mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
feat: allow models to run without all text encoder(s) (#645)
This commit is contained in:
parent
69b9511ce9
commit
faabc5ad3c
368
conditioner.hpp
368
conditioner.hpp
@ -673,33 +673,80 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {})
|
||||
: clip_g_tokenizer(0) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
|
||||
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
bool use_clip_l = false;
|
||||
bool use_clip_g = false;
|
||||
bool use_t5 = false;
|
||||
for (auto pair : tensor_types) {
|
||||
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
|
||||
use_clip_l = true;
|
||||
} else if (pair.first.find("text_encoders.clip_g") != std::string::npos) {
|
||||
use_clip_g = true;
|
||||
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
|
||||
use_t5 = true;
|
||||
}
|
||||
}
|
||||
if (!use_clip_l && !use_clip_g && !use_t5) {
|
||||
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
|
||||
return;
|
||||
}
|
||||
if (use_clip_l) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
|
||||
}
|
||||
if (use_clip_g) {
|
||||
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
|
||||
}
|
||||
if (use_t5) {
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
|
||||
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
|
||||
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
if (clip_l) {
|
||||
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model");
|
||||
}
|
||||
if (t5) {
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
}
|
||||
|
||||
void alloc_params_buffer() override {
|
||||
clip_l->alloc_params_buffer();
|
||||
clip_g->alloc_params_buffer();
|
||||
t5->alloc_params_buffer();
|
||||
if (clip_l) {
|
||||
clip_l->alloc_params_buffer();
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->alloc_params_buffer();
|
||||
}
|
||||
if (t5) {
|
||||
t5->alloc_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
void free_params_buffer() override {
|
||||
clip_l->free_params_buffer();
|
||||
clip_g->free_params_buffer();
|
||||
t5->free_params_buffer();
|
||||
if (clip_l) {
|
||||
clip_l->free_params_buffer();
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->free_params_buffer();
|
||||
}
|
||||
if (t5) {
|
||||
t5->free_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() override {
|
||||
size_t buffer_size = clip_l->get_params_buffer_size();
|
||||
buffer_size += clip_g->get_params_buffer_size();
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
size_t buffer_size = 0;
|
||||
if (clip_l) {
|
||||
buffer_size += clip_l->get_params_buffer_size();
|
||||
}
|
||||
if (clip_g) {
|
||||
buffer_size += clip_g->get_params_buffer_size();
|
||||
}
|
||||
if (t5) {
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
}
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
@ -731,23 +778,32 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
for (const auto& item : parsed_attention) {
|
||||
const std::string& curr_text = item.first;
|
||||
float curr_weight = item.second;
|
||||
|
||||
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
|
||||
|
||||
curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
|
||||
|
||||
curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
if (clip_l) {
|
||||
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
if (clip_g) {
|
||||
std::vector<int> curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
if (t5) {
|
||||
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
}
|
||||
|
||||
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
|
||||
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
|
||||
if (clip_l) {
|
||||
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
|
||||
}
|
||||
if (t5) {
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
|
||||
}
|
||||
|
||||
// for (int i = 0; i < clip_l_tokens.size(); i++) {
|
||||
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
|
||||
@ -795,10 +851,10 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
std::vector<float> hidden_states_vec;
|
||||
|
||||
size_t chunk_len = 77;
|
||||
size_t chunk_count = clip_l_tokens.size() / chunk_len;
|
||||
size_t chunk_count = std::max(std::max(clip_l_tokens.size(), clip_g_tokens.size()), t5_tokens.size()) / chunk_len;
|
||||
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
|
||||
// clip_l
|
||||
{
|
||||
if (clip_l) {
|
||||
std::vector<int> chunk_tokens(clip_l_tokens.begin() + chunk_idx * chunk_len,
|
||||
clip_l_tokens.begin() + (chunk_idx + 1) * chunk_len);
|
||||
std::vector<float> chunk_weights(clip_l_weights.begin() + chunk_idx * chunk_len,
|
||||
@ -845,10 +901,17 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
&pooled_l,
|
||||
work_ctx);
|
||||
}
|
||||
} else {
|
||||
chunk_hidden_states_l = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, chunk_len);
|
||||
ggml_set_f32(chunk_hidden_states_l, 0.f);
|
||||
if (chunk_idx == 0) {
|
||||
pooled_l = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
|
||||
ggml_set_f32(pooled_l, 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// clip_g
|
||||
{
|
||||
if (clip_g) {
|
||||
std::vector<int> chunk_tokens(clip_g_tokens.begin() + chunk_idx * chunk_len,
|
||||
clip_g_tokens.begin() + (chunk_idx + 1) * chunk_len);
|
||||
std::vector<float> chunk_weights(clip_g_weights.begin() + chunk_idx * chunk_len,
|
||||
@ -896,10 +959,17 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
&pooled_g,
|
||||
work_ctx);
|
||||
}
|
||||
} else {
|
||||
chunk_hidden_states_g = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 1280, chunk_len);
|
||||
ggml_set_f32(chunk_hidden_states_g, 0.f);
|
||||
if (chunk_idx == 0) {
|
||||
pooled_g = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1280);
|
||||
ggml_set_f32(pooled_g, 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
// t5
|
||||
{
|
||||
if (t5) {
|
||||
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
|
||||
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
|
||||
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
|
||||
@ -927,6 +997,9 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
float new_mean = ggml_tensor_mean(tensor);
|
||||
ggml_tensor_scale(tensor, (original_mean / new_mean));
|
||||
}
|
||||
} else {
|
||||
chunk_hidden_states_t5 = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
|
||||
ggml_set_f32(chunk_hidden_states_t5, 0.f);
|
||||
}
|
||||
|
||||
auto chunk_hidden_states_lg_pad = ggml_new_tensor_3d(work_ctx,
|
||||
@ -969,11 +1042,20 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
|
||||
}
|
||||
|
||||
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
|
||||
hidden_states = ggml_reshape_2d(work_ctx,
|
||||
hidden_states,
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
if (hidden_states_vec.size() > 0) {
|
||||
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
|
||||
hidden_states = ggml_reshape_2d(work_ctx,
|
||||
hidden_states,
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
} else {
|
||||
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
|
||||
ggml_set_f32(hidden_states, 0.f);
|
||||
}
|
||||
if (pooled == nullptr) {
|
||||
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 2048);
|
||||
ggml_set_f32(pooled, 0.f);
|
||||
}
|
||||
return {hidden_states, pooled, nullptr};
|
||||
}
|
||||
|
||||
@ -999,28 +1081,68 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
FluxCLIPEmbedder(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {}) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
bool use_clip_l = false;
|
||||
bool use_t5 = false;
|
||||
for (auto pair : tensor_types) {
|
||||
if (pair.first.find("text_encoders.clip_l") != std::string::npos) {
|
||||
use_clip_l = true;
|
||||
} else if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
|
||||
use_t5 = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!use_clip_l && !use_t5) {
|
||||
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
|
||||
return;
|
||||
}
|
||||
|
||||
if (use_clip_l) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
|
||||
} else {
|
||||
LOG_WARN("clip_l text encoder not found! Prompt adherence might be degraded.");
|
||||
}
|
||||
if (use_t5) {
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
} else {
|
||||
LOG_WARN("t5xxl text encoder not found! Prompt adherence might be degraded.");
|
||||
}
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
|
||||
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
if (clip_l) {
|
||||
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model");
|
||||
}
|
||||
if (t5) {
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
}
|
||||
|
||||
void alloc_params_buffer() override {
|
||||
clip_l->alloc_params_buffer();
|
||||
t5->alloc_params_buffer();
|
||||
if (clip_l) {
|
||||
clip_l->alloc_params_buffer();
|
||||
}
|
||||
if (t5) {
|
||||
t5->alloc_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
void free_params_buffer() override {
|
||||
clip_l->free_params_buffer();
|
||||
t5->free_params_buffer();
|
||||
if (clip_l) {
|
||||
clip_l->free_params_buffer();
|
||||
}
|
||||
if (t5) {
|
||||
t5->free_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() override {
|
||||
size_t buffer_size = clip_l->get_params_buffer_size();
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
size_t buffer_size = 0;
|
||||
if (clip_l) {
|
||||
buffer_size += clip_l->get_params_buffer_size();
|
||||
}
|
||||
if (t5) {
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
}
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
@ -1050,18 +1172,24 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
for (const auto& item : parsed_attention) {
|
||||
const std::string& curr_text = item.first;
|
||||
float curr_weight = item.second;
|
||||
|
||||
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
|
||||
|
||||
curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
if (clip_l) {
|
||||
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
if (t5) {
|
||||
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
}
|
||||
|
||||
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
|
||||
if (clip_l) {
|
||||
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
|
||||
}
|
||||
if (t5) {
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, nullptr, max_length, padding);
|
||||
}
|
||||
|
||||
// for (int i = 0; i < clip_l_tokens.size(); i++) {
|
||||
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
|
||||
@ -1096,35 +1224,37 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
struct ggml_tensor* pooled = nullptr; // [768,]
|
||||
std::vector<float> hidden_states_vec;
|
||||
|
||||
size_t chunk_count = t5_tokens.size() / chunk_len;
|
||||
size_t chunk_count = std::max(clip_l_tokens.size() > 0 ? chunk_len : 0, t5_tokens.size()) / chunk_len;
|
||||
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
|
||||
// clip_l
|
||||
if (chunk_idx == 0) {
|
||||
size_t chunk_len_l = 77;
|
||||
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
|
||||
clip_l_tokens.begin() + chunk_len_l);
|
||||
std::vector<float> chunk_weights(clip_l_weights.begin(),
|
||||
clip_l_weights.begin() + chunk_len_l);
|
||||
if (clip_l) {
|
||||
size_t chunk_len_l = 77;
|
||||
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
|
||||
clip_l_tokens.begin() + chunk_len_l);
|
||||
std::vector<float> chunk_weights(clip_l_weights.begin(),
|
||||
clip_l_weights.begin() + chunk_len_l);
|
||||
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
|
||||
size_t max_token_idx = 0;
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
|
||||
size_t max_token_idx = 0;
|
||||
|
||||
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
|
||||
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
|
||||
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
|
||||
max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
|
||||
|
||||
clip_l->compute(n_threads,
|
||||
input_ids,
|
||||
0,
|
||||
nullptr,
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled,
|
||||
work_ctx);
|
||||
clip_l->compute(n_threads,
|
||||
input_ids,
|
||||
0,
|
||||
nullptr,
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled,
|
||||
work_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
// t5
|
||||
{
|
||||
if (t5) {
|
||||
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
|
||||
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
|
||||
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
|
||||
@ -1152,6 +1282,9 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
float new_mean = ggml_tensor_mean(tensor);
|
||||
ggml_tensor_scale(tensor, (original_mean / new_mean));
|
||||
}
|
||||
} else {
|
||||
chunk_hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, chunk_len);
|
||||
ggml_set_f32(chunk_hidden_states, 0.f);
|
||||
}
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
@ -1168,11 +1301,20 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
|
||||
}
|
||||
|
||||
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
|
||||
hidden_states = ggml_reshape_2d(work_ctx,
|
||||
hidden_states,
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
if (hidden_states_vec.size() > 0) {
|
||||
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
|
||||
hidden_states = ggml_reshape_2d(work_ctx,
|
||||
hidden_states,
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
} else {
|
||||
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
|
||||
ggml_set_f32(hidden_states, 0.f);
|
||||
}
|
||||
if (pooled == nullptr) {
|
||||
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
|
||||
ggml_set_f32(pooled, 0.f);
|
||||
}
|
||||
return {hidden_states, pooled, nullptr};
|
||||
}
|
||||
|
||||
@ -1203,26 +1345,44 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
int mask_pad = 1,
|
||||
bool is_umt5 = false)
|
||||
: use_mask(use_mask), mask_pad(mask_pad), t5_tokenizer(is_umt5) {
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
|
||||
bool use_t5 = false;
|
||||
for (auto pair : tensor_types) {
|
||||
if (pair.first.find("text_encoders.t5xxl") != std::string::npos) {
|
||||
use_t5 = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!use_t5) {
|
||||
LOG_WARN("IMPORTANT NOTICE: No text encoders provided, cannot process prompts!");
|
||||
return;
|
||||
} else {
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
|
||||
}
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
if (t5) {
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
}
|
||||
|
||||
void alloc_params_buffer() override {
|
||||
t5->alloc_params_buffer();
|
||||
if (t5) {
|
||||
t5->alloc_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
void free_params_buffer() override {
|
||||
t5->free_params_buffer();
|
||||
if (t5) {
|
||||
t5->free_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() override {
|
||||
size_t buffer_size = 0;
|
||||
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
|
||||
if (t5) {
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
}
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
@ -1248,17 +1408,18 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
std::vector<int> t5_tokens;
|
||||
std::vector<float> t5_weights;
|
||||
std::vector<float> t5_mask;
|
||||
for (const auto& item : parsed_attention) {
|
||||
const std::string& curr_text = item.first;
|
||||
float curr_weight = item.second;
|
||||
if (t5) {
|
||||
for (const auto& item : parsed_attention) {
|
||||
const std::string& curr_text = item.first;
|
||||
float curr_weight = item.second;
|
||||
|
||||
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
|
||||
}
|
||||
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);
|
||||
|
||||
return {t5_tokens, t5_weights, t5_mask};
|
||||
}
|
||||
|
||||
@ -1282,6 +1443,13 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> token_and_weights,
|
||||
int clip_skip,
|
||||
bool zero_out_masked = false) {
|
||||
if (!t5) {
|
||||
auto hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
|
||||
ggml_set_f32(hidden_states, 0.f);
|
||||
auto t5_attn_mask = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 256);
|
||||
ggml_set_f32(t5_attn_mask, -HUGE_VALF);
|
||||
return {hidden_states, t5_attn_mask, nullptr};
|
||||
}
|
||||
auto& t5_tokens = std::get<0>(token_and_weights);
|
||||
auto& t5_weights = std::get<1>(token_and_weights);
|
||||
auto& t5_attn_mask_vec = std::get<2>(token_and_weights);
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user