feat: add FLUX.1 Kontext dev support (#707)

* Kontext support
* add edit mode

---------

Co-authored-by: leejet <leejet714@gmail.com>
This commit is contained in:
stduhpf 2025-06-29 04:08:53 +02:00 committed by GitHub
parent 10c6501bd0
commit c9b5735116
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 342 additions and 31 deletions

View File

@ -13,6 +13,7 @@ struct DiffusionModel {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
@ -68,6 +69,7 @@ struct UNetModel : public DiffusionModel {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
@ -118,6 +120,7 @@ struct MMDiTModel : public DiffusionModel {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
@ -169,13 +172,14 @@ struct FluxModel : public DiffusionModel {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return flux.compute(n_threads, x, timesteps, context, c_concat, y, guidance, output, output_ctx, skip_layers);
return flux.compute(n_threads, x, timesteps, context, c_concat, y, guidance, ref_latents, output, output_ctx, skip_layers);
}
};

View File

@ -57,6 +57,7 @@ const char* modes_str[] = {
"txt2img",
"img2img",
"img2vid",
"edit",
"convert",
};
@ -64,6 +65,7 @@ enum SDMode {
TXT2IMG,
IMG2IMG,
IMG2VID,
EDIT,
CONVERT,
MODE_COUNT
};
@ -89,6 +91,7 @@ struct SDParams {
std::string input_path;
std::string mask_path;
std::string control_image_path;
std::vector<std::string> ref_image_paths;
std::string prompt;
std::string negative_prompt;
@ -154,6 +157,10 @@ void print_params(SDParams params) {
printf(" init_img: %s\n", params.input_path.c_str());
printf(" mask_img: %s\n", params.mask_path.c_str());
printf(" control_image: %s\n", params.control_image_path.c_str());
printf(" ref_images_paths:\n");
for (auto& path : params.ref_image_paths) {
printf(" %s\n", path.c_str());
};
printf(" clip on cpu: %s\n", params.clip_on_cpu ? "true" : "false");
printf(" controlnet cpu: %s\n", params.control_net_cpu ? "true" : "false");
printf(" vae decoder on cpu:%s\n", params.vae_on_cpu ? "true" : "false");
@ -208,6 +215,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" -i, --init-img [IMAGE] path to the input image, required by img2img\n");
printf(" --mask [MASK] path to the mask image, required by img2img with mask\n");
printf(" --control-image [IMAGE] path to image condition, control net\n");
printf(" -r, --ref_image [PATH] reference image for Flux Kontext models (can be used multiple times) \n");
printf(" -o, --output OUTPUT path to write result image to (default: ./output.png)\n");
printf(" -p, --prompt [PROMPT] the prompt to render\n");
printf(" -n, --negative-prompt PROMPT the negative prompt (default: \"\")\n");
@ -243,7 +251,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" This might crash if it is not supported by the backend.\n");
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
printf(" --canny apply canny preprocessor (edge detection)\n");
printf(" --color Colors the logging tags according to level\n");
printf(" --color colors the logging tags according to level\n");
printf(" -v, --verbose print extra info\n");
}
@ -629,6 +637,12 @@ void parse_args(int argc, const char** argv, SDParams& params) {
break;
}
params.skip_layer_end = std::stof(argv[i]);
} else if (arg == "-r" || arg == "--ref-image") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.ref_image_paths.push_back(argv[i]);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_usage(argc, argv);
@ -657,7 +671,13 @@ void parse_args(int argc, const char** argv, SDParams& params) {
}
if ((params.mode == IMG2IMG || params.mode == IMG2VID) && params.input_path.length() == 0) {
fprintf(stderr, "error: when using the img2img mode, the following arguments are required: init-img\n");
fprintf(stderr, "error: when using the img2img/img2vid mode, the following arguments are required: init-img\n");
print_usage(argc, argv);
exit(1);
}
if (params.mode == EDIT && params.ref_image_paths.size() == 0) {
fprintf(stderr, "error: when using the edit mode, the following arguments are required: ref-image\n");
print_usage(argc, argv);
exit(1);
}
@ -826,6 +846,7 @@ int main(int argc, const char* argv[]) {
uint8_t* input_image_buffer = NULL;
uint8_t* control_image_buffer = NULL;
uint8_t* mask_image_buffer = NULL;
std::vector<sd_image_t> ref_images;
if (params.mode == IMG2IMG || params.mode == IMG2VID) {
vae_decode_only = false;
@ -877,6 +898,37 @@ int main(int argc, const char* argv[]) {
free(input_image_buffer);
input_image_buffer = resized_image_buffer;
}
} else if (params.mode == EDIT) {
vae_decode_only = false;
for (auto& path : params.ref_image_paths) {
int c = 0;
int width = 0;
int height = 0;
uint8_t* image_buffer = stbi_load(path.c_str(), &width, &height, &c, 3);
if (image_buffer == NULL) {
fprintf(stderr, "load image from '%s' failed\n", path.c_str());
return 1;
}
if (c < 3) {
fprintf(stderr, "the number of channels for the input image must be >= 3, but got %d channels\n", c);
free(image_buffer);
return 1;
}
if (width <= 0) {
fprintf(stderr, "error: the width of image must be greater than 0\n");
free(image_buffer);
return 1;
}
if (height <= 0) {
fprintf(stderr, "error: the height of image must be greater than 0\n");
free(image_buffer);
return 1;
}
ref_images.push_back({(uint32_t)width,
(uint32_t)height,
3,
image_buffer});
}
}
sd_ctx_t* sd_ctx = new_sd_ctx(params.model_path.c_str(),
@ -968,7 +1020,7 @@ int main(int argc, const char* argv[]) {
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
} else {
} else if (params.mode == IMG2IMG || params.mode == IMG2VID) {
sd_image_t input_image = {(uint32_t)params.width,
(uint32_t)params.height,
3,
@ -1038,6 +1090,32 @@ int main(int argc, const char* argv[]) {
params.skip_layer_start,
params.skip_layer_end);
}
} else { // EDIT
results = edit(sd_ctx,
ref_images.data(),
ref_images.size(),
params.prompt.c_str(),
params.negative_prompt.c_str(),
params.clip_skip,
params.cfg_scale,
params.guidance,
params.eta,
params.width,
params.height,
params.sample_method,
params.sample_steps,
params.strength,
params.seed,
params.batch_count,
control_image,
params.control_strength,
params.style_ratio,
params.normalize_input,
params.skip_layers.data(),
params.skip_layers.size(),
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
}
if (results == NULL) {
@ -1117,4 +1195,4 @@ int main(int argc, const char* argv[]) {
free(input_image_buffer);
return 0;
}
}

115
flux.hpp
View File

@ -570,17 +570,22 @@ namespace Flux {
}
// Generate IDs for image patches and text
std::vector<std::vector<float>> gen_ids(int h, int w, int patch_size, int bs, int context_len) {
std::vector<std::vector<float>> gen_txt_ids(int bs, int context_len) {
return std::vector<std::vector<float>>(bs * context_len, std::vector<float>(3, 0.0));
}
std::vector<std::vector<float>> gen_img_ids(int h, int w, int patch_size, int bs, int index = 0, int h_offset = 0, int w_offset = 0) {
int h_len = (h + (patch_size / 2)) / patch_size;
int w_len = (w + (patch_size / 2)) / patch_size;
std::vector<std::vector<float>> img_ids(h_len * w_len, std::vector<float>(3, 0.0));
std::vector<float> row_ids = linspace(0, h_len - 1, h_len);
std::vector<float> col_ids = linspace(0, w_len - 1, w_len);
std::vector<float> row_ids = linspace(h_offset, h_len - 1 + h_offset, h_len);
std::vector<float> col_ids = linspace(w_offset, w_len - 1 + w_offset, w_len);
for (int i = 0; i < h_len; ++i) {
for (int j = 0; j < w_len; ++j) {
img_ids[i * w_len + j][0] = index;
img_ids[i * w_len + j][1] = row_ids[i];
img_ids[i * w_len + j][2] = col_ids[j];
}
@ -592,24 +597,54 @@ namespace Flux {
img_ids_repeated[i * img_ids.size() + j] = img_ids[j];
}
}
return img_ids_repeated;
}
std::vector<std::vector<float>> txt_ids(bs * context_len, std::vector<float>(3, 0.0));
std::vector<std::vector<float>> ids(bs * (context_len + img_ids.size()), std::vector<float>(3));
std::vector<std::vector<float>> concat_ids(const std::vector<std::vector<float>>& a,
const std::vector<std::vector<float>>& b,
int bs) {
size_t a_len = a.size() / bs;
size_t b_len = b.size() / bs;
std::vector<std::vector<float>> ids(a.size() + b.size(), std::vector<float>(3));
for (int i = 0; i < bs; ++i) {
for (int j = 0; j < context_len; ++j) {
ids[i * (context_len + img_ids.size()) + j] = txt_ids[j];
for (int j = 0; j < a_len; ++j) {
ids[i * (a_len + b_len) + j] = a[i * a_len + j];
}
for (int j = 0; j < img_ids.size(); ++j) {
ids[i * (context_len + img_ids.size()) + context_len + j] = img_ids_repeated[i * img_ids.size() + j];
for (int j = 0; j < b_len; ++j) {
ids[i * (a_len + b_len) + a_len + j] = b[i * b_len + j];
}
}
return ids;
}
std::vector<std::vector<float>> gen_ids(int h, int w, int patch_size, int bs, int context_len, std::vector<ggml_tensor*> ref_latents) {
auto txt_ids = gen_txt_ids(bs, context_len);
auto img_ids = gen_img_ids(h, w, patch_size, bs);
auto ids = concat_ids(txt_ids, img_ids, bs);
uint64_t curr_h_offset = 0;
uint64_t curr_w_offset = 0;
for (ggml_tensor* ref : ref_latents) {
uint64_t h_offset = 0;
uint64_t w_offset = 0;
if (ref->ne[1] + curr_h_offset > ref->ne[0] + curr_w_offset) {
w_offset = curr_w_offset;
} else {
h_offset = curr_h_offset;
}
auto ref_ids = gen_img_ids(ref->ne[1], ref->ne[0], patch_size, bs, 1, h_offset, w_offset);
ids = concat_ids(ids, ref_ids, bs);
curr_h_offset = std::max(curr_h_offset, ref->ne[1] + h_offset);
curr_w_offset = std::max(curr_w_offset, ref->ne[0] + w_offset);
}
return ids;
}
// Generate positional embeddings
std::vector<float> gen_pe(int h, int w, int patch_size, int bs, int context_len, int theta, const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_ids(h, w, patch_size, bs, context_len);
std::vector<float> gen_pe(int h, int w, int patch_size, int bs, int context_len, std::vector<ggml_tensor*> ref_latents, int theta, const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_ids(h, w, patch_size, bs, context_len, ref_latents);
std::vector<std::vector<float>> trans_ids = transpose(ids);
size_t pos_len = ids.size();
int num_axes = axes_dim.size();
@ -726,7 +761,7 @@ namespace Flux {
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
std::vector<int> skip_layers = std::vector<int>()) {
std::vector<int> skip_layers = {}) {
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]);
auto time_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["time_in"]);
auto vector_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["vector_in"]);
@ -785,6 +820,21 @@ namespace Flux {
return img;
}
struct ggml_tensor* process_img(struct ggml_context* ctx,
struct ggml_tensor* x) {
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int64_t patch_size = 2;
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
auto img = patchify(ctx, x, patch_size); // [N, h*w, C * patch_size * patch_size]
return img;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
@ -793,7 +843,8 @@ namespace Flux {
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
std::vector<int> skip_layers = std::vector<int>()) {
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {}) {
// Forward pass of DiT.
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
// timestep: (N,) tensor of diffusion timesteps
@ -812,25 +863,33 @@ namespace Flux {
int64_t patch_size = 2;
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
auto img = patchify(ctx, x, patch_size); // [N, h*w, C * patch_size * patch_size]
auto img = process_img(ctx, x);
uint64_t img_tokens = img->ne[1];
if (c_concat != NULL) {
ggml_tensor* masked = ggml_view_4d(ctx, c_concat, c_concat->ne[0], c_concat->ne[1], C, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], 0);
ggml_tensor* mask = ggml_view_4d(ctx, c_concat, c_concat->ne[0], c_concat->ne[1], 8 * 8, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * C);
masked = ggml_pad(ctx, masked, pad_w, pad_h, 0, 0);
mask = ggml_pad(ctx, mask, pad_w, pad_h, 0, 0);
masked = patchify(ctx, masked, patch_size);
mask = patchify(ctx, mask, patch_size);
masked = process_img(ctx, masked);
mask = process_img(ctx, mask);
img = ggml_concat(ctx, img, ggml_concat(ctx, masked, mask, 0), 0);
}
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, skip_layers); // [N, h*w, C * patch_size * patch_size]
if (ref_latents.size() > 0) {
for (ggml_tensor* ref : ref_latents) {
ref = process_img(ctx, ref);
img = ggml_concat(ctx, img, ref, 1);
}
}
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
if (out->ne[1] > img_tokens) {
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
out = ggml_view_3d(ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3)); // [N, h*w, C * patch_size * patch_size]
}
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
out = unpatchify(ctx, out, (H + pad_h) / patch_size, (W + pad_w) / patch_size, patch_size); // [N, C, H + pad_h, W + pad_w]
@ -909,6 +968,7 @@ namespace Flux {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = std::vector<int>()) {
GGML_ASSERT(x->ne[3] == 1);
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
@ -923,8 +983,11 @@ namespace Flux {
if (flux_params.guidance_embed) {
guidance = to_backend(guidance);
}
for (int i = 0; i < ref_latents.size(); i++) {
ref_latents[i] = to_backend(ref_latents[i]);
}
pe_vec = flux.gen_pe(x->ne[1], x->ne[0], 2, x->ne[3], context->ne[1], flux_params.theta, flux_params.axes_dim);
pe_vec = flux.gen_pe(x->ne[1], x->ne[0], 2, x->ne[3], context->ne[1], ref_latents, flux_params.theta, flux_params.axes_dim);
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2;
// LOG_DEBUG("pos_len %d", pos_len);
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, flux_params.axes_dim_sum / 2, pos_len);
@ -941,6 +1004,7 @@ namespace Flux {
y,
guidance,
pe,
ref_latents,
skip_layers);
ggml_build_forward_expand(gf, out);
@ -955,6 +1019,7 @@ namespace Flux {
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
@ -964,7 +1029,7 @@ namespace Flux {
// y: [N, adm_in_channels] or [1, adm_in_channels]
// guidance: [N, ]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, timesteps, context, c_concat, y, guidance, skip_layers);
return build_graph(x, timesteps, context, c_concat, y, guidance, ref_latents, skip_layers);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
@ -1004,7 +1069,7 @@ namespace Flux {
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
compute(8, x, timesteps, context, NULL, y, guidance, &out, work_ctx);
compute(8, x, timesteps, context, NULL, y, guidance, {}, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);

View File

@ -618,7 +618,7 @@ public:
int64_t t0 = ggml_time_ms();
struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t);
diffusion_model->compute(n_threads, x_t, timesteps, c, concat, NULL, NULL, -1, {}, 0.f, &out);
diffusion_model->compute(n_threads, x_t, timesteps, c, concat, NULL, NULL, {}, -1, {}, 0.f, &out);
diffusion_model->free_compute_buffer();
double result = 0.f;
@ -800,6 +800,7 @@ public:
const std::vector<float>& sigmas,
int start_merge_step,
SDCondition id_cond,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {},
float slg_scale = 0,
float skip_layer_start = 0.01,
@ -887,6 +888,7 @@ public:
cond.c_concat,
cond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
@ -899,6 +901,7 @@ public:
cond.c_concat,
id_cond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
@ -919,6 +922,7 @@ public:
uncond.c_concat,
uncond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
@ -939,6 +943,7 @@ public:
cond.c_concat,
cond.c_vector,
guidance_tensor,
ref_latents,
-1,
controls,
control_strength,
@ -1209,6 +1214,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
float style_ratio,
bool normalize_input,
std::string input_id_images_path,
std::vector<ggml_tensor*> ref_latents,
std::vector<int> skip_layers = {},
float slg_scale = 0,
float skip_layer_start = 0.01,
@ -1466,6 +1472,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
sigmas,
start_merge_step,
id_cond,
ref_latents,
skip_layers,
slg_scale,
skip_layer_start,
@ -1618,6 +1625,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
style_ratio,
normalize_input,
input_id_images_path_c_str,
{},
skip_layers_vec,
slg_scale,
skip_layer_start,
@ -1798,6 +1806,7 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
style_ratio,
normalize_input,
input_id_images_path_c_str,
{},
skip_layers_vec,
slg_scale,
skip_layer_start,
@ -1943,3 +1952,132 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
return result_images;
}
sd_image_t* edit(sd_ctx_t* sd_ctx,
sd_image_t* ref_images,
int ref_images_count,
const char* prompt_c_str,
const char* negative_prompt_c_str,
int clip_skip,
float cfg_scale,
float guidance,
float eta,
int width,
int height,
sample_method_t sample_method,
int sample_steps,
float strength,
int64_t seed,
int batch_count,
const sd_image_t* control_cond,
float control_strength,
float style_ratio,
bool normalize_input,
int* skip_layers = NULL,
size_t skip_layers_count = 0,
float slg_scale = 0,
float skip_layer_start = 0.01,
float skip_layer_end = 0.2) {
std::vector<int> skip_layers_vec(skip_layers, skip_layers + skip_layers_count);
LOG_DEBUG("edit %dx%d", width, height);
if (sd_ctx == NULL) {
return NULL;
}
if (ref_images_count <= 0) {
LOG_ERROR("ref images count should > 0");
return NULL;
}
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(30 * 1024 * 1024); // 10 MB
params.mem_size += width * height * 3 * sizeof(float) * 3 * ref_images_count;
params.mem_size *= batch_count;
params.mem_buffer = NULL;
params.no_alloc = false;
// LOG_DEBUG("mem_size %u ", params.mem_size);
struct ggml_context* work_ctx = ggml_init(params);
if (!work_ctx) {
LOG_ERROR("ggml_init() failed");
return NULL;
}
if (seed < 0) {
srand((int)time(NULL));
seed = rand();
}
sd_ctx->sd->rng->manual_seed(seed);
int C = 4;
if (sd_version_is_sd3(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
C = 16;
}
int W = width / 8;
int H = height / 8;
ggml_tensor* init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1);
if (sd_version_is_sd3(sd_ctx->sd->version)) {
ggml_set_f32(init_latent, 0.0609f);
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
ggml_set_f32(init_latent, 0.1159f);
} else {
ggml_set_f32(init_latent, 0.f);
}
size_t t0 = ggml_time_ms();
std::vector<struct ggml_tensor*> ref_latents;
for (int i = 0; i < ref_images_count; i++) {
ggml_tensor* img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, ref_images[i].width, ref_images[i].height, 3, 1);
sd_image_to_tensor(ref_images[i].data, img);
ggml_tensor* latent = NULL;
if (!sd_ctx->sd->use_tiny_autoencoder) {
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, img);
latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
} else {
latent = sd_ctx->sd->encode_first_stage(work_ctx, img);
}
ref_latents.push_back(latent);
}
size_t t1 = ggml_time_ms();
LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps);
sd_image_t* result_images = generate_image(sd_ctx,
work_ctx,
init_latent,
prompt_c_str,
negative_prompt_c_str,
clip_skip,
cfg_scale,
guidance,
eta,
width,
height,
sample_method,
sigmas,
seed,
batch_count,
control_cond,
control_strength,
style_ratio,
normalize_input,
"",
ref_latents,
skip_layers_vec,
slg_scale,
skip_layer_start,
skip_layer_end,
NULL);
size_t t2 = ggml_time_ms();
LOG_INFO("edit completed in %.2fs", (t2 - t0) * 1.0f / 1000);
return result_images;
}

View File

@ -220,6 +220,32 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
float strength,
int64_t seed);
SD_API sd_image_t* edit(sd_ctx_t* sd_ctx,
sd_image_t* ref_images,
int ref_images_count,
const char* prompt,
const char* negative_prompt,
int clip_skip,
float cfg_scale,
float guidance,
float eta,
int width,
int height,
enum sample_method_t sample_method,
int sample_steps,
float strength,
int64_t seed,
int batch_count,
const sd_image_t* control_cond,
float control_strength,
float style_strength,
bool normalize_input,
int* skip_layers,
size_t skip_layers_count,
float slg_scale,
float skip_layer_start,
float skip_layer_end);
typedef struct upscaler_ctx_t upscaler_ctx_t;
SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path,