feat: allow models to run without all text encoder(s) (#645)

This commit is contained in:
stduhpf 2025-10-25 16:00:56 +02:00 committed by GitHub
parent 69b9511ce9
commit faabc5ad3c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -673,33 +673,80 @@ struct SD3CLIPEmbedder : public Conditioner {
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {})
: clip_g_tokenizer(0) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
bool use_clip_l = false;
bool use_clip_g = false;
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
use_clip_l = true;
} else if (pair.first.find("text_encoders.clip_g") != std::string::npos) {
use_clip_g = true;
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_clip_l && !use_clip_g && !use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
}
if (use_clip_l) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
}
if (use_clip_g) {
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
}
if (use_t5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (clip_l) {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
}
if (clip_g) {
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
}
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
clip_l->alloc_params_buffer();
clip_g->alloc_params_buffer();
t5->alloc_params_buffer();
if (clip_l) {
clip_l->alloc_params_buffer();
}
if (clip_g) {
clip_g->alloc_params_buffer();
}
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
clip_l->free_params_buffer();
clip_g->free_params_buffer();
t5->free_params_buffer();
if (clip_l) {
clip_l->free_params_buffer();
}
if (clip_g) {
clip_g->free_params_buffer();
}
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = clip_l->get_params_buffer_size();
buffer_size += clip_g->get_params_buffer_size();
buffer_size += t5->get_params_buffer_size();
size_t buffer_size = 0;
if (clip_l) {
buffer_size += clip_l->get_params_buffer_size();
}
if (clip_g) {
buffer_size += clip_g->get_params_buffer_size();
}
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -731,23 +778,32 @@ struct SD3CLIPEmbedder : public Conditioner {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
if (clip_l) {
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
}
if (clip_g) {
std::vector<int> curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
}
if (t5) {
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
}
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
if (clip_l) {
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
}
if (clip_g) {
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
}
if (t5) {
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
}
// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
@ -795,10 +851,10 @@ struct SD3CLIPEmbedder : public Conditioner {
std::vector<float> hidden_states_vec;
size_t chunk_len = 77;
size_t chunk_count = clip_l_tokens.size() / chunk_len;
size_t chunk_count = std::max(std::max(clip_l_tokens.size(), clip_g_tokens.size()), t5_tokens.size()) / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// clip_l
{
if (clip_l) {
std::vector<int> chunk_tokens(clip_l_tokens.begin() + chunk_idx * chunk_len,
clip_l_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(clip_l_weights.begin() + chunk_idx * chunk_len,
@ -845,10 +901,17 @@ struct SD3CLIPEmbedder : public Conditioner {
&pooled_l,
work_ctx);
}
} else {
chunk_hidden_states_l = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, chunk_len);
ggml_set_f32(chunk_hidden_states_l, 0.f);
if (chunk_idx == 0) {
pooled_l = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
ggml_set_f32(pooled_l, 0.f);
}
}
// clip_g
{
if (clip_g) {
std::vector<int> chunk_tokens(clip_g_tokens.begin() + chunk_idx * chunk_len,
clip_g_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(clip_g_weights.begin() + chunk_idx * chunk_len,
@ -896,10 +959,17 @@ struct SD3CLIPEmbedder : public Conditioner {
&pooled_g,
work_ctx);
}
} else {
chunk_hidden_states_g = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 1280, chunk_len);
ggml_set_f32(chunk_hidden_states_g, 0.f);
if (chunk_idx == 0) {
pooled_g = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1280);
ggml_set_f32(pooled_g, 0.f);
}
}
// t5
{
if (t5) {
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
@ -927,6 +997,9 @@ struct SD3CLIPEmbedder : public Conditioner {
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}
} else {
chunk_hidden_states_t5 = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
ggml_set_f32(chunk_hidden_states_t5, 0.f);
}
auto chunk_hidden_states_lg_pad = ggml_new_tensor_3d(work_ctx,
@ -969,11 +1042,20 @@ struct SD3CLIPEmbedder : public Conditioner {
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
if (hidden_states_vec.size() > 0) {
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
} else {
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
}
if (pooled == nullptr) {
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 2048);
ggml_set_f32(pooled, 0.f);
}
return {hidden_states, pooled, nullptr};
}
@ -999,28 +1081,68 @@ struct FluxCLIPEmbedder : public Conditioner {
FluxCLIPEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {}) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
bool use_clip_l = false;
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
use_clip_l = true;
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_clip_l && !use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
}
if (use_clip_l) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
} else {
LOG_WARN("clip_l text encoder not found! Prompt adherence might be degraded.");
}
if (use_t5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
} else {
LOG_WARN("t5xxl text encoder not found! Prompt adherence might be degraded.");
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (clip_l) {
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
}
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
clip_l->alloc_params_buffer();
t5->alloc_params_buffer();
if (clip_l) {
clip_l->alloc_params_buffer();
}
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
clip_l->free_params_buffer();
t5->free_params_buffer();
if (clip_l) {
clip_l->free_params_buffer();
}
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = clip_l->get_params_buffer_size();
buffer_size += t5->get_params_buffer_size();
size_t buffer_size = 0;
if (clip_l) {
buffer_size += clip_l->get_params_buffer_size();
}
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -1050,18 +1172,24 @@ struct FluxCLIPEmbedder : public Conditioner {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
if (clip_l) {
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
}
if (t5) {
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
}
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
if (clip_l) {
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
}
if (t5) {
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
}
// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
@ -1096,35 +1224,37 @@ struct FluxCLIPEmbedder : public Conditioner {
struct ggml_tensor* pooled = nullptr; // [768,]
std::vector<float> hidden_states_vec;
size_t chunk_count = t5_tokens.size() / chunk_len;
size_t chunk_count = std::max(clip_l_tokens.size() > 0 ? chunk_len : 0, t5_tokens.size()) / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// clip_l
if (chunk_idx == 0) {
size_t chunk_len_l = 77;
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
clip_l_tokens.begin() + chunk_len_l);
std::vector<float> chunk_weights(clip_l_weights.begin(),
clip_l_weights.begin() + chunk_len_l);
if (clip_l) {
size_t chunk_len_l = 77;
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
clip_l_tokens.begin() + chunk_len_l);
std::vector<float> chunk_weights(clip_l_weights.begin(),
clip_l_weights.begin() + chunk_len_l);
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
size_t max_token_idx = 0;
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
size_t max_token_idx = 0;
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
clip_l->compute(n_threads,
input_ids,
0,
nullptr,
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
clip_l->compute(n_threads,
input_ids,
0,
nullptr,
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
}
}
// t5
{
if (t5) {
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
@ -1152,6 +1282,9 @@ struct FluxCLIPEmbedder : public Conditioner {
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}
} else {
chunk_hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
ggml_set_f32(chunk_hidden_states, 0.f);
}
int64_t t1 = ggml_time_ms();
@ -1168,11 +1301,20 @@ struct FluxCLIPEmbedder : public Conditioner {
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
if (hidden_states_vec.size() > 0) {
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
} else {
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
}
if (pooled == nullptr) {
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
ggml_set_f32(pooled, 0.f);
}
return {hidden_states, pooled, nullptr};
}
@ -1203,26 +1345,44 @@ struct T5CLIPEmbedder : public Conditioner {
int mask_pad = 1,
bool is_umt5 = false)
: use_mask(use_mask), mask_pad(mask_pad), t5_tokenizer(is_umt5) {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
bool use_t5 = false;
for (auto pair : tensor_types) {
if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
use_t5 = true;
}
}
if (!use_t5) {
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
return;
} else {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
}
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
if (t5) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}
}
void alloc_params_buffer() override {
t5->alloc_params_buffer();
if (t5) {
t5->alloc_params_buffer();
}
}
void free_params_buffer() override {
t5->free_params_buffer();
if (t5) {
t5->free_params_buffer();
}
}
size_t get_params_buffer_size() override {
size_t buffer_size = 0;
buffer_size += t5->get_params_buffer_size();
if (t5) {
buffer_size += t5->get_params_buffer_size();
}
return buffer_size;
}
@ -1248,17 +1408,18 @@ struct T5CLIPEmbedder : public Conditioner {
std::vector<int> t5_tokens;
std::vector<float> t5_weights;
std::vector<float> t5_mask;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
if (t5) {
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
}
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
return {t5_tokens, t5_weights, t5_mask};
}
@ -1282,6 +1443,13 @@ struct T5CLIPEmbedder : public Conditioner {
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> token_and_weights,
int clip_skip,
bool zero_out_masked = false) {
if (!t5) {
auto hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
auto t5_attn_mask = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 256);
ggml_set_f32(t5_attn_mask, -HUGE_VALF);
return {hidden_states, t5_attn_mask, nullptr};
}
auto& t5_tokens = std::get<0>(token_and_weights);
auto& t5_weights = std::get<1>(token_and_weights);
auto& t5_attn_mask_vec = std::get<2>(token_and_weights);