Compare commits

...

3 Commits

Author SHA1 Message Date
leejet
9e28be6479
feat: add chroma radiance support (#910)
* add chroma radiance support

* fix ci

* simply generate_init_latent

* workaround: avoid ggml cuda error

* format code

* add chroma radiance doc
2025-10-25 23:56:14 +08:00
akleine
062490aa7c
feat: add SSD1B and tiny-sd support (#897)
* feat: add code and doc for running SSD1B models

* Added some more lines to support SD1.x with TINY U-Nets too.

* support SSD-1B.safetensors

* fix sdv1.5 diffusers format loader

---------

Co-authored-by: leejet <leejet714@gmail.com>
2025-10-25 23:35:54 +08:00
stduhpf
faabc5ad3c
feat: allow models to run without all text encoder(s) (#645) 2025-10-25 22:00:56 +08:00
13 changed files with 1085 additions and 356 deletions

View File

@ -35,9 +35,11 @@ API and command-line option may change frequently.***
- Image Models
- SD1.x, SD2.x, [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo)
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
- [Some SD1.x and SDXL distilled models](./docs/distilled_sd.md)
- [SD3/SD3.5](./docs/sd3.md)
- [Flux-dev/Flux-schnell](./docs/flux.md)
- [Chroma](./docs/chroma.md)
- [Chroma1-Radiance](./docs/chroma_radiance.md)
- [Qwen Image](./docs/qwen_image.md)
- Image Edit Models
- [FLUX.1-Kontext-dev](./docs/kontext.md)

Binary file not shown.

After

Width:  |  Height:  |  Size: 477 KiB

View File

@ -673,33 +673,80 @@ struct SD3CLIPEmbedder : public Conditioner {
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {})
: clip_g_tokenizer(0) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
bool use_clip_l = false;
bool use_clip_g = false;
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
use_clip_l = true;
} else if (pair.first.find("text_encoders.clip_g") != std::string::npos) {
use_clip_g = true;
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_clip_l && !use_clip_g && !use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
}
if (use_clip_l) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
}
if (use_clip_g) {
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
}
if (use_t5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (clip_l) {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
}
if (clip_g) {
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
}
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
clip_l->alloc_params_buffer();
clip_g->alloc_params_buffer();
t5->alloc_params_buffer();
if (clip_l) {
clip_l->alloc_params_buffer();
}
if (clip_g) {
clip_g->alloc_params_buffer();
}
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
clip_l->free_params_buffer();
clip_g->free_params_buffer();
t5->free_params_buffer();
if (clip_l) {
clip_l->free_params_buffer();
}
if (clip_g) {
clip_g->free_params_buffer();
}
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = clip_l->get_params_buffer_size();
buffer_size += clip_g->get_params_buffer_size();
buffer_size += t5->get_params_buffer_size();
size_t buffer_size = 0;
if (clip_l) {
buffer_size += clip_l->get_params_buffer_size();
}
if (clip_g) {
buffer_size += clip_g->get_params_buffer_size();
}
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -731,23 +778,32 @@ struct SD3CLIPEmbedder : public Conditioner {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
if (clip_l) {
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
}
if (clip_g) {
std::vector<int> curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
}
if (t5) {
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
}
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
if (clip_l) {
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
}
if (clip_g) {
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
}
if (t5) {
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
}
// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
@ -795,10 +851,10 @@ struct SD3CLIPEmbedder : public Conditioner {
std::vector<float> hidden_states_vec;
size_t chunk_len = 77;
size_t chunk_count = clip_l_tokens.size() / chunk_len;
size_t chunk_count = std::max(std::max(clip_l_tokens.size(), clip_g_tokens.size()), t5_tokens.size()) / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// clip_l
{
if (clip_l) {
std::vector<int> chunk_tokens(clip_l_tokens.begin() + chunk_idx * chunk_len,
clip_l_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(clip_l_weights.begin() + chunk_idx * chunk_len,
@ -845,10 +901,17 @@ struct SD3CLIPEmbedder : public Conditioner {
&pooled_l,
work_ctx);
}
} else {
chunk_hidden_states_l = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, chunk_len);
ggml_set_f32(chunk_hidden_states_l, 0.f);
if (chunk_idx == 0) {
pooled_l = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
ggml_set_f32(pooled_l, 0.f);
}
}
// clip_g
{
if (clip_g) {
std::vector<int> chunk_tokens(clip_g_tokens.begin() + chunk_idx * chunk_len,
clip_g_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(clip_g_weights.begin() + chunk_idx * chunk_len,
@ -896,10 +959,17 @@ struct SD3CLIPEmbedder : public Conditioner {
&pooled_g,
work_ctx);
}
} else {
chunk_hidden_states_g = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 1280, chunk_len);
ggml_set_f32(chunk_hidden_states_g, 0.f);
if (chunk_idx == 0) {
pooled_g = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1280);
ggml_set_f32(pooled_g, 0.f);
}
}
// t5
{
if (t5) {
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
@ -927,6 +997,9 @@ struct SD3CLIPEmbedder : public Conditioner {
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}
} else {
chunk_hidden_states_t5 = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
ggml_set_f32(chunk_hidden_states_t5, 0.f);
}
auto chunk_hidden_states_lg_pad = ggml_new_tensor_3d(work_ctx,
@ -969,11 +1042,20 @@ struct SD3CLIPEmbedder : public Conditioner {
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
if (hidden_states_vec.size() > 0) {
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
} else {
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
}
if (pooled == nullptr) {
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 2048);
ggml_set_f32(pooled, 0.f);
}
return {hidden_states, pooled, nullptr};
}
@ -999,28 +1081,68 @@ struct FluxCLIPEmbedder : public Conditioner {
FluxCLIPEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {}) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
bool use_clip_l = false;
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
use_clip_l = true;
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_clip_l && !use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
}
if (use_clip_l) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
} else {
LOG_WARN("clip_l text encoder not found! Prompt adherence might be degraded.");
}
if (use_t5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
} else {
LOG_WARN("t5xxl text encoder not found! Prompt adherence might be degraded.");
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (clip_l) {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
}
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
clip_l->alloc_params_buffer();
t5->alloc_params_buffer();
if (clip_l) {
clip_l->alloc_params_buffer();
}
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
clip_l->free_params_buffer();
t5->free_params_buffer();
if (clip_l) {
clip_l->free_params_buffer();
}
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = clip_l->get_params_buffer_size();
buffer_size += t5->get_params_buffer_size();
size_t buffer_size = 0;
if (clip_l) {
buffer_size += clip_l->get_params_buffer_size();
}
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -1050,18 +1172,24 @@ struct FluxCLIPEmbedder : public Conditioner {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
if (clip_l) {
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
}
if (t5) {
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
}
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
if (clip_l) {
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
}
if (t5) {
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
}
// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
@ -1096,35 +1224,37 @@ struct FluxCLIPEmbedder : public Conditioner {
struct ggml_tensor* pooled = nullptr; // [768,]
std::vector<float> hidden_states_vec;
size_t chunk_count = t5_tokens.size() / chunk_len;
size_t chunk_count = std::max(clip_l_tokens.size() > 0 ? chunk_len : 0, t5_tokens.size()) / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// clip_l
if (chunk_idx == 0) {
size_t chunk_len_l = 77;
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
clip_l_tokens.begin() + chunk_len_l);
std::vector<float> chunk_weights(clip_l_weights.begin(),
clip_l_weights.begin() + chunk_len_l);
if (clip_l) {
size_t chunk_len_l = 77;
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
clip_l_tokens.begin() + chunk_len_l);
std::vector<float> chunk_weights(clip_l_weights.begin(),
clip_l_weights.begin() + chunk_len_l);
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
size_t max_token_idx = 0;
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
size_t max_token_idx = 0;
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
clip_l->compute(n_threads,
input_ids,
0,
nullptr,
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
clip_l->compute(n_threads,
input_ids,
0,
nullptr,
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
}
}
// t5
{
if (t5) {
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
@ -1152,6 +1282,9 @@ struct FluxCLIPEmbedder : public Conditioner {
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}
} else {
chunk_hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
ggml_set_f32(chunk_hidden_states, 0.f);
}
int64_t t1 = ggml_time_ms();
@ -1168,11 +1301,20 @@ struct FluxCLIPEmbedder : public Conditioner {
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
if (hidden_states_vec.size() > 0) {
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
} else {
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
}
if (pooled == nullptr) {
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
ggml_set_f32(pooled, 0.f);
}
return {hidden_states, pooled, nullptr};
}
@ -1203,26 +1345,44 @@ struct T5CLIPEmbedder : public Conditioner {
int mask_pad = 1,
bool is_umt5 = false)
: use_mask(use_mask), mask_pad(mask_pad), t5_tokenizer(is_umt5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
} else {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
t5->alloc_params_buffer();
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
t5->free_params_buffer();
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = 0;
buffer_size += t5->get_params_buffer_size();
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -1248,17 +1408,18 @@ struct T5CLIPEmbedder : public Conditioner {
std::vector<int> t5_tokens;
std::vector<float> t5_weights;
std::vector<float> t5_mask;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
if (t5) {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
}
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
return {t5_tokens, t5_weights, t5_mask};
}
@ -1282,6 +1443,13 @@ struct T5CLIPEmbedder : public Conditioner {
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> token_and_weights,
int clip_skip,
bool zero_out_masked = false) {
if (!t5) {
auto hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
auto t5_attn_mask = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 256);
ggml_set_f32(t5_attn_mask, -HUGE_VALF);
return {hidden_states, t5_attn_mask, nullptr};
}
auto& t5_tokens = std::get<0>(token_and_weights);
auto& t5_weights = std::get<1>(token_and_weights);
auto& t5_attn_mask_vec = std::get<2>(token_and_weights);

21
docs/chroma_radiance.md Normal file
View File

@ -0,0 +1,21 @@
# How to Use
## Download weights
- Download Chroma1-Radiance
- safetensors: https://huggingface.co/lodestones/Chroma1-Radiance/tree/main
- gguf: https://huggingface.co/silveroxides/Chroma1-Radiance-GGUF/tree/main
- Download t5xxl
- safetensors: https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Examples
```
.\bin\Release\sd.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\Chroma1-Radiance-v0.4-Q8_0.gguf --t5xxl ..\..\ComfyUI\models\clip\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma radiance cpp'" --cfg-scale 4.0 --sampling-method euler -v
```
<img alt="Chroma1-Radiance" src="../assets/flux/chroma1-radiance.png" />

86
docs/distilled_sd.md Normal file
View File

@ -0,0 +1,86 @@
# Running distilled models: SSD1B and SD1.x with tiny U-Nets
## Preface
This kind of models have a reduced U-Net part.
Unlike other SDXL models the U-Net of SSD1B has only one middle block and lesser attention layers in up and down blocks, resulting in relatively smaller files. Running these models saves more than 33% of the time. For more details, refer to Segmind's paper on https://arxiv.org/abs/2401.02677v1 .
Unlike other SD 1.x models Tiny-UNet models consist of only 6 U-Net blocks, resulting in relatively smaller files (approximately 1 GB). Running these models saves almost 50% of the time. For more details, refer to the paper: https://arxiv.org/pdf/2305.15798.pdf .
## SSD1B
Unfortunately not all of this models follow the standard model parameter naming mapping.
Anyway there are some very useful SSD1B models available online, such as:
* https://huggingface.co/segmind/SSD-1B/resolve/main/SSD-1B-A1111.safetensors
* https://huggingface.co/hassenhamdi/SSD-1B-fp8_e4m3fn/resolve/main/SSD-1B_fp8_e4m3fn.safetensors
Also there are useful LORAs available:
* https://huggingface.co/seungminh/lora-swarovski-SSD-1B/resolve/main/pytorch_lora_weights.safetensors
* https://huggingface.co/kylielee505/mylcmlorassd/resolve/main/pytorch_lora_weights.safetensors
You can use this files **out-of-the-box** - unlike models in next section.
## SD1.x with tiny U-Nets
There are some Tiny SD 1.x models available online, such as:
* https://huggingface.co/segmind/tiny-sd
* https://huggingface.co/segmind/portrait-finetuned
* https://huggingface.co/nota-ai/bk-sdm-tiny
These models need some conversion, for example because partially tensors are **non contiguous** stored. To create a usable checkpoint file, follow these **easy** steps:
### Download model from Hugging Face
Download the model using Python on your computer, for example this way:
```python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("segmind/tiny-sd")
unet=pipe.unet
for param in unet.parameters():
param.data = param.data.contiguous() # <- important here
pipe.save_pretrained("segmindtiny-sd", safe_serialization=True)
```
### Convert that to a ckpt file
To convert the downloaded model to a checkpoint file, you need another Python script. Download the conversion script from here:
* https://raw.githubusercontent.com/huggingface/diffusers/refs/heads/main/scripts/convert_diffusers_to_original_stable_diffusion.py
### Run convert script
Now, run that conversion script:
```bash
python convert_diffusers_to_original_stable_diffusion.py \
--model_path ./segmindtiny-sd \
--checkpoint_path ./segmind_tiny-sd.ckpt --half
```
The file **segmind_tiny-sd.ckpt** will be generated and is now ready to use with sd.cpp
You can follow a similar process for other models mentioned above from Hugging Face.
### Another ckpt file on the net
There is another model file available online:
* https://huggingface.co/ClashSAN/small-sd/resolve/main/tinySDdistilled.ckpt
If you want to use that, you have to adjust some **non-contiguous tensors** first:
```python
import torch
ckpt = torch.load("tinySDdistilled.ckpt", map_location=torch.device('cpu'))
for key, value in ckpt['state_dict'].items():
if isinstance(value, torch.Tensor):
ckpt['state_dict'][key] = value.contiguous()
torch.save(ckpt, "tinySDdistilled_fixed.ckpt")
```

594
flux.hpp
View File

@ -399,7 +399,7 @@ namespace Flux {
ModulationOut get_distil_mod(struct ggml_context* ctx, struct ggml_tensor* vec) {
int64_t offset = 3 * idx;
return {ctx, vec, offset};
return ModulationOut(ctx, vec, offset);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
@ -549,7 +549,135 @@ namespace Flux {
}
};
struct NerfEmbedder : public GGMLBlock {
NerfEmbedder(int64_t in_channels,
int64_t hidden_size_input,
int64_t max_freqs) {
blocks["embedder.0"] = std::make_shared<Linear>(in_channels + max_freqs * max_freqs, hidden_size_input);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* dct) {
// x: (B, P^2, C)
// dct: (1, P^2, max_freqs^2)
// return: (B, P^2, hidden_size_input)
auto embedder = std::dynamic_pointer_cast<Linear>(blocks["embedder.0"]);
dct = ggml_repeat_4d(ctx, dct, dct->ne[0], dct->ne[1], x->ne[2], x->ne[3]);
x = ggml_concat(ctx, x, dct, 0);
x = embedder->forward(ctx, x);
return x;
}
};
struct NerfGLUBlock : public GGMLBlock {
int64_t mlp_ratio;
NerfGLUBlock(int64_t hidden_size_s,
int64_t hidden_size_x,
int64_t mlp_ratio)
: mlp_ratio(mlp_ratio) {
int64_t total_params = 3 * hidden_size_x * hidden_size_x * mlp_ratio;
blocks["param_generator"] = std::make_shared<Linear>(hidden_size_s, total_params);
blocks["norm"] = std::make_shared<RMSNorm>(hidden_size_x);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* s) {
// x: (batch_size, n_token, hidden_size_x)
// s: (batch_size, hidden_size_s)
// return: (batch_size, n_token, hidden_size_x)
auto param_generator = std::dynamic_pointer_cast<Linear>(blocks["param_generator"]);
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["norm"]);
int64_t batch_size = x->ne[2];
int64_t hidden_size_x = x->ne[0];
auto mlp_params = param_generator->forward(ctx, s);
auto fc_params = ggml_chunk(ctx, mlp_params, 3, 0);
auto fc1_gate = ggml_reshape_3d(ctx, fc_params[0], hidden_size_x * mlp_ratio, hidden_size_x, batch_size);
auto fc1_value = ggml_reshape_3d(ctx, fc_params[1], hidden_size_x * mlp_ratio, hidden_size_x, batch_size);
auto fc2 = ggml_reshape_3d(ctx, fc_params[2], hidden_size_x, mlp_ratio * hidden_size_x, batch_size);
fc1_gate = ggml_cont(ctx, ggml_torch_permute(ctx, fc1_gate, 1, 0, 2, 3)); // [batch_size, hidden_size_x*mlp_ratio, hidden_size_x]
fc1_gate = ggml_l2_norm(ctx, fc1_gate, 1e-12f);
fc1_value = ggml_cont(ctx, ggml_torch_permute(ctx, fc1_value, 1, 0, 2, 3)); // [batch_size, hidden_size_x*mlp_ratio, hidden_size_x]
fc1_value = ggml_l2_norm(ctx, fc1_value, 1e-12f);
fc2 = ggml_cont(ctx, ggml_torch_permute(ctx, fc2, 1, 0, 2, 3)); // [batch_size, hidden_size_x, hidden_size_x*mlp_ratio]
fc2 = ggml_l2_norm(ctx, fc2, 1e-12f);
auto res_x = x;
x = norm->forward(ctx, x); // [batch_size, n_token, hidden_size_x]
auto x1 = ggml_mul_mat(ctx, fc1_gate, x); // [batch_size, n_token, hidden_size_x*mlp_ratio]
x1 = ggml_silu_inplace(ctx, x1);
auto x2 = ggml_mul_mat(ctx, fc1_value, x); // [batch_size, n_token, hidden_size_x*mlp_ratio]
x = ggml_mul_inplace(ctx, x1, x2); // [batch_size, n_token, hidden_size_x*mlp_ratio]
x = ggml_mul_mat(ctx, fc2, x); // [batch_size, n_token, hidden_size_x]
x = ggml_add_inplace(ctx, x, res_x);
return x;
}
};
struct NerfFinalLayer : public GGMLBlock {
NerfFinalLayer(int64_t hidden_size,
int64_t out_channels) {
blocks["norm"] = std::make_shared<RMSNorm>(hidden_size);
blocks["linear"] = std::make_shared<Linear>(hidden_size, out_channels);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x) {
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["norm"]);
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
x = norm->forward(ctx, x);
x = linear->forward(ctx, x);
return x;
}
};
struct NerfFinalLayerConv : public GGMLBlock {
NerfFinalLayerConv(int64_t hidden_size,
int64_t out_channels) {
blocks["norm"] = std::make_shared<RMSNorm>(hidden_size);
blocks["conv"] = std::make_shared<Conv2d>(hidden_size, out_channels, std::pair{3, 3}, std::pair{1, 1}, std::pair{1, 1});
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x) {
// x: [N, C, H, W]
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["norm"]);
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 2, 0, 1, 3)); // [N, H, W, C]
x = norm->forward(ctx, x);
x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 1, 2, 0, 3)); // [N, C, H, W]
x = conv->forward(ctx, x);
return x;
}
};
struct ChromaRadianceParams {
int64_t nerf_hidden_size = 64;
int64_t nerf_mlp_ratio = 4;
int64_t nerf_depth = 4;
int64_t nerf_max_freqs = 8;
};
struct FluxParams {
SDVersion version = VERSION_FLUX;
bool is_chroma = false;
int64_t patch_size = 2;
int64_t in_channels = 64;
int64_t out_channels = 64;
int64_t vec_in_dim = 768;
@ -565,8 +693,8 @@ namespace Flux {
bool qkv_bias = true;
bool guidance_embed = true;
bool flash_attn = true;
bool is_chroma = false;
SDVersion version = VERSION_FLUX;
int64_t in_dim = 64;
ChromaRadianceParams chroma_radiance_params;
};
struct Flux : public GGMLBlock {
@ -575,53 +703,89 @@ namespace Flux {
Flux() {}
Flux(FluxParams params)
: params(params) {
blocks["img_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.in_channels, params.hidden_size, true));
if (params.is_chroma) {
blocks["distilled_guidance_layer"] = std::shared_ptr<GGMLBlock>(new ChromaApproximator(params.in_channels, params.hidden_size));
if (params.version == VERSION_CHROMA_RADIANCE) {
std::pair<int, int> kernel_size = {(int)params.patch_size, (int)params.patch_size};
std::pair<int, int> stride = kernel_size;
blocks["img_in_patch"] = std::make_shared<Conv2d>(params.in_channels,
params.hidden_size,
kernel_size,
stride);
} else {
blocks["time_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size));
blocks["vector_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(params.vec_in_dim, params.hidden_size));
blocks["img_in"] = std::make_shared<Linear>(params.in_channels, params.hidden_size, true);
}
if (params.is_chroma) {
blocks["distilled_guidance_layer"] = std::make_shared<ChromaApproximator>(params.in_dim, params.hidden_size);
} else {
blocks["time_in"] = std::make_shared<MLPEmbedder>(256, params.hidden_size);
blocks["vector_in"] = std::make_shared<MLPEmbedder>(params.vec_in_dim, params.hidden_size);
if (params.guidance_embed) {
blocks["guidance_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size));
blocks["guidance_in"] = std::make_shared<MLPEmbedder>(256, params.hidden_size);
}
}
blocks["txt_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.context_in_dim, params.hidden_size, true));
blocks["txt_in"] = std::make_shared<Linear>(params.context_in_dim, params.hidden_size, true);
for (int i = 0; i < params.depth; i++) {
blocks["double_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new DoubleStreamBlock(params.hidden_size,
params.num_heads,
params.mlp_ratio,
i,
params.qkv_bias,
params.flash_attn,
params.is_chroma));
blocks["double_blocks." + std::to_string(i)] = std::make_shared<DoubleStreamBlock>(params.hidden_size,
params.num_heads,
params.mlp_ratio,
i,
params.qkv_bias,
params.flash_attn,
params.is_chroma);
}
for (int i = 0; i < params.depth_single_blocks; i++) {
blocks["single_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new SingleStreamBlock(params.hidden_size,
params.num_heads,
params.mlp_ratio,
i,
0.f,
params.flash_attn,
params.is_chroma));
blocks["single_blocks." + std::to_string(i)] = std::make_shared<SingleStreamBlock>(params.hidden_size,
params.num_heads,
params.mlp_ratio,
i,
0.f,
params.flash_attn,
params.is_chroma);
}
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new LastLayer(params.hidden_size, 1, params.out_channels, params.is_chroma));
if (params.version == VERSION_CHROMA_RADIANCE) {
blocks["nerf_image_embedder"] = std::make_shared<NerfEmbedder>(params.in_channels,
params.chroma_radiance_params.nerf_hidden_size,
params.chroma_radiance_params.nerf_max_freqs);
for (int i = 0; i < params.chroma_radiance_params.nerf_depth; i++) {
blocks["nerf_blocks." + std::to_string(i)] = std::make_shared<NerfGLUBlock>(params.hidden_size,
params.chroma_radiance_params.nerf_hidden_size,
params.chroma_radiance_params.nerf_mlp_ratio);
}
blocks["nerf_final_layer_conv"] = std::make_shared<NerfFinalLayerConv>(params.chroma_radiance_params.nerf_hidden_size,
params.in_channels);
} else {
blocks["final_layer"] = std::make_shared<LastLayer>(params.hidden_size, 1, params.out_channels, params.is_chroma);
}
}
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
struct ggml_tensor* x) {
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int pad_h = (params.patch_size - H % params.patch_size) % params.patch_size;
int pad_w = (params.patch_size - W % params.patch_size) % params.patch_size;
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
return x;
}
struct ggml_tensor* patchify(struct ggml_context* ctx,
struct ggml_tensor* x,
int64_t patch_size) {
struct ggml_tensor* x) {
// x: [N, C, H, W]
// return: [N, h*w, C * patch_size * patch_size]
int64_t N = x->ne[3];
int64_t C = x->ne[2];
int64_t H = x->ne[1];
int64_t W = x->ne[0];
int64_t p = patch_size;
int64_t h = H / patch_size;
int64_t w = W / patch_size;
int64_t p = params.patch_size;
int64_t h = H / params.patch_size;
int64_t w = W / params.patch_size;
GGML_ASSERT(h * p == H && w * p == W);
@ -633,18 +797,25 @@ namespace Flux {
return x;
}
struct ggml_tensor* process_img(struct ggml_context* ctx,
struct ggml_tensor* x) {
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
x = pad_to_patch_size(ctx, x);
x = patchify(ctx, x);
return x;
}
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
struct ggml_tensor* x,
int64_t h,
int64_t w,
int64_t patch_size) {
int64_t w) {
// x: [N, h*w, C*patch_size*patch_size]
// return: [N, C, H, W]
int64_t N = x->ne[2];
int64_t C = x->ne[0] / patch_size / patch_size;
int64_t H = h * patch_size;
int64_t W = w * patch_size;
int64_t p = patch_size;
int64_t C = x->ne[0] / params.patch_size / params.patch_size;
int64_t H = h * params.patch_size;
int64_t W = w * params.patch_size;
int64_t p = params.patch_size;
GGML_ASSERT(C * p * p == x->ne[0]);
@ -671,7 +842,10 @@ namespace Flux {
auto txt_in = std::dynamic_pointer_cast<Linear>(blocks["txt_in"]);
auto final_layer = std::dynamic_pointer_cast<LastLayer>(blocks["final_layer"]);
img = img_in->forward(ctx, img);
if (img_in) {
img = img_in->forward(ctx, img);
}
struct ggml_tensor* vec;
struct ggml_tensor* txt_img_mask = nullptr;
if (params.is_chroma) {
@ -682,7 +856,7 @@ namespace Flux {
// auto mod_index_arange = ggml_arange(ctx, 0, (float)mod_index_length, 1);
// ggml_arange tot working on a lot of backends, precomputing it on CPU instead
GGML_ASSERT(arange != nullptr);
GGML_ASSERT(mod_index_arange != nullptr);
auto modulation_index = ggml_nn_timestep_embedding(ctx, mod_index_arange, 32, 10000, 1000.f); // [1, 344, 32]
// Batch broadcast (will it ever be useful)
@ -749,52 +923,96 @@ namespace Flux {
txt_img->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
img = ggml_cont(ctx, ggml_permute(ctx, img, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
if (final_layer) {
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
}
return img;
}
struct ggml_tensor* process_img(struct ggml_context* ctx,
struct ggml_tensor* x) {
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int64_t patch_size = 2;
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
auto img = patchify(ctx, x, patch_size); // [N, h*w, C * patch_size * patch_size]
return img;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
struct ggml_tensor* mod_index_arange = nullptr,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {}) {
// Forward pass of DiT.
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
// timestep: (N,) tensor of diffusion timesteps
// context: (N, L, D)
// c_concat: nullptr, or for (N,C+M, H, W) for Fill
// y: (N, adm_in_channels) tensor of class labels
// guidance: (N,)
// pe: (L, d_head/2, 2, 2)
// return: (N, C, H, W)
struct ggml_tensor* forward_chroma_radiance(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
struct ggml_tensor* mod_index_arange = nullptr,
struct ggml_tensor* dct = nullptr,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {}) {
GGML_ASSERT(x->ne[3] == 1);
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int64_t C = x->ne[2];
int64_t patch_size = 2;
int64_t patch_size = params.patch_size;
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
auto img = pad_to_patch_size(ctx, x);
auto orig_img = img;
auto img_in_patch = std::dynamic_pointer_cast<Conv2d>(blocks["img_in_patch"]);
img = img_in_patch->forward(ctx, img); // [N, hidden_size, H/patch_size, W/patch_size]
img = ggml_reshape_3d(ctx, img, img->ne[0] * img->ne[1], img->ne[2], img->ne[3]); // [N, hidden_size, H/patch_size*W/patch_size]
img = ggml_cont(ctx, ggml_torch_permute(ctx, img, 1, 0, 2, 3)); // [N, H/patch_size*W/patch_size, hidden_size]
auto out = forward_orig(ctx, backend, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, n_img_token, hidden_size]
// nerf decode
auto nerf_image_embedder = std::dynamic_pointer_cast<NerfEmbedder>(blocks["nerf_image_embedder"]);
auto nerf_final_layer_conv = std::dynamic_pointer_cast<NerfFinalLayerConv>(blocks["nerf_final_layer_conv"]);
auto nerf_pixels = patchify(ctx, orig_img); // [N, num_patches, C * patch_size * patch_size]
int64_t num_patches = nerf_pixels->ne[1];
nerf_pixels = ggml_reshape_3d(ctx,
nerf_pixels,
nerf_pixels->ne[0] / C,
C,
nerf_pixels->ne[1] * nerf_pixels->ne[2]); // [N*num_patches, C, patch_size*patch_size]
nerf_pixels = ggml_cont(ctx, ggml_torch_permute(ctx, nerf_pixels, 1, 0, 2, 3)); // [N*num_patches, patch_size*patch_size, C]
auto nerf_hidden = ggml_reshape_2d(ctx, out, out->ne[0], out->ne[1] * out->ne[2]); // [N*num_patches, hidden_size]
auto img_dct = nerf_image_embedder->forward(ctx, nerf_pixels, dct); // [N*num_patches, patch_size*patch_size, nerf_hidden_size]
for (int i = 0; i < params.chroma_radiance_params.nerf_depth; i++) {
auto block = std::dynamic_pointer_cast<NerfGLUBlock>(blocks["nerf_blocks." + std::to_string(i)]);
img_dct = block->forward(ctx, img_dct, nerf_hidden);
}
img_dct = ggml_cont(ctx, ggml_torch_permute(ctx, img_dct, 1, 0, 2, 3)); // [N*num_patches, nerf_hidden_size, patch_size*patch_size]
img_dct = ggml_reshape_3d(ctx, img_dct, img_dct->ne[0] * img_dct->ne[1], num_patches, img_dct->ne[2] / num_patches); // [N, num_patches, nerf_hidden_size*patch_size*patch_size]
img_dct = unpatchify(ctx, img_dct, (H + pad_h) / patch_size, (W + pad_w) / patch_size); // [N, nerf_hidden_size, H, W]
out = nerf_final_layer_conv->forward(ctx, img_dct); // [N, C, H, W]
return out;
}
struct ggml_tensor* forward_flux_chroma(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
struct ggml_tensor* mod_index_arange = nullptr,
struct ggml_tensor* dct = nullptr,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {}) {
GGML_ASSERT(x->ne[3] == 1);
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int64_t C = x->ne[2];
int64_t patch_size = params.patch_size;
int pad_h = (patch_size - H % patch_size) % patch_size;
int pad_w = (patch_size - W % patch_size) % patch_size;
@ -816,21 +1034,16 @@ namespace Flux {
ggml_tensor* mask = ggml_view_4d(ctx, c_concat, c_concat->ne[0], c_concat->ne[1], 1, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * C);
ggml_tensor* control = ggml_view_4d(ctx, c_concat, c_concat->ne[0], c_concat->ne[1], C, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * (C + 1));
masked = ggml_pad(ctx, masked, pad_w, pad_h, 0, 0);
mask = ggml_pad(ctx, mask, pad_w, pad_h, 0, 0);
control = ggml_pad(ctx, control, pad_w, pad_h, 0, 0);
masked = patchify(ctx, masked, patch_size);
mask = patchify(ctx, mask, patch_size);
control = patchify(ctx, control, patch_size);
masked = process_img(ctx, masked);
mask = process_img(ctx, mask);
control = process_img(ctx, control);
img = ggml_concat(ctx, img, ggml_concat(ctx, ggml_concat(ctx, masked, mask, 0), control, 0), 0);
} else if (params.version == VERSION_FLUX_CONTROLS) {
GGML_ASSERT(c_concat != nullptr);
ggml_tensor* control = ggml_pad(ctx, c_concat, pad_w, pad_h, 0, 0);
control = patchify(ctx, control, patch_size);
img = ggml_concat(ctx, img, control, 0);
auto control = process_img(ctx, c_concat);
img = ggml_concat(ctx, img, control, 0);
}
if (ref_latents.size() > 0) {
@ -849,10 +1062,63 @@ namespace Flux {
}
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
out = unpatchify(ctx, out, (H + pad_h) / patch_size, (W + pad_w) / patch_size, patch_size); // [N, C, H + pad_h, W + pad_w]
out = unpatchify(ctx, out, (H + pad_h) / patch_size, (W + pad_w) / patch_size); // [N, C, H + pad_h, W + pad_w]
return out;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
struct ggml_tensor* pe,
struct ggml_tensor* mod_index_arange = nullptr,
struct ggml_tensor* dct = nullptr,
std::vector<ggml_tensor*> ref_latents = {},
std::vector<int> skip_layers = {}) {
// Forward pass of DiT.
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
// timestep: (N,) tensor of diffusion timesteps
// context: (N, L, D)
// c_concat: nullptr, or for (N,C+M, H, W) for Fill
// y: (N, adm_in_channels) tensor of class labels
// guidance: (N,)
// pe: (L, d_head/2, 2, 2)
// return: (N, C, H, W)
if (params.version == VERSION_CHROMA_RADIANCE) {
return forward_chroma_radiance(ctx,
backend,
x,
timestep,
context,
c_concat,
y,
guidance,
pe,
mod_index_arange,
dct,
ref_latents,
skip_layers);
} else {
return forward_flux_chroma(ctx,
backend,
x,
timestep,
context,
c_concat,
y,
guidance,
pe,
mod_index_arange,
dct,
ref_latents,
skip_layers);
}
}
};
struct FluxRunner : public GGMLRunner {
@ -860,7 +1126,8 @@ namespace Flux {
FluxParams flux_params;
Flux flux;
std::vector<float> pe_vec;
std::vector<float> mod_index_arange_vec; // for cache
std::vector<float> mod_index_arange_vec;
std::vector<float> dct_vec;
SDVersion version;
bool use_mask = false;
@ -883,6 +1150,9 @@ namespace Flux {
flux_params.in_channels = 128;
} else if (version == VERSION_FLEX_2) {
flux_params.in_channels = 196;
} else if (version == VERSION_CHROMA_RADIANCE) {
flux_params.in_channels = 3;
flux_params.patch_size = 16;
}
for (auto pair : tensor_types) {
std::string tensor_name = pair.first;
@ -933,6 +1203,56 @@ namespace Flux {
flux.get_param_tensors(tensors, prefix);
}
std::vector<float> fetch_dct_pos(int patch_size, int max_freqs) {
const float PI = 3.14159265358979323846f;
std::vector<float> pos(patch_size);
for (int i = 0; i < patch_size; ++i) {
pos[i] = static_cast<float>(i) / static_cast<float>(patch_size - 1);
}
std::vector<float> pos_x(patch_size * patch_size);
std::vector<float> pos_y(patch_size * patch_size);
for (int i = 0; i < patch_size; ++i) {
for (int j = 0; j < patch_size; ++j) {
pos_x[i * patch_size + j] = pos[j];
pos_y[i * patch_size + j] = pos[i];
}
}
std::vector<float> freqs(max_freqs);
for (int i = 0; i < max_freqs; ++i) {
freqs[i] = static_cast<float>(i);
}
std::vector<float> coeffs(max_freqs * max_freqs);
for (int fx = 0; fx < max_freqs; ++fx) {
for (int fy = 0; fy < max_freqs; ++fy) {
coeffs[fx * max_freqs + fy] = 1.0f / (1.0f + freqs[fx] * freqs[fy]);
}
}
int num_positions = patch_size * patch_size;
int num_features = max_freqs * max_freqs;
std::vector<float> dct(num_positions * num_features);
for (int p = 0; p < num_positions; ++p) {
float px = pos_x[p];
float py = pos_y[p];
for (int fx = 0; fx < max_freqs; ++fx) {
float cx = std::cos(px * freqs[fx] * PI);
for (int fy = 0; fy < max_freqs; ++fy) {
float cy = std::cos(py * freqs[fy] * PI);
float val = cx * cy * coeffs[fx * max_freqs + fy];
dct[p * num_features + (fx * max_freqs + fy)] = val;
}
}
}
return dct;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
@ -946,6 +1266,7 @@ namespace Flux {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
struct ggml_tensor* mod_index_arange = nullptr;
struct ggml_tensor* dct = nullptr; // for chroma radiance
x = to_backend(x);
context = to_backend(context);
@ -976,7 +1297,7 @@ namespace Flux {
pe_vec = Rope::gen_flux_pe(x->ne[1],
x->ne[0],
2,
flux_params.patch_size,
x->ne[3],
context->ne[1],
ref_latents,
@ -991,6 +1312,17 @@ namespace Flux {
// pe->data = nullptr;
set_backend_tensor_data(pe, pe_vec.data());
if (version == VERSION_CHROMA_RADIANCE) {
int64_t patch_size = flux_params.patch_size;
int64_t nerf_max_freqs = flux_params.chroma_radiance_params.nerf_max_freqs;
dct_vec = fetch_dct_pos(patch_size, nerf_max_freqs);
dct = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, nerf_max_freqs * nerf_max_freqs, patch_size * patch_size);
// dct->data = dct_vec.data();
// print_ggml_tensor(dct);
// dct->data = nullptr;
set_backend_tensor_data(dct, dct_vec.data());
}
struct ggml_tensor* out = flux.forward(compute_ctx,
runtime_backend,
x,
@ -1001,6 +1333,7 @@ namespace Flux {
guidance,
pe,
mod_index_arange,
dct,
ref_latents,
skip_layers);
@ -1035,7 +1368,7 @@ namespace Flux {
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(20 * 1024 * 1024); // 20 MB
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1GB
params.mem_buffer = nullptr;
params.no_alloc = false;
@ -1046,22 +1379,25 @@ namespace Flux {
// cpu f16:
// cuda f16: nan
// cuda q8_0: pass
auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
ggml_set_f32(x, 0.01f);
// auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
// ggml_set_f32(x, 0.01f);
auto x = load_tensor_from_file(work_ctx, "chroma_x.bin");
// print_ggml_tensor(x);
std::vector<float> timesteps_vec(1, 999.f);
std::vector<float> timesteps_vec(1, 1.f);
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
std::vector<float> guidance_vec(1, 3.5f);
std::vector<float> guidance_vec(1, 0.f);
auto guidance = vector_to_ggml_tensor(work_ctx, guidance_vec);
auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 4096, 256, 1);
ggml_set_f32(context, 0.01f);
// auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 4096, 256, 1);
// ggml_set_f32(context, 0.01f);
auto context = load_tensor_from_file(work_ctx, "chroma_context.bin");
// print_ggml_tensor(context);
auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, 1);
ggml_set_f32(y, 0.01f);
// auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, 1);
// ggml_set_f32(y, 0.01f);
auto y = nullptr;
// print_ggml_tensor(y);
struct ggml_tensor* out = nullptr;
@ -1076,32 +1412,44 @@ namespace Flux {
}
static void load_from_file_and_test(const std::string& file_path) {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_Q8_0;
std::shared_ptr<FluxRunner> flux = std::make_shared<FluxRunner>(backend, false);
{
LOG_INFO("loading from '%s'", file_path.c_str());
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_Q8_0;
flux->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
flux->get_param_tensors(tensors, "model.diffusion_model");
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path, "model.diffusion_model.")) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
bool success = model_loader.load_tensors(tensors);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("flux model loaded");
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path, "model.diffusion_model.")) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
auto tensor_types = model_loader.tensor_storages_types;
for (auto& item : tensor_types) {
// LOG_DEBUG("%s %u", item.first.c_str(), item.second);
if (ends_with(item.first, "weight")) {
// item.second = model_data_type;
}
}
std::shared_ptr<FluxRunner> flux = std::make_shared<FluxRunner>(backend,
false,
tensor_types,
"model.diffusion_model",
VERSION_CHROMA_RADIANCE,
false,
true);
flux->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
flux->get_param_tensors(tensors, "model.diffusion_model");
bool success = model_loader.load_tensors(tensors);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("flux model loaded");
flux->test();
}
};

View File

@ -954,7 +954,16 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
if (scale != 1.f) {
x = ggml_scale(ctx, x, scale);
}
x = ggml_mul_mat(ctx, w, x);
if (x->ne[2] * x->ne[3] > 1024) {
// workaround: avoid ggml cuda error
int64_t ne2 = x->ne[2];
int64_t ne3 = x->ne[3];
x = ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2] * x->ne[3]);
x = ggml_mul_mat(ctx, w, x);
x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3);
} else {
x = ggml_mul_mat(ctx, w, x);
}
if (force_prec_f32) {
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
}

View File

@ -330,6 +330,10 @@ std::string convert_cond_model_name(const std::string& name) {
return new_name;
}
if (new_name == "model.text_projection.weight") {
new_name = "transformer.text_model.text_projection";
}
if (open_clip_to_hf_clip_model.find(new_name) != open_clip_to_hf_clip_model.end()) {
new_name = open_clip_to_hf_clip_model[new_name];
}
@ -623,6 +627,14 @@ std::string convert_tensor_name(std::string name) {
if (starts_with(name, "diffusion_model")) {
name = "model." + name;
}
if (starts_with(name, "model.diffusion_model.up_blocks.0.attentions.0.")) {
name.replace(0, sizeof("model.diffusion_model.up_blocks.0.attentions.0.") - 1,
"model.diffusion_model.output_blocks.0.1.");
}
if (starts_with(name, "model.diffusion_model.up_blocks.0.attentions.1.")) {
name.replace(0, sizeof("model.diffusion_model.up_blocks.0.attentions.1.") - 1,
"model.diffusion_model.output_blocks.1.1.");
}
// size_t pos = name.find("lora_A");
// if (pos != std::string::npos) {
// name.replace(pos, strlen("lora_A"), "lora_up");
@ -1766,7 +1778,6 @@ bool ModelLoader::model_is_unet() {
SDVersion ModelLoader::get_sd_version() {
TensorStorage token_embedding_weight, input_block_weight;
bool input_block_checked = false;
bool has_multiple_encoders = false;
bool is_unet = false;
@ -1776,14 +1787,15 @@ SDVersion ModelLoader::get_sd_version() {
bool is_wan = false;
int64_t patch_embedding_channels = 0;
bool has_img_emb = false;
bool has_middle_block_1 = false;
for (auto& tensor_storage : tensor_storages) {
if (!(is_xl || is_flux)) {
if (!(is_xl)) {
if (tensor_storage.name.find("model.diffusion_model.double_blocks.") != std::string::npos) {
is_flux = true;
if (input_block_checked) {
break;
}
}
if (tensor_storage.name.find("model.diffusion_model.nerf_final_layer_conv.") != std::string::npos) {
return VERSION_CHROMA_RADIANCE;
}
if (tensor_storage.name.find("model.diffusion_model.joint_blocks.") != std::string::npos) {
return VERSION_SD3;
@ -1800,28 +1812,29 @@ SDVersion ModelLoader::get_sd_version() {
if (tensor_storage.name.find("model.diffusion_model.img_emb") != std::string::npos) {
has_img_emb = true;
}
if (tensor_storage.name.find("model.diffusion_model.input_blocks.") != std::string::npos || tensor_storage.name.find("unet.down_blocks.") != std::string::npos) {
if (tensor_storage.name.find("model.diffusion_model.input_blocks.") != std::string::npos ||
tensor_storage.name.find("unet.down_blocks.") != std::string::npos) {
is_unet = true;
if (has_multiple_encoders) {
is_xl = true;
if (input_block_checked) {
break;
}
}
}
if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos || tensor_storage.name.find("cond_stage_model.1") != std::string::npos || tensor_storage.name.find("te.1") != std::string::npos) {
if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos ||
tensor_storage.name.find("cond_stage_model.1") != std::string::npos ||
tensor_storage.name.find("te.1") != std::string::npos) {
has_multiple_encoders = true;
if (is_unet) {
is_xl = true;
if (input_block_checked) {
break;
}
}
}
if (tensor_storage.name.find("model.diffusion_model.input_blocks.8.0.time_mixer.mix_factor") != std::string::npos) {
return VERSION_SVD;
}
}
if (tensor_storage.name.find("model.diffusion_model.middle_block.1.") != std::string::npos ||
tensor_storage.name.find("unet.mid_block.resnets.1.") != std::string::npos) {
has_middle_block_1 = true;
}
if (tensor_storage.name == "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight" ||
tensor_storage.name == "cond_stage_model.model.token_embedding.weight" ||
tensor_storage.name == "text_model.embeddings.token_embedding.weight" ||
@ -1831,12 +1844,10 @@ SDVersion ModelLoader::get_sd_version() {
token_embedding_weight = tensor_storage;
// break;
}
if (tensor_storage.name == "model.diffusion_model.input_blocks.0.0.weight" || tensor_storage.name == "model.diffusion_model.img_in.weight" || tensor_storage.name == "unet.conv_in.weight") {
input_block_weight = tensor_storage;
input_block_checked = true;
if (is_xl || is_flux) {
break;
}
if (tensor_storage.name == "model.diffusion_model.input_blocks.0.0.weight" ||
tensor_storage.name == "model.diffusion_model.img_in.weight" ||
tensor_storage.name == "unet.conv_in.weight") {
input_block_weight = tensor_storage;
}
}
if (is_wan) {
@ -1858,6 +1869,9 @@ SDVersion ModelLoader::get_sd_version() {
if (is_ip2p) {
return VERSION_SDXL_PIX2PIX;
}
if (!has_middle_block_1) {
return VERSION_SDXL_SSD1B;
}
return VERSION_SDXL;
}
@ -1881,6 +1895,9 @@ SDVersion ModelLoader::get_sd_version() {
if (is_ip2p) {
return VERSION_SD1_PIX2PIX;
}
if (!has_middle_block_1) {
return VERSION_SD1_TINY_UNET;
}
return VERSION_SD1;
} else if (token_embedding_weight.ne[0] == 1024) {
if (is_inpaint) {

13
model.h
View File

@ -23,17 +23,20 @@ enum SDVersion {
VERSION_SD1,
VERSION_SD1_INPAINT,
VERSION_SD1_PIX2PIX,
VERSION_SD1_TINY_UNET,
VERSION_SD2,
VERSION_SD2_INPAINT,
VERSION_SDXL,
VERSION_SDXL_INPAINT,
VERSION_SDXL_PIX2PIX,
VERSION_SDXL_SSD1B,
VERSION_SVD,
VERSION_SD3,
VERSION_FLUX,
VERSION_FLUX_FILL,
VERSION_FLUX_CONTROLS,
VERSION_FLEX_2,
VERSION_CHROMA_RADIANCE,
VERSION_WAN2,
VERSION_WAN2_2_I2V,
VERSION_WAN2_2_TI2V,
@ -42,7 +45,7 @@ enum SDVersion {
};
static inline bool sd_version_is_sd1(SDVersion version) {
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX) {
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX || version == VERSION_SD1_TINY_UNET) {
return true;
}
return false;
@ -56,7 +59,7 @@ static inline bool sd_version_is_sd2(SDVersion version) {
}
static inline bool sd_version_is_sdxl(SDVersion version) {
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX) {
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX || version == VERSION_SDXL_SSD1B) {
return true;
}
return false;
@ -70,7 +73,11 @@ static inline bool sd_version_is_sd3(SDVersion version) {
}
static inline bool sd_version_is_flux(SDVersion version) {
if (version == VERSION_FLUX || version == VERSION_FLUX_FILL || version == VERSION_FLUX_CONTROLS || version == VERSION_FLEX_2) {
if (version == VERSION_FLUX ||
version == VERSION_FLUX_FILL ||
version == VERSION_FLUX_CONTROLS ||
version == VERSION_FLEX_2 ||
version == VERSION_CHROMA_RADIANCE) {
return true;
}
return false;

View File

@ -649,7 +649,7 @@ namespace Qwen {
static void load_from_file_and_test(const std::string& file_path) {
// cuda q8: pass
// cuda q8 fa: nan
// cuda q8 fa: pass
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_Q8_0;

View File

@ -28,17 +28,20 @@ const char* model_version_to_str[] = {
"SD 1.x",
"SD 1.x Inpaint",
"Instruct-Pix2Pix",
"SD 1.x Tiny UNet",
"SD 2.x",
"SD 2.x Inpaint",
"SDXL",
"SDXL Inpaint",
"SDXL Instruct-Pix2Pix",
"SDXL (SSD1B)",
"SVD",
"SD3.x",
"Flux",
"Flux Fill",
"Flux Control",
"Flex.2",
"Chroma Radiance",
"Wan 2.x",
"Wan 2.2 I2V",
"Wan 2.2 TI2V",
@ -492,6 +495,9 @@ public:
version);
first_stage_model->alloc_params_buffer();
first_stage_model->get_param_tensors(tensors, "first_stage_model");
} else if (version == VERSION_CHROMA_RADIANCE) {
first_stage_model = std::make_shared<FakeVAE>(vae_backend,
offload_params_to_cpu);
} else if (!use_tiny_autoencoder) {
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend,
offload_params_to_cpu,
@ -1039,7 +1045,7 @@ public:
struct ggml_tensor* c_concat = nullptr;
{
if (zero_out_masked) {
c_concat = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / 8, height / 8, 4, 1);
c_concat = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / get_vae_scale_factor(), height / get_vae_scale_factor(), 4, 1);
ggml_set_f32(c_concat, 0.f);
} else {
ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
@ -1373,6 +1379,53 @@ public:
return x;
}
int get_vae_scale_factor() {
int vae_scale_factor = 8;
if (version == VERSION_WAN2_2_TI2V) {
vae_scale_factor = 16;
} else if (version == VERSION_CHROMA_RADIANCE) {
vae_scale_factor = 1;
}
return vae_scale_factor;
}
int get_latent_channel() {
int latent_channel = 4;
if (sd_version_is_dit(version)) {
if (version == VERSION_WAN2_2_TI2V) {
latent_channel = 48;
} else if (version == VERSION_CHROMA_RADIANCE) {
latent_channel = 3;
} else {
latent_channel = 16;
}
}
return latent_channel;
}
ggml_tensor* generate_init_latent(ggml_context* work_ctx,
int width,
int height,
int frames = 1,
bool video = false) {
int vae_scale_factor = get_vae_scale_factor();
int W = width / vae_scale_factor;
int H = height / vae_scale_factor;
int T = frames;
if (sd_version_is_wan(version)) {
T = ((T - 1) / 4) + 1;
}
int C = get_latent_channel();
ggml_tensor* init_latent;
if (video) {
init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, T, C);
} else {
init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1);
}
ggml_set_f32(init_latent, shift_factor);
return init_latent;
}
void process_latent_in(ggml_tensor* latent) {
if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) {
GGML_ASSERT(latent->ne[3] == 16 || latent->ne[3] == 48);
@ -1408,6 +1461,8 @@ public:
}
}
}
} else if (version == VERSION_CHROMA_RADIANCE) {
// pass
} else {
ggml_tensor_iter(latent, [&](ggml_tensor* latent, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
float value = ggml_tensor_get_f32(latent, i0, i1, i2, i3);
@ -1452,6 +1507,8 @@ public:
}
}
}
} else if (version == VERSION_CHROMA_RADIANCE) {
// pass
} else {
ggml_tensor_iter(latent, [&](ggml_tensor* latent, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
float value = ggml_tensor_get_f32(latent, i0, i1, i2, i3);
@ -1493,11 +1550,11 @@ public:
ggml_tensor* vae_encode(ggml_context* work_ctx, ggml_tensor* x, bool encode_video = false) {
int64_t t0 = ggml_time_ms();
ggml_tensor* result = nullptr;
int W = x->ne[0] / 8;
int H = x->ne[1] / 8;
int W = x->ne[0] / get_vae_scale_factor();
int H = x->ne[1] / get_vae_scale_factor();
int C = get_latent_channel();
if (vae_tiling_params.enabled && !encode_video) {
// TODO wan2.2 vae support?
int C = sd_version_is_dit(version) ? 16 : 4;
int ne2;
int ne3;
if (sd_version_is_qwen_image(version)) {
@ -1584,7 +1641,10 @@ public:
ggml_tensor* get_first_stage_encoding(ggml_context* work_ctx, ggml_tensor* vae_output) {
ggml_tensor* latent;
if (use_tiny_autoencoder || sd_version_is_qwen_image(version) || sd_version_is_wan(version)) {
if (use_tiny_autoencoder ||
sd_version_is_qwen_image(version) ||
sd_version_is_wan(version) ||
version == VERSION_CHROMA_RADIANCE) {
latent = vae_output;
} else if (version == VERSION_SD1_PIX2PIX) {
latent = ggml_view_3d(work_ctx,
@ -1611,18 +1671,14 @@ public:
}
ggml_tensor* decode_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool decode_video = false) {
int64_t W = x->ne[0] * 8;
int64_t H = x->ne[1] * 8;
int64_t W = x->ne[0] * get_vae_scale_factor();
int64_t H = x->ne[1] * get_vae_scale_factor();
int64_t C = 3;
ggml_tensor* result = nullptr;
if (decode_video) {
int T = x->ne[2];
if (sd_version_is_wan(version)) {
T = ((T - 1) * 4) + 1;
if (version == VERSION_WAN2_2_TI2V) {
W = x->ne[0] * 16;
H = x->ne[1] * 16;
}
}
result = ggml_new_tensor_4d(work_ctx,
GGML_TYPE_F32,
@ -2233,16 +2289,9 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
// Sample
std::vector<struct ggml_tensor*> final_latents; // collect latents to decode
int C = 4;
if (sd_version_is_sd3(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_qwen_image(sd_ctx->sd->version)) {
C = 16;
}
int W = width / 8;
int H = height / 8;
int C = sd_ctx->sd->get_latent_channel();
int W = width / sd_ctx->sd->get_vae_scale_factor();
int H = height / sd_ctx->sd->get_vae_scale_factor();
LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]);
struct ggml_tensor* control_latent = nullptr;
@ -2420,51 +2469,11 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
return result_images;
}
ggml_tensor* generate_init_latent(sd_ctx_t* sd_ctx,
ggml_context* work_ctx,
int width,
int height,
int frames = 1,
bool video = false) {
int C = 4;
int T = frames;
int W = width / 8;
int H = height / 8;
if (sd_version_is_sd3(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_qwen_image(sd_ctx->sd->version)) {
C = 16;
} else if (sd_version_is_wan(sd_ctx->sd->version)) {
C = 16;
T = ((T - 1) / 4) + 1;
if (sd_ctx->sd->version == VERSION_WAN2_2_TI2V) {
C = 48;
W = width / 16;
H = height / 16;
}
}
ggml_tensor* init_latent;
if (video) {
init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, T, C);
} else {
init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1);
}
if (sd_version_is_sd3(sd_ctx->sd->version)) {
ggml_set_f32(init_latent, 0.0609f);
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
ggml_set_f32(init_latent, 0.1159f);
} else {
ggml_set_f32(init_latent, 0.f);
}
return init_latent;
}
sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_gen_params) {
sd_ctx->sd->vae_tiling_params = sd_img_gen_params->vae_tiling_params;
int width = sd_img_gen_params->width;
int height = sd_img_gen_params->height;
int vae_scale_factor = sd_ctx->sd->get_vae_scale_factor();
if (sd_version_is_dit(sd_ctx->sd->version)) {
if (width % 16 || height % 16) {
LOG_ERROR("Image dimensions must be must be a multiple of 16 on each axis for %s models. (Got %dx%d)",
@ -2560,20 +2569,20 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
1);
for (int ix = 0; ix < masked_latent->ne[0]; ix++) {
for (int iy = 0; iy < masked_latent->ne[1]; iy++) {
int mx = ix * 8;
int my = iy * 8;
int mx = ix * vae_scale_factor;
int my = iy * vae_scale_factor;
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
for (int k = 0; k < masked_latent->ne[2]; k++) {
float v = ggml_tensor_get_f32(masked_latent, ix, iy, k);
ggml_tensor_set_f32(concat_latent, v, ix, iy, k);
}
// "Encode" 8x8 mask chunks into a flattened 1x64 vector, and concatenate to masked image
for (int x = 0; x < 8; x++) {
for (int y = 0; y < 8; y++) {
for (int x = 0; x < vae_scale_factor; x++) {
for (int y = 0; y < vae_scale_factor; y++) {
float m = ggml_tensor_get_f32(mask_img, mx + x, my + y);
// TODO: check if the way the mask is flattened is correct (is it supposed to be x*8+y or x+8*y?)
// python code was using "b (h 8) (w 8) -> b (8 8) h w"
ggml_tensor_set_f32(concat_latent, m, ix, iy, masked_latent->ne[2] + x * 8 + y);
// TODO: check if the way the mask is flattened is correct (is it supposed to be x*vae_scale_factor+y or x+vae_scale_factor*y?)
// python code was using "b (h vae_scale_factor) (w vae_scale_factor) -> b (vae_scale_factor vae_scale_factor) h w"
ggml_tensor_set_f32(concat_latent, m, ix, iy, masked_latent->ne[2] + x * vae_scale_factor + y);
}
}
} else if (sd_ctx->sd->version == VERSION_FLEX_2) {
@ -2596,11 +2605,11 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
{
// LOG_WARN("Inpainting with a base model is not great");
denoise_mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / 8, height / 8, 1, 1);
denoise_mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / vae_scale_factor, height / vae_scale_factor, 1, 1);
for (int ix = 0; ix < denoise_mask->ne[0]; ix++) {
for (int iy = 0; iy < denoise_mask->ne[1]; iy++) {
int mx = ix * 8;
int my = iy * 8;
int mx = ix * vae_scale_factor;
int my = iy * vae_scale_factor;
float m = ggml_tensor_get_f32(mask_img, mx, my);
ggml_tensor_set_f32(denoise_mask, m, ix, iy);
}
@ -2611,7 +2620,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
LOG_WARN("This is an inpainting model, this should only be used in img2img mode with a mask");
}
init_latent = generate_init_latent(sd_ctx, work_ctx, width, height);
init_latent = sd_ctx->sd->generate_init_latent(work_ctx, width, height);
}
sd_guidance_params_t guidance = sd_img_gen_params->sample_params.guidance;
@ -2739,6 +2748,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
int sample_steps = sd_vid_gen_params->sample_params.sample_steps;
LOG_INFO("generate_video %dx%dx%d", width, height, frames);
int vae_scale_factor = sd_ctx->sd->get_vae_scale_factor();
sd_ctx->sd->init_scheduler(sd_vid_gen_params->sample_params.scheduler);
int high_noise_sample_steps = 0;
@ -2836,7 +2847,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
ggml_tensor_set_f32(image, value, i0, i1, i2, i3);
});
concat_latent = sd_ctx->sd->encode_first_stage(work_ctx, image); // [b*c, t, h/8, w/8]
concat_latent = sd_ctx->sd->encode_first_stage(work_ctx, image); // [b*c, t, h/vae_scale_factor, w/vae_scale_factor]
int64_t t2 = ggml_time_ms();
LOG_INFO("encode_first_stage completed, taking %" PRId64 " ms", t2 - t1);
@ -2846,7 +2857,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
concat_latent->ne[0],
concat_latent->ne[1],
concat_latent->ne[2],
4); // [b*4, t, w/8, h/8]
4); // [b*4, t, w/vae_scale_factor, h/vae_scale_factor]
ggml_tensor_iter(concat_mask, [&](ggml_tensor* concat_mask, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
float value = 0.0f;
if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image
@ -2857,7 +2868,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
ggml_tensor_set_f32(concat_mask, value, i0, i1, i2, i3);
});
concat_latent = ggml_tensor_concat(work_ctx, concat_mask, concat_latent, 3); // [b*(c+4), t, h/8, w/8]
concat_latent = ggml_tensor_concat(work_ctx, concat_mask, concat_latent, 3); // [b*(c+4), t, h/vae_scale_factor, w/vae_scale_factor]
} else if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.2-TI2V-5B" && sd_vid_gen_params->init_image.data) {
LOG_INFO("IMG2VID");
@ -2868,7 +2879,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
auto init_image_latent = sd_ctx->sd->vae_encode(work_ctx, init_img); // [b*c, 1, h/16, w/16]
init_latent = generate_init_latent(sd_ctx, work_ctx, width, height, frames, true);
init_latent = sd_ctx->sd->generate_init_latent(work_ctx, width, height, frames, true);
denoise_mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], init_latent->ne[2], 1);
ggml_set_f32(denoise_mask, 1.f);
@ -2925,8 +2936,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
ggml_tensor_set_f32(reactive, reactive_value, i0, i1, i2, i3);
});
inactive = sd_ctx->sd->encode_first_stage(work_ctx, inactive); // [b*c, t, h/8, w/8]
reactive = sd_ctx->sd->encode_first_stage(work_ctx, reactive); // [b*c, t, h/8, w/8]
inactive = sd_ctx->sd->encode_first_stage(work_ctx, inactive); // [b*c, t, h/vae_scale_factor, w/vae_scale_factor]
reactive = sd_ctx->sd->encode_first_stage(work_ctx, reactive); // [b*c, t, h/vae_scale_factor, w/vae_scale_factor]
int64_t length = inactive->ne[2];
if (ref_image_latent) {
@ -2934,7 +2945,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
frames = (length - 1) * 4 + 1;
ref_image_num = 1;
}
vace_context = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, inactive->ne[0], inactive->ne[1], length, 96); // [b*96, t, h/8, w/8]
vace_context = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, inactive->ne[0], inactive->ne[1], length, 96); // [b*96, t, h/vae_scale_factor, w/vae_scale_factor]
ggml_tensor_iter(vace_context, [&](ggml_tensor* vace_context, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
float value;
if (i3 < 32) {
@ -2951,7 +2962,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
if (ref_image_latent && i2 == 0) {
value = 0.f;
} else {
int64_t vae_stride = 8;
int64_t vae_stride = vae_scale_factor;
int64_t mask_height_index = i1 * vae_stride + (i3 - 32) / vae_stride;
int64_t mask_width_index = i0 * vae_stride + (i3 - 32) % vae_stride;
value = ggml_tensor_get_f32(mask, mask_width_index, mask_height_index, i2 - ref_image_num, 0);
@ -2964,7 +2975,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
}
if (init_latent == nullptr) {
init_latent = generate_init_latent(sd_ctx, work_ctx, width, height, frames, true);
init_latent = sd_ctx->sd->generate_init_latent(work_ctx, width, height, frames, true);
}
// Get learned condition
@ -2995,16 +3006,10 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
sd_ctx->sd->cond_stage_model->free_params_buffer();
}
int W = width / 8;
int H = height / 8;
int W = width / vae_scale_factor;
int H = height / vae_scale_factor;
int T = init_latent->ne[2];
int C = 16;
if (sd_ctx->sd->version == VERSION_WAN2_2_TI2V) {
W = width / 16;
H = height / 16;
C = 48;
}
int C = sd_ctx->sd->get_latent_channel();
struct ggml_tensor* final_latent;
struct ggml_tensor* x_t = init_latent;

View File

@ -204,6 +204,9 @@ public:
adm_in_channels = 768;
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SD1_TINY_UNET) {
num_res_blocks = 1;
channel_mult = {1, 2, 4};
}
if (sd_version_is_inpaint(version)) {
in_channels = 9;
@ -270,13 +273,22 @@ public:
n_head = ch / d_head;
}
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[i],
context_dim));
int td = transformer_depth[i];
if (version == VERSION_SDXL_SSD1B) {
if (i == 2) {
td = 4;
}
}
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
td,
context_dim));
}
input_block_chans.push_back(ch);
if (version == VERSION_SD1_TINY_UNET) {
input_block_idx++;
}
}
if (i != len_mults - 1) {
input_block_idx += 1;
@ -295,14 +307,17 @@ public:
d_head = num_head_channels;
n_head = ch / d_head;
}
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
if (version != VERSION_SD1_TINY_UNET) {
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
if (version != VERSION_SDXL_SSD1B) {
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
}
}
// output_blocks
int output_block_idx = 0;
for (int i = (int)len_mults - 1; i >= 0; i--) {
@ -324,12 +339,27 @@ public:
n_head = ch / d_head;
}
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch, n_head, d_head, transformer_depth[i], context_dim));
int td = transformer_depth[i];
if (version == VERSION_SDXL_SSD1B) {
if (i == 2 && (j == 0 || j == 1)) {
td = 4;
}
if (i == 1 && (j == 1 || j == 2)) {
td = 1;
}
}
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch, n_head, d_head, td, context_dim));
up_sample_idx++;
}
if (i > 0 && j == num_res_blocks) {
if (version == VERSION_SD1_TINY_UNET) {
output_block_idx++;
if (output_block_idx == 2) {
up_sample_idx = 1;
}
}
std::string name = "output_blocks." + std::to_string(output_block_idx) + "." + std::to_string(up_sample_idx);
blocks[name] = std::shared_ptr<GGMLBlock>(new UpSampleBlock(ch, ch));
@ -463,6 +493,9 @@ public:
}
hs.push_back(h);
}
if (version == VERSION_SD1_TINY_UNET) {
input_block_idx++;
}
if (i != len_mults - 1) {
ds *= 2;
input_block_idx += 1;
@ -477,10 +510,13 @@ public:
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, backend, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
if (version != VERSION_SD1_TINY_UNET) {
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
if (version != VERSION_SDXL_SSD1B) {
h = attention_layer_forward("middle_block.1", ctx, backend, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
}
}
if (controls.size() > 0) {
auto cs = ggml_scale_inplace(ctx, controls[controls.size() - 1], control_strength);
h = ggml_add(ctx, h, cs); // middle control
@ -516,6 +552,12 @@ public:
}
if (i > 0 && j == num_res_blocks) {
if (version == VERSION_SD1_TINY_UNET) {
output_block_idx++;
if (output_block_idx == 2) {
up_sample_idx = 1;
}
}
std::string name = "output_blocks." + std::to_string(output_block_idx) + "." + std::to_string(up_sample_idx);
auto block = std::dynamic_pointer_cast<UpSampleBlock>(blocks[name]);

24
vae.hpp
View File

@ -533,6 +533,30 @@ struct VAE : public GGMLRunner {
virtual void set_conv2d_scale(float scale) { SD_UNUSED(scale); };
};
struct FakeVAE : public VAE {
FakeVAE(ggml_backend_t backend, bool offload_params_to_cpu)
: VAE(backend, offload_params_to_cpu) {}
void compute(const int n_threads,
struct ggml_tensor* z,
bool decode_graph,
struct ggml_tensor** output,
struct ggml_context* output_ctx) override {
if (*output == nullptr && output_ctx != nullptr) {
*output = ggml_dup_tensor(output_ctx, z);
}
ggml_tensor_iter(z, [&](ggml_tensor* z, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
float value = ggml_tensor_get_f32(z, i0, i1, i2, i3);
ggml_tensor_set_f32(*output, value, i0, i1, i2, i3);
});
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) override {}
std::string get_desc() override {
return "fake_vae";
}
};
struct AutoEncoderKL : public VAE {
bool decode_only = true;
AutoencodingEngine ae;