_h, -0.5)), dim_head(dim_h), heads(h) {
int inner_dim = dim_head * heads;
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["to_q"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim, false));
blocks["to_kv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim * 2, false));
blocks["to_out"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim, false));
}
struct ggml_tensor* reshape_tensor(struct ggml_context* ctx,
struct ggml_tensor* x,
int heads) {
int64_t ne[4];
for (int i = 0; i < 4; ++i)
ne[i] = x->ne[i];
// print_ggml_tensor(x, true, "PerceiverAttention reshape x 0: ");
// printf("heads = %d \n", heads);
// x = ggml_view_4d(ctx, x, x->ne[0], x->ne[1], heads, x->ne[2]/heads,
// x->nb[1], x->nb[2], x->nb[3], 0);
x = ggml_reshape_4d(ctx, x, x->ne[0] / heads, heads, x->ne[1], x->ne[2]);
// x = ggml_view_4d(ctx, x, x->ne[0]/heads, heads, x->ne[1], x->ne[2],
// x->nb[1], x->nb[2], x->nb[3], 0);
// x = ggml_cont(ctx, x);
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));
// print_ggml_tensor(x, true, "PerceiverAttention reshape x 1: ");
// x = ggml_reshape_4d(ctx, x, ne[0], heads, ne[1], ne[2]/heads);
return x;
}
std::vector<struct ggml_tensor*> chunk_half(struct ggml_context* ctx,
struct ggml_tensor* x) {
auto tlo = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], 0);
auto tli = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], x->nb[0] * x->ne[0] / 2);
return {ggml_cont(ctx, tlo),
ggml_cont(ctx, tli)};
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* latents) {
// x (torch.Tensor): image features
// shape (b, n1, D)
// latent (torch.Tensor): latent features
// shape (b, n2, D)
int64_t ne[4];
for (int i = 0; i < 4; ++i)
ne[i] = latents->ne[i];
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
x = norm1->forward(ctx, x);
latents = norm2->forward(ctx, latents);
auto to_q = std::dynamic_pointer_cast<Linear>(blocks["to_q"]);
auto q = to_q->forward(ctx, latents);
auto kv_input = ggml_concat(ctx, x, latents, 1);
auto to_kv = std::dynamic_pointer_cast<Linear>(blocks["to_kv"]);
auto kv = to_kv->forward(ctx, kv_input);
auto k = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, 0);
auto v = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, kv->nb[0] * (kv->ne[0] / 2));
k = ggml_cont(ctx, k);
v = ggml_cont(ctx, v);
q = reshape_tensor(ctx, q, heads);
k = reshape_tensor(ctx, k, heads);
v = reshape_tensor(ctx, v, heads);
scale = 1.f / sqrt(sqrt((float)dim_head));
k = ggml_scale_inplace(ctx, k, scale);
q = ggml_scale_inplace(ctx, q, scale);
// auto weight = ggml_mul_mat(ctx, q, k);
auto weight = ggml_mul_mat(ctx, k, q); // NOTE order of mul is opposite to pytorch
// GGML's softmax() is equivalent to pytorch's softmax(x, dim=-1)
// in this case, dimension along which Softmax will be computed is the last dim
// in torch and the first dim in GGML, consistent with the convention that pytorch's
// last dimension (varying most rapidly) corresponds to GGML's first (varying most rapidly).
// weight = ggml_soft_max(ctx, weight);
weight = ggml_soft_max_inplace(ctx, weight);
v = ggml_cont(ctx, ggml_transpose(ctx, v));
// auto out = ggml_mul_mat(ctx, weight, v);
auto out = ggml_mul_mat(ctx, v, weight); // NOTE order of mul is opposite to pytorch
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3));
out = ggml_reshape_3d(ctx, out, ne[0], ne[1], ggml_nelements(out) / (ne[0] * ne[1]));
auto to_out = std::dynamic_pointer_cast<Linear>(blocks["to_out"]);
out = to_out->forward(ctx, out);
return out;
}
};
struct FacePerceiverResampler : public GGMLBlock {
// network hparams
int depth;
public:
FacePerceiverResampler(int dim = 768,
int d = 4,
int dim_head = 64,
int heads = 16,
int embedding_dim = 1280,
int output_dim = 768,
int ff_mult = 4)
: depth(d) {
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Linear(embedding_dim, dim, true));
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Linear(dim, output_dim, true));
blocks["norm_out"] = std::shared_ptr<GGMLBlock>(new LayerNorm(output_dim));
for (int i = 0; i < depth; i++) {
std::string name = "layers." + std::to_string(i) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new PerceiverAttention(dim, dim_head, heads));
name = "layers." + std::to_string(i) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(new PMFeedForward(dim, ff_mult));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* latents,
struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto proj_in = std::dynamic_pointer_cast<Linear>(blocks["proj_in"]);
auto proj_out = std::dynamic_pointer_cast<Linear>(blocks["proj_out"]);
auto norm_out = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_out"]);
x = proj_in->forward(ctx, x);
for (int i = 0; i < depth; i++) {
std::string name = "layers." + std::to_string(i) + ".0";
auto attn = std::dynamic_pointer_cast<PerceiverAttention>(blocks[name]);
name = "layers." + std::to_string(i) + ".1";
auto ff = std::dynamic_pointer_cast<PMFeedForward>(blocks[name]);
auto t = attn->forward(ctx, x, latents);
latents = ggml_add(ctx, t, latents);
t = ff->forward(ctx, latents);
latents = ggml_add(ctx, t, latents);
}
latents = proj_out->forward(ctx, latents);
latents = norm_out->forward(ctx, latents);
return latents;
}
};
struct QFormerPerceiver : public GGMLBlock {
// network hparams
int num_tokens;
int cross_attention_dim;
bool use_residul;
public:
QFormerPerceiver(int id_embeddings_dim, int cross_attention_d, int num_t, int embedding_dim = 1024, bool use_r = true, int ratio = 4)
: cross_attention_dim(cross_attention_d), num_tokens(num_t), use_residul(use_r) {
blocks["token_proj"] = std::shared_ptr<GGMLBlock>(new Mlp(id_embeddings_dim,
id_embeddings_dim * ratio,
cross_attention_dim * num_tokens,
true));
blocks["token_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(cross_attention_d));
blocks["perceiver_resampler"] = std::shared_ptr<GGMLBlock>(new FacePerceiverResampler(
cross_attention_dim,
4,
128,
cross_attention_dim / 128,
embedding_dim,
cross_attention_dim,
4));
}
/*
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
*/
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* last_hidden_state) {
// x: [N, channels, h, w]
auto token_proj = std::dynamic_pointer_cast<Mlp>(blocks["token_proj"]);
auto token_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["token_norm"]);
auto perceiver_resampler = std::dynamic_pointer_cast<FacePerceiverResampler>(blocks["perceiver_resampler"]);
x = token_proj->forward(ctx, x);
int64_t nel = ggml_nelements(x);
x = ggml_reshape_3d(ctx, x, cross_attention_dim, num_tokens, nel / (cross_attention_dim * num_tokens));
x = token_norm->forward(ctx, x);
struct ggml_tensor* out = perceiver_resampler->forward(ctx, x, last_hidden_state);
if (use_residul)
out = ggml_add(ctx, x, out);
return out;
}
};
/*
class FacePerceiverResampler(torch.nn.Module):
def __init__(
self,
*,
dim=768,
depth=4,
dim_head=64,
heads=16,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
):
super().__init__()
self.proj_in = torch.nn.Linear(embedding_dim, dim)
self.proj_out = torch.nn.Linear(dim, output_dim)
self.norm_out = torch.nn.LayerNorm(output_dim)
self.layers = torch.nn.ModuleList([])
for _ in range(depth):
self.layers.append(
torch.nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, latents, x):
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
*/
/*
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
*/
struct FuseModule : public GGMLBlock {
// network hparams
int embed_dim;
public:
FuseModule(int imb_d)
: embed_dim(imb_d) {
blocks["mlp1"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d * 2, imb_d, imb_d, false));
blocks["mlp2"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d, imb_d, imb_d, true));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(embed_dim));
}
struct ggml_tensor* fuse_fn(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds) {
auto mlp1 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp1"]);
auto mlp2 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm"]);
// print_ggml_tensor(id_embeds, true, "Fuseblock id_embeds: ");
// print_ggml_tensor(prompt_embeds, true, "Fuseblock prompt_embeds: ");
// auto prompt_embeds0 = ggml_cont(ctx, ggml_permute(ctx, prompt_embeds, 2, 0, 1, 3));
// auto id_embeds0 = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
// print_ggml_tensor(id_embeds0, true, "Fuseblock id_embeds0: ");
// print_ggml_tensor(prompt_embeds0, true, "Fuseblock prompt_embeds0: ");
// concat is along dim 2
// auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds0, id_embeds0, 2);
auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds, id_embeds, 0);
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 0: ");
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 1, 2, 0, 3));
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 1: ");
// stacked_id_embeds = mlp1.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
// stacked_id_embeds = mlp2.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_nn_layer_norm(ctx, stacked_id_embeds, ln_w, ln_b);
stacked_id_embeds = mlp1->forward(ctx, stacked_id_embeds);
stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
stacked_id_embeds = mlp2->forward(ctx, stacked_id_embeds);
stacked_id_embeds = layer_norm->forward(ctx, stacked_id_embeds);
// print_ggml_tensor(stacked_id_embeds, true, "Fuseblock stacked_id_embeds 1: ");
return stacked_id_embeds;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
struct ggml_tensor* valid_id_embeds = id_embeds;
// # slice out the image token embeddings
// print_ggml_tensor(class_tokens_mask_pos, false);
ggml_set_name(class_tokens_mask_pos, "class_tokens_mask_pos");
ggml_set_name(prompt_embeds, "prompt_embeds");
// print_ggml_tensor(valid_id_embeds, true, "valid_id_embeds");
// print_ggml_tensor(class_tokens_mask_pos, true, "class_tokens_mask_pos");
struct ggml_tensor* image_token_embeds = ggml_get_rows(ctx, prompt_embeds, class_tokens_mask_pos);
ggml_set_name(image_token_embeds, "image_token_embeds");
valid_id_embeds = ggml_reshape_2d(ctx, valid_id_embeds, valid_id_embeds->ne[0],
ggml_nelements(valid_id_embeds) / valid_id_embeds->ne[0]);
struct ggml_tensor* stacked_id_embeds = fuse_fn(ctx, image_token_embeds, valid_id_embeds);
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
// print_ggml_tensor(stacked_id_embeds, true, "AA stacked_id_embeds");
// print_ggml_tensor(left, true, "AA left");
// print_ggml_tensor(right, true, "AA right");
if (left && right) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1);
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1);
} else if (left) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1);
} else if (right) {
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1);
}
// print_ggml_tensor(stacked_id_embeds, true, "BB stacked_id_embeds");
// stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
// print_ggml_tensor(stacked_id_embeds, true, "CC stacked_id_embeds");
class_tokens_mask = ggml_cont(ctx, ggml_transpose(ctx, class_tokens_mask));
class_tokens_mask = ggml_repeat(ctx, class_tokens_mask, prompt_embeds);
prompt_embeds = ggml_mul(ctx, prompt_embeds, class_tokens_mask);
struct ggml_tensor* updated_prompt_embeds = ggml_add(ctx, prompt_embeds, stacked_id_embeds);
ggml_set_name(updated_prompt_embeds, "updated_prompt_embeds");
// print_ggml_tensor(updated_prompt_embeds, true, "updated_prompt_embeds: ");
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
PhotoMakerIDEncoderBlock()
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14) {
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false));
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]);
auto visual_projection_2 = std::dynamic_pointer_cast<Linear>(blocks["visual_projection_2"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); // [N, proj_dim(768)]
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); // [N, 1280]
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
id_embeds_2 = ggml_cont(ctx, ggml_permute(ctx, id_embeds_2, 2, 0, 1, 3));
id_embeds = ggml_concat(ctx, id_embeds, id_embeds_2, 2); // [batch_size, seq_length, 1, 2048] check whether concat at dim 2 is right
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 1, 2, 0, 3));
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
prompt_embeds,
id_embeds,
class_tokens_mask,
class_tokens_mask_pos,
left, right);
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock : public CLIPVisionModelProjection {
int cross_attention_dim;
int num_tokens;
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock(int id_embeddings_dim = 512)
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14),
cross_attention_dim(2048),
num_tokens(2) {
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false));
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048));
/*
cross_attention_dim = 2048
# projection
self.num_tokens = 2
self.cross_attention_dim = cross_attention_dim
self.qformer_perceiver = QFormerPerceiver(
id_embeddings_dim,
cross_attention_dim,
self.num_tokens,
)*/
blocks["qformer_perceiver"] = std::shared_ptr<GGMLBlock>(new QFormerPerceiver(id_embeddings_dim,
cross_attention_dim,
num_tokens));
}
/*
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
last_hidden_state = self.vision_model(id_pixel_values)[0]
id_embeds = id_embeds.view(b * num_inputs, -1)
id_embeds = self.qformer_perceiver(id_embeds, last_hidden_state)
id_embeds = id_embeds.view(b, num_inputs, self.num_tokens, -1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
*/
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* id_embeds,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
auto qformer_perceiver = std::dynamic_pointer_cast<QFormerPerceiver>(blocks["qformer_perceiver"]);
// struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values, false); // [N, hidden_size]
id_embeds = qformer_perceiver->forward(ctx, id_embeds, last_hidden_state);
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
prompt_embeds,
id_embeds,
class_tokens_mask,
class_tokens_mask_pos,
left, right);
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoder : public GGMLRunner {
public:
SDVersion version = VERSION_SDXL;
PMVersion pm_version = PM_VERSION_1;
PhotoMakerIDEncoderBlock id_encoder;
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock id_encoder2;
float style_strength;
std::vector<float> ctm;
std::vector<ggml_fp16_t> ctmf16;
std::vector<int> ctmpos;
std::vector<ggml_fp16_t> zeros_left_16;
std::vector<float> zeros_left;
std::vector<ggml_fp16_t> zeros_right_16;
std::vector<float> zeros_right;
public:
PhotoMakerIDEncoder(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix, SDVersion version = VERSION_SDXL, PMVersion pm_v = PM_VERSION_1, float sty = 20.f)
: GGMLRunner(backend),
version(version),
pm_version(pm_v),
style_strength(sty) {
if (pm_version == PM_VERSION_1) {
id_encoder.init(params_ctx, tensor_types, prefix);
} else if (pm_version == PM_VERSION_2) {
id_encoder2.init(params_ctx, tensor_types, prefix);
}
}
std::string get_desc() {
return "pmid";
}
PMVersion get_version() const {
return pm_version;
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
if (pm_version == PM_VERSION_1)
id_encoder.get_param_tensors(tensors, prefix);
else if (pm_version == PM_VERSION_2)
id_encoder2.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph( // struct ggml_allocr* allocr,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
std::vector<bool>& class_tokens_mask,
struct ggml_tensor* id_embeds) {
ctm.clear();
ctmf16.clear();
ctmpos.clear();
zeros_left.clear();
zeros_left_16.clear();
zeros_right.clear();
zeros_right_16.clear();
ggml_context* ctx0 = compute_ctx;
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
int64_t hidden_size = prompt_embeds->ne[0];
int64_t seq_length = prompt_embeds->ne[1];
ggml_type type = GGML_TYPE_F32;
struct ggml_tensor* class_tokens_mask_d = ggml_new_tensor_1d(ctx0, type, class_tokens_mask.size());
struct ggml_tensor* id_pixel_values_d = to_backend(id_pixel_values);
struct ggml_tensor* prompt_embeds_d = to_backend(prompt_embeds);
struct ggml_tensor* id_embeds_d = to_backend(id_embeds);
struct ggml_tensor* left = NULL;
struct ggml_tensor* right = NULL;
for (int i = 0; i < class_tokens_mask.size(); i++) {
if (class_tokens_mask[i]) {
// printf(" 1,");
ctm.push_back(0.f); // here use 0.f instead of 1.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(0.f)); // here use 0.f instead of 1.f to make a scale mask
ctmpos.push_back(i);
} else {
// printf(" 0,");
ctm.push_back(1.f); // here use 1.f instead of 0.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(1.f)); // here use 0.f instead of 1.f to make a scale mask
}
}
// printf("\n");
if (ctmpos[0] > 0) {
// left = ggml_new_tensor_3d(ctx0, type, hidden_size, 1, ctmpos[0]);
left = ggml_new_tensor_3d(ctx0, type, hidden_size, ctmpos[0], 1);
}
if (ctmpos[ctmpos.size() - 1] < seq_length - 1) {
// right = ggml_new_tensor_3d(ctx0, type,
// hidden_size, 1, seq_length - ctmpos[ctmpos.size() - 1] - 1);
right = ggml_new_tensor_3d(ctx0, type,
hidden_size, seq_length - ctmpos[ctmpos.size() - 1] - 1, 1);
}
struct ggml_tensor* class_tokens_mask_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ctmpos.size());
{
if (type == GGML_TYPE_F16)
set_backend_tensor_data(class_tokens_mask_d, ctmf16.data());
else
set_backend_tensor_data(class_tokens_mask_d, ctm.data());
set_backend_tensor_data(class_tokens_mask_pos, ctmpos.data());
if (left) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(left, zeros_left_16.data());
} else {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left.push_back(0.f);
set_backend_tensor_data(left, zeros_left.data());
}
}
if (right) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(right, zeros_right_16.data());
} else {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right.push_back(0.f);
set_backend_tensor_data(right, zeros_right.data());
}
}
}
struct ggml_tensor* updated_prompt_embeds = NULL;
if (pm_version == PM_VERSION_1)
updated_prompt_embeds = id_encoder.forward(ctx0,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
class_tokens_mask_pos,
left, right);
else if (pm_version == PM_VERSION_2)
updated_prompt_embeds = id_encoder2.forward(ctx0,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
class_tokens_mask_pos,
id_embeds_d,
left, right);
ggml_build_forward_expand(gf, updated_prompt_embeds);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds,
std::vector<bool>& class_tokens_mask,
struct ggml_tensor** updated_prompt_embeds,
ggml_context* output_ctx) {
auto get_graph = [&]() -> struct ggml_cgraph* {
// return build_graph(compute_allocr, id_pixel_values, prompt_embeds, class_tokens_mask);
return build_graph(id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds);
};
// GGMLRunner::compute(get_graph, n_threads, updated_prompt_embeds);
GGMLRunner::compute(get_graph, n_threads, true, updated_prompt_embeds, output_ctx);
}
};
struct PhotoMakerIDEmbed : public GGMLRunner {
std::map<std::string, struct ggml_tensor*> tensors;
std::string file_path;
ModelLoader* model_loader;
bool load_failed = false;
bool applied = false;
PhotoMakerIDEmbed(ggml_backend_t backend,
ModelLoader* ml,
const std::string& file_path = "",
const std::string& prefix = "")
: file_path(file_path), GGMLRunner(backend), model_loader(ml) {
if (!model_loader->init_from_file(file_path, prefix)) {
load_failed = true;
}
}
std::string get_desc() {
return "id_embeds";
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading PhotoMaker ID Embeds from '%s'", file_path.c_str());
if (load_failed) {
LOG_ERROR("init photomaker id embed from file failed: '%s'", file_path.c_str());
return false;
}
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "pmid.id_embeds")) {
// LOG_INFO("skipping LoRA tesnor '%s'", name.c_str());
return true;
}
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
tensors[name] = real;
} else {
auto real = tensors[name];
*dst_tensor = real;
}
return true;
};
model_loader->load_tensors(on_new_tensor_cb, backend);
alloc_params_buffer();
dry_run = false;
model_loader->load_tensors(on_new_tensor_cb, backend);
LOG_DEBUG("finished loading PhotoMaker ID Embeds ");
return true;
}
struct ggml_tensor* get() {
std::map<std::string, struct ggml_tensor*>::iterator pos;
pos = tensors.find("pmid.id_embeds");
if (pos != tensors.end())
return pos->second;
return NULL;
}
};
#endif // __PMI_HPP__

227
preprocessing.hpp Normal file
View File

@ -0,0 +1,227 @@
#ifndef __PREPROCESSING_HPP__
#define __PREPROCESSING_HPP__
#include "ggml_extend.hpp"
#define M_PI_ 3.14159265358979323846
void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) {
struct ggml_init_params params;
params.mem_size = 20 * 1024 * 1024; // 10
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* ctx0 = ggml_init(params);
struct ggml_tensor* kernel_fp16 = ggml_new_tensor_4d(ctx0, GGML_TYPE_F16, kernel->ne[0], kernel->ne[1], 1, 1);
ggml_fp32_to_fp16_row((float*)kernel->data, (ggml_fp16_t*)kernel_fp16->data, ggml_nelements(kernel));
ggml_tensor* h = ggml_conv_2d(ctx0, kernel_fp16, input, 1, 1, padding, padding, 1, 1);
ggml_cgraph* gf = ggml_new_graph(ctx0);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, h, output));
ggml_graph_compute_with_ctx(ctx0, gf, 1);
ggml_free(ctx0);
}
void gaussian_kernel(struct ggml_tensor* kernel) {
int ks_mid = kernel->ne[0] / 2;
float sigma = 1.4f;
float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f));
for (int y = 0; y < kernel->ne[0]; y++) {
float gx = -ks_mid + y;
for (int x = 0; x < kernel->ne[1]; x++) {
float gy = -ks_mid + x;
float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal;
ggml_tensor_set_f32(kernel, k_, x, y);
}
}
}
void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) {
for (int iy = 0; iy < rgb_img->ne[1]; iy++) {
for (int ix = 0; ix < rgb_img->ne[0]; ix++) {
float r = ggml_tensor_get_f32(rgb_img, ix, iy);
float g = ggml_tensor_get_f32(rgb_img, ix, iy, 1);
float b = ggml_tensor_get_f32(rgb_img, ix, iy, 2);
float gray = 0.2989f * r + 0.5870f * g + 0.1140f * b;
ggml_tensor_set_f32(grayscale, gray, ix, iy);
}
}
}
void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
int n_elements = ggml_nelements(h);
float* dx = (float*)x->data;
float* dy = (float*)y->data;
float* dh = (float*)h->data;
for (int i = 0; i < n_elements; i++) {
dh[i] = sqrtf(dx[i] * dx[i] + dy[i] * dy[i]);
}
}
void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
int n_elements = ggml_nelements(h);
float* dx = (float*)x->data;
float* dy = (float*)y->data;
float* dh = (float*)h->data;
for (int i = 0; i < n_elements; i++) {
dh[i] = atan2f(dy[i], dx[i]);
}
}
void normalize_tensor(struct ggml_tensor* g) {
int n_elements = ggml_nelements(g);
float* dg = (float*)g->data;
float max = -INFINITY;
for (int i = 0; i < n_elements; i++) {
max = dg[i] > max ? dg[i] : max;
}
max = 1.0f / max;
for (int i = 0; i < n_elements; i++) {
dg[i] *= max;
}
}
void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struct ggml_tensor* D) {
for (int iy = 1; iy < result->ne[1] - 1; iy++) {
for (int ix = 1; ix < result->ne[0] - 1; ix++) {
float angle = ggml_tensor_get_f32(D, ix, iy) * 180.0f / M_PI_;
angle = angle < 0.0f ? angle += 180.0f : angle;
float q = 1.0f;
float r = 1.0f;
// angle 0
if ((0 >= angle && angle < 22.5f) || (157.5f >= angle && angle <= 180)) {
q = ggml_tensor_get_f32(G, ix, iy + 1);
r = ggml_tensor_get_f32(G, ix, iy - 1);
}
// angle 45
else if (22.5f >= angle && angle < 67.5f) {
q = ggml_tensor_get_f32(G, ix + 1, iy - 1);
r = ggml_tensor_get_f32(G, ix - 1, iy + 1);
}
// angle 90
else if (67.5f >= angle && angle < 112.5) {
q = ggml_tensor_get_f32(G, ix + 1, iy);
r = ggml_tensor_get_f32(G, ix - 1, iy);
}
// angle 135
else if (112.5 >= angle && angle < 157.5f) {
q = ggml_tensor_get_f32(G, ix - 1, iy - 1);
r = ggml_tensor_get_f32(G, ix + 1, iy + 1);
}
float cur = ggml_tensor_get_f32(G, ix, iy);
if ((cur >= q) && (cur >= r)) {
ggml_tensor_set_f32(result, cur, ix, iy);
} else {
ggml_tensor_set_f32(result, 0.0f, ix, iy);
}
}
}
}
void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) {
int n_elements = ggml_nelements(img);
float* imd = (float*)img->data;
float max = -INFINITY;
for (int i = 0; i < n_elements; i++) {
max = imd[i] > max ? imd[i] : max;
}
float ht = max * high_threshold;
float lt = ht * low_threshold;
for (int i = 0; i < n_elements; i++) {
float img_v = imd[i];
if (img_v >= ht) { // strong pixel
imd[i] = strong;
} else if (img_v <= ht && img_v >= lt) { // strong pixel
imd[i] = weak;
}
}
for (int iy = 0; iy < img->ne[1]; iy++) {
for (int ix = 0; ix < img->ne[0]; ix++) {
if (ix >= 3 && ix <= img->ne[0] - 3 && iy >= 3 && iy <= img->ne[1] - 3) {
ggml_tensor_set_f32(img, ggml_tensor_get_f32(img, ix, iy), ix, iy);
} else {
ggml_tensor_set_f32(img, 0.0f, ix, iy);
}
}
}
// hysteresis
for (int iy = 1; iy < img->ne[1] - 1; iy++) {
for (int ix = 1; ix < img->ne[0] - 1; ix++) {
float imd_v = ggml_tensor_get_f32(img, ix, iy);
if (imd_v == weak) {
if (ggml_tensor_get_f32(img, ix + 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix + 1, iy) == strong ||
ggml_tensor_get_f32(img, ix, iy - 1) == strong || ggml_tensor_get_f32(img, ix, iy + 1) == strong ||
ggml_tensor_get_f32(img, ix - 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix - 1, iy) == strong) {
ggml_tensor_set_f32(img, strong, ix, iy);
} else {
ggml_tensor_set_f32(img, 0.0f, ix, iy);
}
}
}
}
}
uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
if (!work_ctx) {
LOG_ERROR("ggml_init() failed");
return NULL;
}
float kX[9] = {
-1, 0, 1,
-2, 0, 2,
-1, 0, 1};
float kY[9] = {
1, 2, 1,
0, 0, 0,
-1, -2, -1};
// generate kernel
int kernel_size = 5;
struct ggml_tensor* gkernel = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, kernel_size, kernel_size, 1, 1);
struct ggml_tensor* sf_kx = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
memcpy(sf_kx->data, kX, ggml_nbytes(sf_kx));
struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky));
gaussian_kernel(gkernel);
struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* tetha = ggml_dup_tensor(work_ctx, image_gray);
sd_image_to_tensor(img, image);
grayscale(image, image_gray);
convolve(image_gray, image_gray, gkernel, 2);
convolve(image_gray, iX, sf_kx, 1);
convolve(image_gray, iY, sf_ky, 1);
prop_hypot(iX, iY, G);
normalize_tensor(G);
prop_arctan2(iX, iY, tetha);
non_max_supression(image_gray, G, tetha);
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
// to RGB channels
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
float gray = ggml_tensor_get_f32(image_gray, ix, iy);
gray = inverse ? 1.0f - gray : gray;
ggml_tensor_set_f32(image, gray, ix, iy);
ggml_tensor_set_f32(image, gray, ix, iy, 1);
ggml_tensor_set_f32(image, gray, ix, iy, 2);
}
}
free(img);
uint8_t* output = sd_tensor_to_image(image);
ggml_free(work_ctx);
return output;
}
#endif // __PREPROCESSING_HPP__

File diff suppressed because it is too large Load Diff

View File

@ -30,7 +30,8 @@ extern "C" {
enum rng_type_t {
STD_DEFAULT_RNG,
CUDA_RNG
CUDA_RNG,
RNG_TYPE_COUNT
};
enum sample_method_t {
@ -41,15 +42,22 @@ enum sample_method_t {
DPMPP2S_A,
DPMPP2M,
DPMPP2Mv2,
IPNDM,
IPNDM_V,
LCM,
N_SAMPLE_METHODS
DDIM_TRAILING,
TCD,
SAMPLE_METHOD_COUNT
};
enum schedule_t {
DEFAULT,
DISCRETE,
KARRAS,
N_SCHEDULES
EXPONENTIAL,
AYS,
GITS,
SCHEDULE_COUNT
};
// same as enum ggml_type
@ -59,26 +67,43 @@ enum sd_type_t {
SD_TYPE_Q4_0 = 2,
SD_TYPE_Q4_1 = 3,
// SD_TYPE_Q4_2 = 4, support has been removed
// SD_TYPE_Q4_3 (5) support has been removed
SD_TYPE_Q5_0 = 6,
SD_TYPE_Q5_1 = 7,
SD_TYPE_Q8_0 = 8,
SD_TYPE_Q8_1 = 9,
// k-quantizations
SD_TYPE_Q2_K = 10,
SD_TYPE_Q3_K = 11,
SD_TYPE_Q4_K = 12,
SD_TYPE_Q5_K = 13,
SD_TYPE_Q6_K = 14,
SD_TYPE_Q8_K = 15,
SD_TYPE_I8,
SD_TYPE_I16,
SD_TYPE_I32,
SD_TYPE_COUNT,
// SD_TYPE_Q4_3 = 5, support has been removed
SD_TYPE_Q5_0 = 6,
SD_TYPE_Q5_1 = 7,
SD_TYPE_Q8_0 = 8,
SD_TYPE_Q8_1 = 9,
SD_TYPE_Q2_K = 10,
SD_TYPE_Q3_K = 11,
SD_TYPE_Q4_K = 12,
SD_TYPE_Q5_K = 13,
SD_TYPE_Q6_K = 14,
SD_TYPE_Q8_K = 15,
SD_TYPE_IQ2_XXS = 16,
SD_TYPE_IQ2_XS = 17,
SD_TYPE_IQ3_XXS = 18,
SD_TYPE_IQ1_S = 19,
SD_TYPE_IQ4_NL = 20,
SD_TYPE_IQ3_S = 21,
SD_TYPE_IQ2_S = 22,
SD_TYPE_IQ4_XS = 23,
SD_TYPE_I8 = 24,
SD_TYPE_I16 = 25,
SD_TYPE_I32 = 26,
SD_TYPE_I64 = 27,
SD_TYPE_F64 = 28,
SD_TYPE_IQ1_M = 29,
SD_TYPE_BF16 = 30,
// SD_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
// SD_TYPE_Q4_0_4_8 = 32,
// SD_TYPE_Q4_0_8_8 = 33,
SD_TYPE_TQ1_0 = 34,
SD_TYPE_TQ2_0 = 35,
// SD_TYPE_IQ4_NL_4_4 = 36,
// SD_TYPE_IQ4_NL_4_8 = 37,
// SD_TYPE_IQ4_NL_8_8 = 38,
SD_TYPE_COUNT = 39,
};
SD_API const char* sd_type_name(enum sd_type_t type);
enum sd_log_level_t {
SD_LOG_DEBUG,
SD_LOG_INFO,
@ -86,11 +111,33 @@ enum sd_log_level_t {
SD_LOG_ERROR
};
typedef void (*sd_log_cb_t)(enum sd_log_level_t level, const char* text, void* data);
SD_API void sd_set_log_callback(sd_log_cb_t sd_log_cb, void* data);
SD_API int32_t get_num_physical_cores();
SD_API const char* sd_get_system_info();
typedef struct {
const char* model_path;
const char* clip_l_path;
const char* clip_g_path;
const char* t5xxl_path;
const char* diffusion_model_path;
const char* vae_path;
const char* taesd_path;
const char* control_net_path;
const char* lora_model_dir;
const char* embedding_dir;
const char* stacked_id_embed_dir;
bool vae_decode_only;
bool vae_tiling;
bool free_params_immediately;
int n_threads;
enum sd_type_t wtype;
enum rng_type_t rng_type;
enum schedule_t schedule;
bool keep_clip_on_cpu;
bool keep_control_net_on_cpu;
bool keep_vae_on_cpu;
bool diffusion_flash_attn;
bool chroma_use_dit_mask;
bool chroma_use_t5_mask;
int chroma_t5_mask_pad;
} sd_ctx_params_t;
typedef struct {
uint32_t width;
@ -99,59 +146,118 @@ typedef struct {
uint8_t* data;
} sd_image_t;
typedef struct {
int* layers;
size_t layer_count;
float layer_start;
float layer_end;
float scale;
} sd_slg_params_t;
typedef struct {
float txt_cfg;
float img_cfg;
float min_cfg;
float distilled_guidance;
sd_slg_params_t slg;
} sd_guidance_params_t;
typedef struct {
const char* prompt;
const char* negative_prompt;
int clip_skip;
sd_guidance_params_t guidance;
sd_image_t init_image;
sd_image_t* ref_images;
int ref_images_count;
sd_image_t mask_image;
int width;
int height;
enum sample_method_t sample_method;
int sample_steps;
float eta;
float strength;
int64_t seed;
int batch_count;
const sd_image_t* control_cond;
float control_strength;
float style_strength;
bool normalize_input;
const char* input_id_images_path;
} sd_img_gen_params_t;
typedef struct {
sd_image_t init_image;
int width;
int height;
sd_guidance_params_t guidance;
enum sample_method_t sample_method;
int sample_steps;
float strength;
int64_t seed;
int video_frames;
int motion_bucket_id;
int fps;
float augmentation_level;
} sd_vid_gen_params_t;
typedef struct sd_ctx_t sd_ctx_t;
SD_API sd_ctx_t* new_sd_ctx(const char* model_path,
const char* vae_path,
const char* taesd_path,
const char* lora_model_dir,
bool vae_decode_only,
bool vae_tiling,
bool free_params_immediately,
int n_threads,
enum sd_type_t wtype,
enum rng_type_t rng_type,
enum schedule_t s);
typedef void (*sd_log_cb_t)(enum sd_log_level_t level, const char* text, void* data);
typedef void (*sd_progress_cb_t)(int step, int steps, float time, void* data);
SD_API void sd_set_log_callback(sd_log_cb_t sd_log_cb, void* data);
SD_API void sd_set_progress_callback(sd_progress_cb_t cb, void* data);
SD_API int32_t get_num_physical_cores();
SD_API const char* sd_get_system_info();
SD_API const char* sd_type_name(enum sd_type_t type);
SD_API enum sd_type_t str_to_sd_type(const char* str);
SD_API const char* sd_rng_type_name(enum rng_type_t rng_type);
SD_API enum rng_type_t str_to_rng_type(const char* str);
SD_API const char* sd_sample_method_name(enum sample_method_t sample_method);
SD_API enum sample_method_t str_to_sample_method(const char* str);
SD_API const char* sd_schedule_name(enum schedule_t schedule);
SD_API enum schedule_t str_to_schedule(const char* str);
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
SD_API sd_ctx_t* new_sd_ctx(const sd_ctx_params_t* sd_ctx_params);
SD_API void free_sd_ctx(sd_ctx_t* sd_ctx);
SD_API sd_image_t* txt2img(sd_ctx_t* sd_ctx,
const char* prompt,
const char* negative_prompt,
int clip_skip,
float cfg_scale,
int width,
int height,
enum sample_method_t sample_method,
int sample_steps,
int64_t seed,
int batch_count);
SD_API void sd_img_gen_params_init(sd_img_gen_params_t* sd_img_gen_params);
SD_API char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params);
SD_API sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_gen_params);
SD_API sd_image_t* img2img(sd_ctx_t* sd_ctx,
sd_image_t init_image,
const char* prompt,
const char* negative_prompt,
int clip_skip,
float cfg_scale,
int width,
int height,
enum sample_method_t sample_method,
int sample_steps,
float strength,
int64_t seed,
int batch_count);
SD_API void sd_vid_gen_params_init(sd_vid_gen_params_t* sd_vid_gen_params);
SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* sd_vid_gen_params); // broken
typedef struct upscaler_ctx_t upscaler_ctx_t;
SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path,
int n_threads,
enum sd_type_t wtype);
int n_threads);
SD_API void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx);
SD_API sd_image_t upscale(upscaler_ctx_t*, sd_image_t input_image, uint32_t upscale_factor);
SD_API sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor);
SD_API bool convert(const char* input_path,
const char* vae_path,
const char* output_path,
enum sd_type_t output_type,
const char* tensor_type_rules);
SD_API uint8_t* preprocess_canny(uint8_t* img,
int width,
int height,
float high_threshold,
float low_threshold,
float weak,
float strong,
bool inverse);
#ifdef __cplusplus
}
#endif
#endif // __STABLE_DIFFUSION_H__
#endif // __STABLE_DIFFUSION_H__

1008
t5.hpp Normal file

File diff suppressed because it is too large Load Diff

651
tae.hpp
View File

@ -8,88 +8,45 @@
/*
=================================== TinyAutoEncoder ===================================
References:
https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoder_tiny.py
https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/vae.py
https://github.com/madebyollin/taesd/blob/main/taesd.py
*/
struct TAEBlock {
int in_channels;
int out_channels;
// conv
ggml_tensor* conv_0_w; // [in_channels, out_channels, 3, 3]
ggml_tensor* conv_0_b; // [in_channels]
ggml_tensor* conv_1_w; // [out_channels, out_channels, 3, 3]
ggml_tensor* conv_1_b; // [out_channels]
ggml_tensor* conv_2_w; // [out_channels, out_channels, 3, 3]
ggml_tensor* conv_2_b; // [out_channels]
class TAEBlock : public UnaryBlock {
protected:
int n_in;
int n_out;
// skip
ggml_tensor* conv_skip_w; // [in_channels, out_channels, 1, 1]
size_t calculate_mem_size() {
size_t mem_size = in_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_0_w
mem_size += in_channels * ggml_type_size(GGML_TYPE_F32); // conv_0_b
mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w
mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_1_b
mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w
mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_1_b
mem_size += out_channels * out_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w
mem_size += out_channels * ggml_type_size(GGML_TYPE_F32); // conv_2_b
if (in_channels != out_channels) {
mem_size += in_channels * out_channels * ggml_type_size(GGML_TYPE_F16); // conv_skip_w
}
return mem_size;
}
int get_num_tensors() {
return 6 + (in_channels != out_channels ? 1 : 0);
}
void init_params(ggml_context* ctx) {
conv_0_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, in_channels);
conv_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, in_channels);
conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels);
conv_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, out_channels, out_channels);
conv_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
if (in_channels != out_channels) {
conv_skip_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, 1, out_channels, in_channels);
public:
TAEBlock(int n_in, int n_out)
: n_in(n_in), n_out(n_out) {
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
if (n_in != n_out) {
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {1, 1}, {1, 1}, {1, 1}, {1, 1}, false));
}
}
void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
tensors[prefix + "conv.0.weight"] = conv_0_w;
tensors[prefix + "conv.0.bias"] = conv_0_b;
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, n_in, h, w]
// return: [n, n_out, h, w]
tensors[prefix + "conv.2.weight"] = conv_1_w;
tensors[prefix + "conv.2.bias"] = conv_1_b;
auto conv_0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]);
auto conv_2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]);
auto conv_4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]);
tensors[prefix + "conv.4.weight"] = conv_2_w;
tensors[prefix + "conv.4.bias"] = conv_2_b;
auto h = conv_0->forward(ctx, x);
h = ggml_relu_inplace(ctx, h);
h = conv_2->forward(ctx, h);
h = ggml_relu_inplace(ctx, h);
h = conv_4->forward(ctx, h);
if (in_channels != out_channels) {
tensors[prefix + "skip.weight"] = conv_skip_w;
}
}
ggml_tensor* forward(ggml_context* ctx, ggml_tensor* x) {
// conv(n_in, n_out)
ggml_tensor* h;
h = ggml_nn_conv_2d(ctx, x, conv_0_w, conv_0_b, 1, 1, 1, 1);
h = ggml_relu_inplace(ctx, h);
h = ggml_nn_conv_2d(ctx, h, conv_1_w, conv_1_b, 1, 1, 1, 1);
h = ggml_relu_inplace(ctx, h);
h = ggml_nn_conv_2d(ctx, h, conv_2_w, conv_2_b, 1, 1, 1, 1);
// skip connection
if (in_channels != out_channels) {
// skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
x = ggml_nn_conv_2d(ctx, x, conv_skip_w, NULL, 1, 1, 1, 1);
if (n_in != n_out) {
auto skip = std::dynamic_pointer_cast<Conv2d>(blocks["skip"]);
LOG_DEBUG("skip");
x = skip->forward(ctx, x);
}
h = ggml_add(ctx, h, x);
@ -98,425 +55,169 @@ struct TAEBlock {
}
};
struct TinyEncoder {
class TinyEncoder : public UnaryBlock {
int in_channels = 3;
int z_channels = 4;
int channels = 64;
int z_channels = 4;
int num_blocks = 3;
// input
ggml_tensor* conv_input_w; // [channels, in_channels, 3, 3]
ggml_tensor* conv_input_b; // [channels]
TAEBlock initial_block;
public:
TinyEncoder(int z_channels = 4)
: z_channels(z_channels) {
int index = 0;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, channels, {3, 3}, {1, 1}, {1, 1}));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
ggml_tensor* conv_1_w; // [channels, channels, 3, 3]
TAEBlock input_blocks[3];
// middle
ggml_tensor* conv_2_w; // [channels, channels, 3, 3]
TAEBlock middle_blocks[3];
// output
ggml_tensor* conv_3_w; // [channels, channels, 3, 3]
TAEBlock output_blocks[3];
// final
ggml_tensor* conv_final_w; // [z_channels, channels, 3, 3]
ggml_tensor* conv_final_b; // [z_channels]
TinyEncoder() {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].in_channels = channels;
input_blocks[i].out_channels = channels;
middle_blocks[i].in_channels = channels;
middle_blocks[i].out_channels = channels;
output_blocks[i].in_channels = channels;
output_blocks[i].out_channels = channels;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
initial_block.in_channels = channels;
initial_block.out_channels = channels;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, z_channels, {3, 3}, {1, 1}, {1, 1}));
}
size_t calculate_mem_size() {
size_t mem_size = channels * in_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w
mem_size += channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, in_channels, h, w]
// return: [n, z_channels, h/8, w/8]
mem_size += initial_block.calculate_mem_size();
for (int i = 0; i < num_blocks * 3 + 6; i++) {
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]);
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_3_w
for (int i = 0; i < num_blocks; i++) {
mem_size += input_blocks[i].calculate_mem_size();
mem_size += middle_blocks[i].calculate_mem_size();
mem_size += output_blocks[i].calculate_mem_size();
}
mem_size += z_channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w
mem_size += z_channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b
return mem_size;
}
int get_num_tensors() {
int num_tensors = 7;
for (int i = 0; i < num_blocks; i++) {
num_tensors += input_blocks[i].get_num_tensors();
num_tensors += middle_blocks[i].get_num_tensors();
num_tensors += output_blocks[i].get_num_tensors();
}
num_tensors += initial_block.get_num_tensors();
return num_tensors;
}
void init_params(ggml_context* ctx) {
conv_input_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, in_channels, channels);
conv_input_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels);
initial_block.init_params(ctx);
conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_final_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, z_channels);
conv_final_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_channels);
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].init_params(ctx);
middle_blocks[i].init_params(ctx);
output_blocks[i].init_params(ctx);
}
}
void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
tensors[prefix + "0.weight"] = conv_input_w;
tensors[prefix + "0.bias"] = conv_input_b;
initial_block.map_by_name(tensors, prefix + "1.");
tensors[prefix + "2.weight"] = conv_1_w;
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 3) + ".");
x = block->forward(ctx, x);
}
tensors[prefix + "6.weight"] = conv_2_w;
for (int i = 0; i < num_blocks; i++) {
middle_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 7) + ".");
}
tensors[prefix + "10.weight"] = conv_3_w;
for (int i = 0; i < num_blocks; i++) {
output_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 11) + ".");
}
tensors[prefix + "14.weight"] = conv_final_w;
tensors[prefix + "14.bias"] = conv_final_b;
}
ggml_tensor* forward(ggml_context* ctx, ggml_tensor* x) {
// conv(3, 64)
auto z = ggml_nn_conv_2d(ctx, x, conv_input_w, conv_input_b, 1, 1, 1, 1);
// Block(64, 64)
z = initial_block.forward(ctx, z);
// conv(64, 64, stride=2, bias=False)
z = ggml_nn_conv_2d(ctx, z, conv_1_w, NULL, 2, 2, 1, 1);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
z = input_blocks[i].forward(ctx, z);
}
// conv(64, 64, stride=2, bias=False)
z = ggml_nn_conv_2d(ctx, z, conv_2_w, NULL, 2, 2, 1, 1);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
z = middle_blocks[i].forward(ctx, z);
}
// conv(64, 64, stride=2, bias=False)
z = ggml_nn_conv_2d(ctx, z, conv_3_w, NULL, 2, 2, 1, 1);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
z = output_blocks[i].forward(ctx, z);
}
// conv(64, 4)
z = ggml_nn_conv_2d(ctx, z, conv_final_w, conv_final_b, 1, 1, 1, 1);
return z;
return x;
}
};
struct TinyDecoder {
int z_channels = 4;
int channels = 64;
int output_channels = 3;
int num_blocks = 3;
class TinyDecoder : public UnaryBlock {
int z_channels = 4;
int channels = 64;
int out_channels = 3;
int num_blocks = 3;
// input
ggml_tensor* conv_input_w; // [channels, z_channels, 3, 3]
ggml_tensor* conv_input_b; // [channels]
TAEBlock input_blocks[3];
ggml_tensor* conv_1_w; // [channels, channels, 3, 3]
public:
TinyDecoder(int z_channels = 4)
: z_channels(z_channels) {
int index = 0;
// middle
TAEBlock middle_blocks[3];
ggml_tensor* conv_2_w; // [channels, channels, 3, 3]
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, channels, {3, 3}, {1, 1}, {1, 1}));
index++; // nn.ReLU()
// output
TAEBlock output_blocks[3];
ggml_tensor* conv_3_w; // [channels, channels, 3, 3]
// final
TAEBlock final_block;
ggml_tensor* conv_final_w; // [output_channels, channels, 3, 3]
ggml_tensor* conv_final_b; // [output_channels]
ggml_tensor* in_scale_1d3; // [1]
ggml_tensor* in_scale_3; // [1]
TinyDecoder() {
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].in_channels = channels;
input_blocks[i].out_channels = channels;
middle_blocks[i].in_channels = channels;
middle_blocks[i].out_channels = channels;
output_blocks[i].in_channels = channels;
output_blocks[i].out_channels = channels;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
final_block.in_channels = channels;
final_block.out_channels = channels;
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
}
size_t calculate_mem_size() {
size_t mem_size = channels * z_channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w
mem_size += channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* z) {
// z: [n, z_channels, h, w]
// return: [n, out_channels, h*8, w*8]
for (int i = 0; i < num_blocks; i++) {
mem_size += input_blocks[i].calculate_mem_size();
}
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_1_w
for (int i = 0; i < num_blocks; i++) {
mem_size += middle_blocks[i].calculate_mem_size();
}
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_2_w
for (int i = 0; i < num_blocks; i++) {
mem_size += output_blocks[i].calculate_mem_size();
}
mem_size += channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_3_w
mem_size += final_block.calculate_mem_size();
mem_size += output_channels * channels * 3 * 3 * ggml_type_size(GGML_TYPE_F16); // conv_input_w
mem_size += output_channels * ggml_type_size(GGML_TYPE_F32); // conv_input_b
return mem_size;
}
int get_num_tensors() {
int num_tensors = 9;
for (int i = 0; i < num_blocks; i++) {
num_tensors += input_blocks[i].get_num_tensors();
num_tensors += middle_blocks[i].get_num_tensors();
num_tensors += output_blocks[i].get_num_tensors();
}
num_tensors += final_block.get_num_tensors();
return num_tensors;
}
void init_params(ggml_allocr* alloc, ggml_context* ctx) {
conv_input_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, z_channels, channels);
conv_input_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, channels);
conv_1_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_2_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_3_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, channels);
conv_final_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, output_channels);
conv_final_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, output_channels);
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].init_params(ctx);
middle_blocks[i].init_params(ctx);
output_blocks[i].init_params(ctx);
}
final_block.init_params(ctx);
// initialize constants scales
in_scale_1d3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
in_scale_3 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_allocr_alloc(alloc, in_scale_1d3);
float scale_1d3 = 1.0f / 3.0f;
ggml_backend_tensor_set(in_scale_1d3, &scale_1d3, 0, sizeof(scale_1d3));
ggml_allocr_alloc(alloc, in_scale_3);
float scale_3 = 3.0f;
ggml_backend_tensor_set(in_scale_3, &scale_3, 0, sizeof(scale_3));
}
void map_by_name(std::map<std::string, ggml_tensor*>& tensors, std::string prefix) {
tensors[prefix + "0.weight"] = conv_input_w;
tensors[prefix + "0.bias"] = conv_input_b;
for (int i = 0; i < num_blocks; i++) {
input_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 2) + ".");
}
tensors[prefix + "6.weight"] = conv_1_w;
for (int i = 0; i < num_blocks; i++) {
middle_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 7) + ".");
}
tensors[prefix + "11.weight"] = conv_2_w;
for (int i = 0; i < num_blocks; i++) {
output_blocks[i].map_by_name(tensors, prefix + std::to_string(i + 12) + ".");
}
tensors[prefix + "16.weight"] = conv_3_w;
final_block.map_by_name(tensors, prefix + "17.");
tensors[prefix + "18.weight"] = conv_final_w;
tensors[prefix + "18.bias"] = conv_final_b;
}
ggml_tensor* forward(ggml_context* ctx, ggml_tensor* z) {
// torch.tanh(x / 3) * 3
auto h = ggml_scale(ctx, z, in_scale_1d3);
auto h = ggml_scale(ctx, z, 1.0f / 3.0f);
h = ggml_tanh_inplace(ctx, h);
h = ggml_scale(ctx, h, in_scale_3);
h = ggml_scale(ctx, h, 3.0f);
// conv(4, 64)
h = ggml_nn_conv_2d(ctx, h, conv_input_w, conv_input_b, 1, 1, 1, 1);
for (int i = 0; i < num_blocks * 3 + 10; i++) {
if (blocks.find(std::to_string(i)) == blocks.end()) {
if (i == 1) {
h = ggml_relu_inplace(ctx, h);
} else {
h = ggml_upscale(ctx, h, 2, GGML_SCALE_MODE_NEAREST);
}
continue;
}
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]);
// nn.ReLU()
h = ggml_relu_inplace(ctx, h);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
h = input_blocks[i].forward(ctx, h);
h = block->forward(ctx, h);
}
// nn.Upsample(scale_factor=2)
h = ggml_upscale(ctx, h, 2);
// conv(64, 64, bias=False)
h = ggml_nn_conv_2d(ctx, h, conv_1_w, NULL, 1, 1, 1, 1);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
h = middle_blocks[i].forward(ctx, h);
}
// nn.Upsample(scale_factor=2)
h = ggml_upscale(ctx, h, 2);
// conv(64, 64, bias=False)
h = ggml_nn_conv_2d(ctx, h, conv_2_w, NULL, 1, 1, 1, 1);
// Block(64, 64), Block(64, 64), Block(64, 64)
for (int i = 0; i < num_blocks; i++) {
h = output_blocks[i].forward(ctx, h);
}
// nn.Upsample(scale_factor=2)
h = ggml_upscale(ctx, h, 2);
// conv(64, 64, bias=False)
h = ggml_nn_conv_2d(ctx, h, conv_3_w, NULL, 1, 1, 1, 1);
// Block(64, 64)
h = final_block.forward(ctx, h);
// conv(64, 3)
h = ggml_nn_conv_2d(ctx, h, conv_final_w, conv_final_b, 1, 1, 1, 1);
return h;
}
};
struct TinyAutoEncoder : public GGMLModule {
TinyEncoder encoder;
TinyDecoder decoder;
class TAESD : public GGMLBlock {
protected:
bool decode_only;
public:
TAESD(bool decode_only = true, SDVersion version = VERSION_SD1)
: decode_only(decode_only) {
int z_channels = 4;
if (sd_version_is_dit(version)) {
z_channels = 16;
}
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels));
if (!decode_only) {
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels));
}
}
struct ggml_tensor* decode(struct ggml_context* ctx, struct ggml_tensor* z) {
auto decoder = std::dynamic_pointer_cast<TinyDecoder>(blocks["decoder.layers"]);
return decoder->forward(ctx, z);
}
struct ggml_tensor* encode(struct ggml_context* ctx, struct ggml_tensor* x) {
auto encoder = std::dynamic_pointer_cast<TinyEncoder>(blocks["encoder.layers"]);
return encoder->forward(ctx, x);
}
};
struct TinyAutoEncoder : public GGMLRunner {
TAESD taesd;
bool decode_only = false;
TinyAutoEncoder(bool decoder_only_ = true)
: decode_only(decoder_only_) {
name = "tae";
TinyAutoEncoder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
bool decoder_only = true,
SDVersion version = VERSION_SD1)
: decode_only(decoder_only),
taesd(decoder_only, version),
GGMLRunner(backend) {
taesd.init(params_ctx, tensor_types, prefix);
}
size_t calculate_mem_size() {
size_t mem_size = decoder.calculate_mem_size();
if (!decode_only) {
mem_size += encoder.calculate_mem_size();
}
mem_size += 1024; // padding
return mem_size;
std::string get_desc() {
return "taesd";
}
size_t get_num_tensors() {
size_t num_tensors = decoder.get_num_tensors();
if (!decode_only) {
num_tensors += encoder.get_num_tensors();
}
return num_tensors;
}
void init_params() {
ggml_allocr* alloc = ggml_allocr_new_from_buffer(params_buffer);
decoder.init_params(alloc, params_ctx);
if (!decode_only) {
encoder.init_params(params_ctx);
}
// alloc all tensors linked to this context
for (struct ggml_tensor* t = ggml_get_first_tensor(params_ctx); t != NULL; t = ggml_get_next_tensor(params_ctx, t)) {
if (t->data == NULL) {
ggml_allocr_alloc(alloc, t);
}
}
ggml_allocr_free(alloc);
}
void map_by_name(std::map<std::string, ggml_tensor*>& tensors) {
decoder.map_by_name(tensors, "decoder.layers.");
encoder.map_by_name(tensors, "encoder.layers.");
}
bool load_from_file(const std::string& file_path, ggml_backend_t backend) {
LOG_INFO("loading taesd from '%s'", file_path.c_str());
if (!alloc_params_buffer(backend)) {
return false;
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading taesd from '%s', decode_only = %s", file_path.c_str(), decode_only ? "true" : "false");
alloc_params_buffer();
std::map<std::string, ggml_tensor*> taesd_tensors;
// prepare memory for the weights
{
init_params();
map_by_name(taesd_tensors);
}
std::map<std::string, struct ggml_tensor*> tensors_need_to_load;
taesd.get_param_tensors(taesd_tensors);
std::set<std::string> ignore_tensors;
for (auto& pair : taesd_tensors) {
const std::string& name = pair.first;
if (decode_only && starts_with(name, "encoder")) {
ignore_tensors.insert(name);
continue;
}
tensors_need_to_load.insert(pair);
if (decode_only) {
ignore_tensors.insert("encoder.");
}
ModelLoader model_loader;
@ -525,7 +226,7 @@ struct TinyAutoEncoder : public GGMLModule {
return false;
}
bool success = model_loader.load_tensors(tensors_need_to_load, backend, ignore_tensors);
bool success = model_loader.load_tensors(taesd_tensors, backend, ignore_tensors);
if (!success) {
LOG_ERROR("load tae tensors from model loader failed");
@ -537,57 +238,23 @@ struct TinyAutoEncoder : public GGMLModule {
}
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
// since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
static size_t buf_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params = {
/*.mem_size =*/buf_size,
/*.mem_buffer =*/buf.data(),
/*.no_alloc =*/true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
// LOG_DEBUG("mem_size %u ", params.mem_size);
struct ggml_context* ctx0 = ggml_init(params);
struct ggml_cgraph* gf = ggml_new_graph(ctx0);
struct ggml_tensor* z_ = NULL;
// it's performing a compute, check if backend isn't cpu
if (!ggml_backend_is_cpu(backend)) {
// pass input tensors to gpu memory
z_ = ggml_dup_tensor(ctx0, z);
ggml_allocr_alloc(compute_allocr, z_);
// pass data to device backend
if (!ggml_allocr_is_measure(compute_allocr)) {
ggml_backend_tensor_set(z_, z->data, 0, ggml_nbytes(z));
}
} else {
z_ = z;
}
struct ggml_tensor* out = decode_graph ? decoder.forward(ctx0, z_) : encoder.forward(ctx0, z_);
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
z = to_backend(z);
struct ggml_tensor* out = decode_graph ? taesd.decode(compute_ctx, z) : taesd.encode(compute_ctx, z);
ggml_build_forward_expand(gf, out);
ggml_free(ctx0);
return gf;
}
void alloc_compute_buffer(struct ggml_tensor* x, bool decode) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, decode);
};
GGMLModule::alloc_compute_buffer(get_graph);
}
void compute(struct ggml_tensor* work_result, int n_threads, struct ggml_tensor* z, bool decode_graph) {
void compute(const int n_threads,
struct ggml_tensor* z,
bool decode_graph,
struct ggml_tensor** output,
struct ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(z, decode_graph);
};
GGMLModule::compute(get_graph, n_threads, work_result);
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};

2
thirdparty/.clang-format vendored Normal file
View File

@ -0,0 +1,2 @@
DisableFormat: true
SortIncludes: Never

10
thirdparty/LICENSE.darts_clone.txt vendored Normal file
View File

@ -0,0 +1,10 @@
Copyright (c) 2008-2011, Susumu Yata
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,2 +1,3 @@
- json.hpp library from: https://github.com/nlohmann/json
- ZIP Library from: https://github.com/kuba--/zip
- ZIP Library from: https://github.com/kuba--/zip
- darts.h from: https://github.com/google/sentencepiece/tree/master/third_party/darts_clone

1926
thirdparty/darts.h vendored Normal file

File diff suppressed because it is too large Load Diff

2585
thirdparty/stb_image_resize.h vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -177,7 +177,7 @@ STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const
STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality);
STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality, const char* parameters = NULL);
#ifdef STBIW_WINDOWS_UTF8
STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input);
@ -1412,7 +1412,7 @@ static int stbiw__jpg_processDU(stbi__write_context *s, int *bitBuf, int *bitCnt
return DU[0];
}
static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) {
static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality, const char* parameters) {
// Constants that don't pollute global namespace
static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};
static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
@ -1521,6 +1521,20 @@ static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, in
s->func(s->context, (void*)YTable, sizeof(YTable));
stbiw__putc(s, 1);
s->func(s->context, UVTable, sizeof(UVTable));
// comment block with parameters of generation
if(parameters != NULL) {
stbiw__putc(s, 0xFF /* comnent */ );
stbiw__putc(s, 0xFE /* marker */ );
size_t param_length = std::min(2 + strlen("parameters") + 1 + strlen(parameters) + 1, (size_t) 0xFFFF);
stbiw__putc(s, param_length >> 8); // no need to mask, length < 65536
stbiw__putc(s, param_length & 0xFF);
s->func(s->context, (void*)"parameters", strlen("parameters") + 1); // std::string is zero-terminated
s->func(s->context, (void*)parameters, std::min(param_length, (size_t) 65534) - 2 - strlen("parameters") - 1);
if(param_length > 65534) stbiw__putc(s, 0); // always zero-terminate for safety
if(param_length & 1) stbiw__putc(s, 0xFF); // pad to even length
}
s->func(s->context, (void*)head1, sizeof(head1));
s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1);
s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values));
@ -1625,16 +1639,16 @@ STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x,
{
stbi__write_context s = { 0 };
stbi__start_write_callbacks(&s, func, context);
return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality);
return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality, NULL);
}
#ifndef STBI_WRITE_NO_STDIO
STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality)
STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality, const char* parameters)
{
stbi__write_context s = { 0 };
if (stbi__start_write_file(&s,filename)) {
int r = stbi_write_jpg_core(&s, x, y, comp, data, quality);
int r = stbi_write_jpg_core(&s, x, y, comp, data, quality, parameters);
stbi__end_write_file(&s);
return r;
} else

232
thirdparty/zip.c vendored
View File

@ -36,6 +36,7 @@
#include <unistd.h>
#endif
#define USE_EXTERNAL_MZCRC
#include "miniz.h"
#include "zip.h"
@ -1834,3 +1835,234 @@ int zip_extract(const char *zipname, const char *dir,
return zip_archive_extract(&zip_archive, dir, on_extract, arg);
}
#if defined(__SSE4_2__) || defined(__AVX512F__)
#include <immintrin.h>
#endif
// Phil Katz 32-Bit Cyclic Redundancy Check Uber Alles
// Goes 73 GiB/s on an AMD Ryzen Threadripper PRO 7995WX
// "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
// V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0
mz_ulong mz_crc32(mz_ulong init, const uint8_t *buf, size_t len) {
uint32_t crc = ~init;
#if defined(__AVX512F__) && defined(__VPCLMULQDQ__) && defined(__PCLMUL__)
if (len >= 256) {
_Alignas(__m512) static const uint64_t k1k2[] = {
0x011542778a, 0x01322d1430, 0x011542778a, 0x01322d1430,
0x011542778a, 0x01322d1430, 0x011542778a, 0x01322d1430,
};
_Alignas(__m512) static const uint64_t k3k4[] = {
0x0154442bd4, 0x01c6e41596, 0x0154442bd4, 0x01c6e41596,
0x0154442bd4, 0x01c6e41596, 0x0154442bd4, 0x01c6e41596,
};
_Alignas(__m512) static const uint64_t k5k6[] = {
0x01751997d0,
0x00ccaa009e,
};
_Alignas(__m512) static const uint64_t k7k8[] = {
0x0163cd6124,
0x0000000000,
};
_Alignas(__m512) static const uint64_t poly[] = {
0x01db710641,
0x01f7011641,
};
__m512i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8;
__m128i a0, a1, a2, a3;
x1 = _mm512_loadu_si512((__m512i *)(buf + 0x00));
x2 = _mm512_loadu_si512((__m512i *)(buf + 0x40));
x3 = _mm512_loadu_si512((__m512i *)(buf + 0x80));
x4 = _mm512_loadu_si512((__m512i *)(buf + 0xC0));
x1 = _mm512_xor_si512(x1, _mm512_castsi128_si512(_mm_cvtsi32_si128(crc)));
x0 = _mm512_load_si512((__m512i *)k1k2);
buf += 256;
len -= 256;
while (len >= 256) {
x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
x6 = _mm512_clmulepi64_epi128(x2, x0, 0x00);
x7 = _mm512_clmulepi64_epi128(x3, x0, 0x00);
x8 = _mm512_clmulepi64_epi128(x4, x0, 0x00);
x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
x2 = _mm512_clmulepi64_epi128(x2, x0, 0x11);
x3 = _mm512_clmulepi64_epi128(x3, x0, 0x11);
x4 = _mm512_clmulepi64_epi128(x4, x0, 0x11);
y5 = _mm512_loadu_si512((__m512i *)(buf + 0x00));
y6 = _mm512_loadu_si512((__m512i *)(buf + 0x40));
y7 = _mm512_loadu_si512((__m512i *)(buf + 0x80));
y8 = _mm512_loadu_si512((__m512i *)(buf + 0xC0));
x1 = _mm512_xor_si512(x1, x5);
x2 = _mm512_xor_si512(x2, x6);
x3 = _mm512_xor_si512(x3, x7);
x4 = _mm512_xor_si512(x4, x8);
x1 = _mm512_xor_si512(x1, y5);
x2 = _mm512_xor_si512(x2, y6);
x3 = _mm512_xor_si512(x3, y7);
x4 = _mm512_xor_si512(x4, y8);
buf += 256;
len -= 256;
}
x0 = _mm512_load_si512((__m512i *)k3k4);
x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
x1 = _mm512_xor_si512(x1, x2);
x1 = _mm512_xor_si512(x1, x5);
x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
x1 = _mm512_xor_si512(x1, x3);
x1 = _mm512_xor_si512(x1, x5);
x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
x1 = _mm512_xor_si512(x1, x4);
x1 = _mm512_xor_si512(x1, x5);
while (len >= 64) {
x2 = _mm512_loadu_si512((__m512i *)buf);
x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00);
x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11);
x1 = _mm512_xor_si512(x1, x2);
x1 = _mm512_xor_si512(x1, x5);
buf += 64;
len -= 64;
}
a0 = _mm_load_si128((__m128i *)k5k6);
a1 = _mm512_extracti32x4_epi32(x1, 0);
a2 = _mm512_extracti32x4_epi32(x1, 1);
a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
a1 = _mm_clmulepi64_si128(a1, a0, 0x11);
a1 = _mm_xor_si128(a1, a3);
a1 = _mm_xor_si128(a1, a2);
a2 = _mm512_extracti32x4_epi32(x1, 2);
a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
a1 = _mm_clmulepi64_si128(a1, a0, 0x11);
a1 = _mm_xor_si128(a1, a3);
a1 = _mm_xor_si128(a1, a2);
a2 = _mm512_extracti32x4_epi32(x1, 3);
a3 = _mm_clmulepi64_si128(a1, a0, 0x00);
a1 = _mm_clmulepi64_si128(a1, a0, 0x11);
a1 = _mm_xor_si128(a1, a3);
a1 = _mm_xor_si128(a1, a2);
a2 = _mm_clmulepi64_si128(a1, a0, 0x10);
a3 = _mm_setr_epi32(~0, 0, ~0, 0);
a1 = _mm_srli_si128(a1, 8);
a1 = _mm_xor_si128(a1, a2);
a0 = _mm_loadl_epi64((__m128i *)k7k8);
a2 = _mm_srli_si128(a1, 4);
a1 = _mm_and_si128(a1, a3);
a1 = _mm_clmulepi64_si128(a1, a0, 0x00);
a1 = _mm_xor_si128(a1, a2);
a0 = _mm_load_si128((__m128i *)poly);
a2 = _mm_and_si128(a1, a3);
a2 = _mm_clmulepi64_si128(a2, a0, 0x10);
a2 = _mm_and_si128(a2, a3);
a2 = _mm_clmulepi64_si128(a2, a0, 0x00);
a1 = _mm_xor_si128(a1, a2);
crc = _mm_extract_epi32(a1, 1);
}
#endif
#if defined(__SSE4_2__) && defined(__PCLMUL__)
if (len >= 64) {
_Alignas(__m128) static const uint64_t k1k2[] = {
0x0154442bd4,
0x01c6e41596,
};
_Alignas(__m128) static const uint64_t k3k4[] = {
0x01751997d0,
0x00ccaa009e,
};
_Alignas(__m128) static const uint64_t k5k0[] = {
0x0163cd6124,
0x0000000000,
};
_Alignas(__m128) static const uint64_t poly[] = {
0x01db710641,
0x01f7011641,
};
__m128i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8;
x1 = _mm_loadu_si128((__m128i *)(buf + 0x00));
x2 = _mm_loadu_si128((__m128i *)(buf + 0x10));
x3 = _mm_loadu_si128((__m128i *)(buf + 0x20));
x4 = _mm_loadu_si128((__m128i *)(buf + 0x30));
x1 = _mm_xor_si128(x1, _mm_cvtsi32_si128(crc));
x0 = _mm_load_si128((__m128i *)k1k2);
buf += 64;
len -= 64;
while (len >= 64) {
x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
x6 = _mm_clmulepi64_si128(x2, x0, 0x00);
x7 = _mm_clmulepi64_si128(x3, x0, 0x00);
x8 = _mm_clmulepi64_si128(x4, x0, 0x00);
x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
x2 = _mm_clmulepi64_si128(x2, x0, 0x11);
x3 = _mm_clmulepi64_si128(x3, x0, 0x11);
x4 = _mm_clmulepi64_si128(x4, x0, 0x11);
y5 = _mm_loadu_si128((__m128i *)(buf + 0x00));
y6 = _mm_loadu_si128((__m128i *)(buf + 0x10));
y7 = _mm_loadu_si128((__m128i *)(buf + 0x20));
y8 = _mm_loadu_si128((__m128i *)(buf + 0x30));
x1 = _mm_xor_si128(x1, x5);
x2 = _mm_xor_si128(x2, x6);
x3 = _mm_xor_si128(x3, x7);
x4 = _mm_xor_si128(x4, x8);
x1 = _mm_xor_si128(x1, y5);
x2 = _mm_xor_si128(x2, y6);
x3 = _mm_xor_si128(x3, y7);
x4 = _mm_xor_si128(x4, y8);
buf += 64;
len -= 64;
}
x0 = _mm_load_si128((__m128i *)k3k4);
x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
x1 = _mm_xor_si128(x1, x2);
x1 = _mm_xor_si128(x1, x5);
x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
x1 = _mm_xor_si128(x1, x3);
x1 = _mm_xor_si128(x1, x5);
x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
x1 = _mm_xor_si128(x1, x4);
x1 = _mm_xor_si128(x1, x5);
while (len >= 16) {
x2 = _mm_loadu_si128((__m128i *)buf);
x5 = _mm_clmulepi64_si128(x1, x0, 0x00);
x1 = _mm_clmulepi64_si128(x1, x0, 0x11);
x1 = _mm_xor_si128(x1, x2);
x1 = _mm_xor_si128(x1, x5);
buf += 16;
len -= 16;
}
x2 = _mm_clmulepi64_si128(x1, x0, 0x10);
x3 = _mm_setr_epi32(~0, 0, ~0, 0);
x1 = _mm_srli_si128(x1, 8);
x1 = _mm_xor_si128(x1, x2);
x0 = _mm_loadl_epi64((__m128i *)k5k0);
x2 = _mm_srli_si128(x1, 4);
x1 = _mm_and_si128(x1, x3);
x1 = _mm_clmulepi64_si128(x1, x0, 0x00);
x1 = _mm_xor_si128(x1, x2);
x0 = _mm_load_si128((__m128i *)poly);
x2 = _mm_and_si128(x1, x3);
x2 = _mm_clmulepi64_si128(x2, x0, 0x10);
x2 = _mm_and_si128(x2, x3);
x2 = _mm_clmulepi64_si128(x2, x0, 0x00);
x1 = _mm_xor_si128(x1, x2);
crc = _mm_extract_epi32(x1, 1);
}
#endif
static uint32_t tab[256];
if (!tab[255]) {
// generates table for byte-wise crc calculation on the polynomial
// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
uint32_t polynomial = 0xedb88320; // bits are reversed
for (int d = 0; d < 256; ++d) {
uint32_t r = d;
for (int i = 0; i < 8; ++i)
r = r >> 1 ^ (r & 1 ? polynomial : 0);
tab[d] = r;
}
}
for (size_t i = 0; i < len; ++i)
crc = crc >> 8 ^ tab[(crc & 255) ^ buf[i]];
return ~crc & 0xffffffff;
}

1337
unet.hpp

File diff suppressed because it is too large Load Diff

View File

@ -6,7 +6,7 @@
struct UpscalerGGML {
ggml_backend_t backend = NULL; // general backend
ggml_type model_data_type = GGML_TYPE_F16;
ESRGAN esrgan_upscaler;
std::shared_ptr<ESRGAN> esrgan_upscaler;
std::string esrgan_path;
int n_threads;
@ -15,22 +15,39 @@ struct UpscalerGGML {
}
bool load_from_file(const std::string& esrgan_path) {
#ifdef SD_USE_CUBLAS
#ifdef SD_USE_CUDA
LOG_DEBUG("Using CUDA backend");
backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_metal_log_set_callback(ggml_log_callback_default, nullptr);
ggml_log_set(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
LOG_DEBUG("Using Vulkan backend");
backend = ggml_backend_vk_init(0);
#endif
#ifdef SD_USE_OPENCL
LOG_DEBUG("Using OpenCL backend");
backend = ggml_backend_opencl_init();
#endif
#ifdef SD_USE_SYCL
LOG_DEBUG("Using SYCL backend");
backend = ggml_backend_sycl_init(0);
#endif
ModelLoader model_loader;
if (!model_loader.init_from_file(esrgan_path)) {
LOG_ERROR("init model loader from file failed: '%s'", esrgan_path.c_str());
}
model_loader.set_wtype_override(model_data_type);
if (!backend) {
LOG_DEBUG("Using CPU backend");
backend = ggml_backend_cpu_init();
}
LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
if (!esrgan_upscaler.load_from_file(esrgan_path, backend)) {
esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_loader.tensor_storages_types);
if (!esrgan_upscaler->load_from_file(esrgan_path)) {
return false;
}
return true;
@ -39,8 +56,8 @@ struct UpscalerGGML {
sd_image_t upscale(sd_image_t input_image, uint32_t upscale_factor) {
// upscale_factor, unused for RealESRGAN_x4plus_anime_6B.pth
sd_image_t upscaled_image = {0, 0, 0, NULL};
int output_width = (int)input_image.width * esrgan_upscaler.scale;
int output_height = (int)input_image.height * esrgan_upscaler.scale;
int output_width = (int)input_image.width * esrgan_upscaler->scale;
int output_height = (int)input_image.height * esrgan_upscaler->scale;
LOG_INFO("upscaling from (%i x %i) to (%i x %i)",
input_image.width, input_image.height, output_width, output_height);
@ -62,15 +79,11 @@ struct UpscalerGGML {
ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1);
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
if (init) {
esrgan_upscaler.alloc_compute_buffer(in);
} else {
esrgan_upscaler.compute(out, n_threads, in);
}
esrgan_upscaler->compute(n_threads, in, &out);
};
int64_t t0 = ggml_time_ms();
sd_tiling(input_image_tensor, upscaled, esrgan_upscaler.scale, esrgan_upscaler.tile_size, 0.25f, on_tiling);
esrgan_upscaler.free_compute_buffer();
sd_tiling(input_image_tensor, upscaled, esrgan_upscaler->scale, esrgan_upscaler->tile_size, 0.25f, on_tiling);
esrgan_upscaler->free_compute_buffer();
ggml_tensor_clamp(upscaled, 0.f, 1.f);
uint8_t* upscaled_data = sd_tensor_to_image(upscaled);
ggml_free(upscale_ctx);
@ -91,8 +104,7 @@ struct upscaler_ctx_t {
};
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
int n_threads,
enum sd_type_t wtype) {
int n_threads) {
upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
if (upscaler_ctx == NULL) {
return NULL;

482
util.cpp
View File

@ -1,6 +1,7 @@
#include "util.h"
#include <stdarg.h>
#include <algorithm>
#include <cmath>
#include <codecvt>
#include <fstream>
#include <locale>
@ -9,6 +10,7 @@
#include <thread>
#include <unordered_set>
#include <vector>
#include "preprocessing.hpp"
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/sysctl.h>
@ -20,9 +22,13 @@
#include <unistd.h>
#endif
#include "ggml/ggml.h"
#include "ggml-cpu.h"
#include "ggml.h"
#include "stable-diffusion.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"
bool ends_with(const std::string& str, const std::string& ending) {
if (str.length() >= ending.length()) {
return (str.compare(str.length() - ending.length(), ending.length(), ending) == 0);
@ -38,6 +44,13 @@ bool starts_with(const std::string& str, const std::string& start) {
return false;
}
bool contains(const std::string& str, const std::string& substr) {
if (str.find(substr) != std::string::npos) {
return true;
}
return false;
}
void replace_all_chars(std::string& str, char target, char replacement) {
for (size_t i = 0; i < str.length(); ++i) {
if (str[i] == target) {
@ -72,6 +85,70 @@ bool is_directory(const std::string& path) {
return (attributes != INVALID_FILE_ATTRIBUTES && (attributes & FILE_ATTRIBUTE_DIRECTORY));
}
std::string get_full_path(const std::string& dir, const std::string& filename) {
std::string full_path = dir + "\\" + filename;
WIN32_FIND_DATA find_file_data;
HANDLE hFind = FindFirstFile(full_path.c_str(), &find_file_data);
if (hFind != INVALID_HANDLE_VALUE) {
FindClose(hFind);
return full_path;
} else {
return "";
}
}
std::vector<std::string> get_files_from_dir(const std::string& dir) {
std::vector<std::string> files;
WIN32_FIND_DATA findFileData;
HANDLE hFind;
char currentDirectory[MAX_PATH];
GetCurrentDirectory(MAX_PATH, currentDirectory);
char directoryPath[MAX_PATH]; // this is absolute path
sprintf(directoryPath, "%s\\%s\\*", currentDirectory, dir.c_str());
// Find the first file in the directory
hFind = FindFirstFile(directoryPath, &findFileData);
bool isAbsolutePath = false;
// Check if the directory was found
if (hFind == INVALID_HANDLE_VALUE) {
printf("Unable to find directory. Try with original path \n");
char directoryPathAbsolute[MAX_PATH];
sprintf(directoryPathAbsolute, "%s*", dir.c_str());
hFind = FindFirstFile(directoryPathAbsolute, &findFileData);
isAbsolutePath = true;
if (hFind == INVALID_HANDLE_VALUE) {
printf("Absolute path was also wrong.\n");
return files;
}
}
// Loop through all files in the directory
do {
// Check if the found file is a regular file (not a directory)
if (!(findFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
if (isAbsolutePath) {
files.push_back(dir + "\\" + std::string(findFileData.cFileName));
} else {
files.push_back(std::string(currentDirectory) + "\\" + dir + "\\" + std::string(findFileData.cFileName));
}
}
} while (FindNextFile(hFind, &findFileData) != 0);
// Close the handle
FindClose(hFind);
sort(files.begin(), files.end());
return files;
}
#else // Unix
#include <dirent.h>
#include <sys/stat.h>
@ -86,6 +163,47 @@ bool is_directory(const std::string& path) {
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode));
}
// TODO: add windows version
std::string get_full_path(const std::string& dir, const std::string& filename) {
DIR* dp = opendir(dir.c_str());
if (dp != nullptr) {
struct dirent* entry;
while ((entry = readdir(dp)) != nullptr) {
if (strcasecmp(entry->d_name, filename.c_str()) == 0) {
closedir(dp);
return dir + "/" + entry->d_name;
}
}
closedir(dp);
}
return "";
}
std::vector<std::string> get_files_from_dir(const std::string& dir) {
std::vector<std::string> files;
DIR* dp = opendir(dir.c_str());
if (dp != nullptr) {
struct dirent* entry;
while ((entry = readdir(dp)) != nullptr) {
std::string fname = dir + "/" + entry->d_name;
if (!is_directory(fname))
files.push_back(fname);
}
closedir(dp);
}
sort(files.begin(), files.end());
return files;
}
#endif
// get_num_physical_cores is copy from
@ -126,6 +244,9 @@ int32_t get_num_physical_cores() {
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
static sd_progress_cb_t sd_progress_cb = NULL;
void* sd_progress_cb_data = NULL;
std::u32string utf8_to_utf32(const std::string& utf8_str) {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
return converter.from_bytes(utf8_str);
@ -141,7 +262,7 @@ std::u32string unicode_value_to_utf32(int unicode_value) {
return utf32_string;
}
std::string sd_basename(const std::string& path) {
static std::string sd_basename(const std::string& path) {
size_t pos = path.find_last_of('/');
if (pos != std::string::npos) {
return path.substr(pos + 1);
@ -169,7 +290,64 @@ std::string path_join(const std::string& p1, const std::string& p2) {
return p1 + "/" + p2;
}
std::vector<std::string> splitString(const std::string& str, char delimiter) {
std::vector<std::string> result;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
result.push_back(str.substr(start, end - start));
start = end + 1;
end = str.find(delimiter, start);
}
// Add the last segment after the last delimiter
result.push_back(str.substr(start));
return result;
}
sd_image_t* preprocess_id_image(sd_image_t* img) {
int shortest_edge = 224;
int size = shortest_edge;
sd_image_t* resized = NULL;
uint32_t w = img->width;
uint32_t h = img->height;
uint32_t c = img->channel;
// 1. do resize using stb_resize functions
unsigned char* buf = (unsigned char*)malloc(sizeof(unsigned char) * 3 * size * size);
if (!stbir_resize_uint8(img->data, w, h, 0,
buf, size, size, 0,
c)) {
fprintf(stderr, "%s: resize operation failed \n ", __func__);
return resized;
}
// 2. do center crop (likely unnecessary due to step 1)
// 3. do rescale
// 4. do normalize
// 3 and 4 will need to be done in float format.
resized = new sd_image_t{(uint32_t)shortest_edge,
(uint32_t)shortest_edge,
3,
buf};
return resized;
}
void pretty_progress(int step, int steps, float time) {
if (sd_progress_cb) {
sd_progress_cb(step, steps, time, sd_progress_cb_data);
return;
}
if (step == 0) {
return;
}
std::string progress = " |";
int max_progress = 50;
int32_t current = (int32_t)(step * 1.f * max_progress / steps);
@ -183,7 +361,7 @@ void pretty_progress(int step, int steps, float time) {
}
}
progress += "|";
printf(time > 1.0f ? "\r%s %i/%i - %.2fs/it" : "\r%s %i/%i - %.2fit/s",
printf(time > 1.0f ? "\r%s %i/%i - %.2fs/it" : "\r%s %i/%i - %.2fit/s\033[K",
progress.c_str(), step, steps,
time > 1.0f || time == 0 ? time : (1.0f / time));
fflush(stdout); // for linux
@ -192,6 +370,24 @@ void pretty_progress(int step, int steps, float time) {
}
}
std::string ltrim(const std::string& s) {
auto it = std::find_if(s.begin(), s.end(), [](int ch) {
return !std::isspace(ch);
});
return std::string(it, s.end());
}
std::string rtrim(const std::string& s) {
auto it = std::find_if(s.rbegin(), s.rend(), [](int ch) {
return !std::isspace(ch);
});
return std::string(s.begin(), it.base());
}
std::string trim(const std::string& s) {
return rtrim(ltrim(s));
}
static sd_log_cb_t sd_log_cb = NULL;
void* sd_log_cb_data = NULL;
@ -201,23 +397,13 @@ void log_printf(sd_log_level_t level, const char* file, int line, const char* fo
va_list args;
va_start(args, format);
const char* level_str = "DEBUG";
if (level == SD_LOG_INFO) {
level_str = "INFO ";
} else if (level == SD_LOG_WARN) {
level_str = "WARN ";
} else if (level == SD_LOG_ERROR) {
level_str = "ERROR";
}
static char log_buffer[LOG_BUFFER_SIZE];
int written = snprintf(log_buffer, LOG_BUFFER_SIZE, "[%s] %s:%-4d - ", level_str, sd_basename(file).c_str(), line);
static char log_buffer[LOG_BUFFER_SIZE + 1];
int written = snprintf(log_buffer, LOG_BUFFER_SIZE, "%s:%-4d - ", sd_basename(file).c_str(), line);
if (written >= 0 && written < LOG_BUFFER_SIZE) {
vsnprintf(log_buffer + written, LOG_BUFFER_SIZE - written, format, args);
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - strlen(log_buffer) - 1);
}
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - strlen(log_buffer));
if (sd_log_cb) {
sd_log_cb(level, log_buffer, sd_log_cb_data);
@ -230,12 +416,14 @@ void sd_set_log_callback(sd_log_cb_t cb, void* data) {
sd_log_cb = cb;
sd_log_cb_data = data;
}
void sd_set_progress_callback(sd_progress_cb_t cb, void* data) {
sd_progress_cb = cb;
sd_progress_cb_data = data;
}
const char* sd_get_system_info() {
static char buffer[1024];
std::stringstream ss;
ss << "System Info: \n";
ss << " BLAS = " << ggml_cpu_has_blas() << std::endl;
ss << " SSE3 = " << ggml_cpu_has_sse3() << std::endl;
ss << " AVX = " << ggml_cpu_has_avx() << std::endl;
ss << " AVX2 = " << ggml_cpu_has_avx2() << std::endl;
@ -253,6 +441,258 @@ const char* sd_get_system_info() {
return buffer;
}
const char* sd_type_name(enum sd_type_t type) {
return ggml_type_name((ggml_type)type);
sd_image_f32_t sd_image_t_to_sd_image_f32_t(sd_image_t image) {
sd_image_f32_t converted_image;
converted_image.width = image.width;
converted_image.height = image.height;
converted_image.channel = image.channel;
// Allocate memory for float data
converted_image.data = (float*)malloc(image.width * image.height * image.channel * sizeof(float));
for (int i = 0; i < image.width * image.height * image.channel; i++) {
// Convert uint8_t to float
converted_image.data[i] = (float)image.data[i];
}
return converted_image;
}
// Function to perform double linear interpolation
float interpolate(float v1, float v2, float v3, float v4, float x_ratio, float y_ratio) {
return v1 * (1 - x_ratio) * (1 - y_ratio) + v2 * x_ratio * (1 - y_ratio) + v3 * (1 - x_ratio) * y_ratio + v4 * x_ratio * y_ratio;
}
sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int target_height) {
sd_image_f32_t resized_image;
resized_image.width = target_width;
resized_image.height = target_height;
resized_image.channel = image.channel;
// Allocate memory for resized float data
resized_image.data = (float*)malloc(target_width * target_height * image.channel * sizeof(float));
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float original_x = (float)x * image.width / target_width;
float original_y = (float)y * image.height / target_height;
int x1 = (int)original_x;
int y1 = (int)original_y;
int x2 = x1 + 1;
int y2 = y1 + 1;
for (int k = 0; k < image.channel; k++) {
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
float v4 = *(image.data + y2 * image.width * image.channel + x2 * image.channel + k);
float x_ratio = original_x - x1;
float y_ratio = original_y - y1;
float value = interpolate(v1, v2, v3, v4, x_ratio, y_ratio);
*(resized_image.data + y * target_width * image.channel + x * image.channel + k) = value;
}
}
}
return resized_image;
}
void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3]) {
for (int y = 0; y < image.height; y++) {
for (int x = 0; x < image.width; x++) {
for (int k = 0; k < image.channel; k++) {
int index = (y * image.width + x) * image.channel + k;
image.data[index] = (image.data[index] - means[k]) / stds[k];
}
}
}
}
// Constants for means and std
float means[3] = {0.48145466, 0.4578275, 0.40821073};
float stds[3] = {0.26862954, 0.26130258, 0.27577711};
// Function to clip and preprocess sd_image_f32_t
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int size) {
float scale = (float)size / fmin(image.width, image.height);
// Interpolation
int new_width = (int)(scale * image.width);
int new_height = (int)(scale * image.height);
float* resized_data = (float*)malloc(new_width * new_height * image.channel * sizeof(float));
for (int y = 0; y < new_height; y++) {
for (int x = 0; x < new_width; x++) {
float original_x = (float)x * image.width / new_width;
float original_y = (float)y * image.height / new_height;
int x1 = (int)original_x;
int y1 = (int)original_y;
int x2 = x1 + 1;
int y2 = y1 + 1;
for (int k = 0; k < image.channel; k++) {
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
float v4 = *(image.data + y2 * image.width * image.channel + x2 * image.channel + k);
float x_ratio = original_x - x1;
float y_ratio = original_y - y1;
float value = interpolate(v1, v2, v3, v4, x_ratio, y_ratio);
*(resized_data + y * new_width * image.channel + x * image.channel + k) = value;
}
}
}
// Clip and preprocess
int h = (new_height - size) / 2;
int w = (new_width - size) / 2;
sd_image_f32_t result;
result.width = size;
result.height = size;
result.channel = image.channel;
result.data = (float*)malloc(size * size * image.channel * sizeof(float));
for (int k = 0; k < image.channel; k++) {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
*(result.data + i * size * image.channel + j * image.channel + k) =
fmin(fmax(*(resized_data + (i + h) * new_width * image.channel + (j + w) * image.channel + k), 0.0f), 255.0f) / 255.0f;
}
}
}
// Free allocated memory
free(resized_data);
// Normalize
for (int k = 0; k < image.channel; k++) {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
// *(result.data + i * size * image.channel + j * image.channel + k) = 0.5f;
int offset = i * size * image.channel + j * image.channel + k;
float value = *(result.data + offset);
value = (value - means[k]) / stds[k];
// value = 0.5f;
*(result.data + offset) = value;
}
}
}
return result;
}
// Ref: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/cad87bf4e3e0b0a759afa94e933527c3123d59bc/modules/prompt_parser.py#L345
//
// Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
// Accepted tokens are:
// (abc) - increases attention to abc by a multiplier of 1.1
// (abc:3.12) - increases attention to abc by a multiplier of 3.12
// [abc] - decreases attention to abc by a multiplier of 1.1
// \( - literal character '('
// \[ - literal character '['
// \) - literal character ')'
// \] - literal character ']'
// \\ - literal character '\'
// anything else - just text
//
// >>> parse_prompt_attention('normal text')
// [['normal text', 1.0]]
// >>> parse_prompt_attention('an (important) word')
// [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
// >>> parse_prompt_attention('(unbalanced')
// [['unbalanced', 1.1]]
// >>> parse_prompt_attention('\(literal\]')
// [['(literal]', 1.0]]
// >>> parse_prompt_attention('(unnecessary)(parens)')
// [['unnecessaryparens', 1.1]]
// >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
// [['a ', 1.0],
// ['house', 1.5730000000000004],
// [' ', 1.1],
// ['on', 1.0],
// [' a ', 1.1],
// ['hill', 0.55],
// [', sun, ', 1.1],
// ['sky', 1.4641000000000006],
// ['.', 1.1]]
std::vector<std::pair<std::string, float>> parse_prompt_attention(const std::string& text) {
std::vector<std::pair<std::string, float>> res;
std::vector<int> round_brackets;
std::vector<int> square_brackets;
float round_bracket_multiplier = 1.1f;
float square_bracket_multiplier = 1 / 1.1f;
std::regex re_attention(R"(\\\(|\\\)|\\\[|\\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|\)|\]|[^\\()\[\]:]+|:)");
std::regex re_break(R"(\s*\bBREAK\b\s*)");
auto multiply_range = [&](int start_position, float multiplier) {
for (int p = start_position; p < res.size(); ++p) {
res[p].second *= multiplier;
}
};
std::smatch m;
std::string remaining_text = text;
while (std::regex_search(remaining_text, m, re_attention)) {
std::string text = m[0];
std::string weight = m[1];
if (text == "(") {
round_brackets.push_back((int)res.size());
} else if (text == "[") {
square_brackets.push_back((int)res.size());
} else if (!weight.empty()) {
if (!round_brackets.empty()) {
multiply_range(round_brackets.back(), std::stof(weight));
round_brackets.pop_back();
}
} else if (text == ")" && !round_brackets.empty()) {
multiply_range(round_brackets.back(), round_bracket_multiplier);
round_brackets.pop_back();
} else if (text == "]" && !square_brackets.empty()) {
multiply_range(square_brackets.back(), square_bracket_multiplier);
square_brackets.pop_back();
} else if (text == "\\(") {
res.push_back({text.substr(1), 1.0f});
} else {
res.push_back({text, 1.0f});
}
remaining_text = m.suffix();
}
for (int pos : round_brackets) {
multiply_range(pos, round_bracket_multiplier);
}
for (int pos : square_brackets) {
multiply_range(pos, square_bracket_multiplier);
}
if (res.empty()) {
res.push_back({"", 1.0f});
}
int i = 0;
while (i + 1 < res.size()) {
if (res[i].second == res[i + 1].second) {
res[i].first += res[i + 1].first;
res.erase(res.begin() + i + 1);
} else {
++i;
}
}
return res;
}

33
util.h
View File

@ -3,11 +3,16 @@
#include <cstdint>
#include <string>
#include <vector>
#include "stable-diffusion.h"
#define SAFE_STR(s) ((s) ? (s) : "")
#define BOOL_STR(b) ((b) ? "true" : "false")
bool ends_with(const std::string& str, const std::string& ending);
bool starts_with(const std::string& str, const std::string& start);
bool contains(const std::string& str, const std::string& substr);
std::string format(const char* fmt, ...);
@ -15,19 +20,43 @@ void replace_all_chars(std::string& str, char target, char replacement);
bool file_exists(const std::string& filename);
bool is_directory(const std::string& path);
std::string get_full_path(const std::string& dir, const std::string& filename);
std::vector<std::string> get_files_from_dir(const std::string& dir);
std::u32string utf8_to_utf32(const std::string& utf8_str);
std::string utf32_to_utf8(const std::u32string& utf32_str);
std::u32string unicode_value_to_utf32(int unicode_value);
std::string sd_basename(const std::string& path);
sd_image_t* preprocess_id_image(sd_image_t* img);
// std::string sd_basename(const std::string& path);
typedef struct {
uint32_t width;
uint32_t height;
uint32_t channel;
float* data;
} sd_image_f32_t;
void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3]);
sd_image_f32_t sd_image_t_to_sd_image_f32_t(sd_image_t image);
sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int target_height);
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int size);
std::string path_join(const std::string& p1, const std::string& p2);
std::vector<std::string> splitString(const std::string& str, char delimiter);
void pretty_progress(int step, int steps, float time);
void log_printf(sd_log_level_t level, const char* file, int line, const char* format, ...);
std::string trim(const std::string& s);
std::vector<std::pair<std::string, float>> parse_prompt_attention(const std::string& text);
#define LOG_DEBUG(format, ...) log_printf(SD_LOG_DEBUG, __FILE__, __LINE__, format, ##__VA_ARGS__)
#define LOG_INFO(format, ...) log_printf(SD_LOG_INFO, __FILE__, __LINE__, format, ##__VA_ARGS__)
#define LOG_WARN(format, ...) log_printf(SD_LOG_WARN, __FILE__, __LINE__, format, ##__VA_ARGS__)

1096
vae.hpp

File diff suppressed because it is too large Load Diff

2424069
vocab.hpp

File diff suppressed because it is too large Load Diff