stable-diffusion.cpp/easycache.hpp
2025-11-19 23:19:32 +08:00

265 lines
8.7 KiB
C++

#include <cmath>
#include <limits>
#include <unordered_map>
#include <vector>
#include "denoiser.hpp"
#include "ggml_extend.hpp"
struct EasyCacheConfig {
bool enabled = false;
float reuse_threshold = 0.2f;
float start_percent = 0.15f;
float end_percent = 0.95f;
};
struct EasyCacheCacheEntry {
std::vector<float> diff;
};
struct EasyCacheState {
EasyCacheConfig config;
Denoiser* denoiser = nullptr;
float start_sigma = std::numeric_limits<float>::max();
float end_sigma = 0.0f;
bool initialized = false;
bool initial_step = true;
bool skip_current_step = false;
bool step_active = false;
const SDCondition* anchor_condition = nullptr;
std::unordered_map<const SDCondition*, EasyCacheCacheEntry> cache_diffs;
std::vector<float> prev_input;
std::vector<float> prev_output;
float output_prev_norm = 0.0f;
bool has_prev_input = false;
bool has_prev_output = false;
bool has_output_prev_norm = false;
bool has_relative_transformation_rate = false;
float relative_transformation_rate = 0.0f;
float cumulative_change_rate = 0.0f;
float last_input_change = 0.0f;
bool has_last_input_change = false;
int total_steps_skipped = 0;
int current_step_index = -1;
void reset_runtime() {
initial_step = true;
skip_current_step = false;
step_active = false;
anchor_condition = nullptr;
cache_diffs.clear();
prev_input.clear();
prev_output.clear();
output_prev_norm = 0.0f;
has_prev_input = false;
has_prev_output = false;
has_output_prev_norm = false;
has_relative_transformation_rate = false;
relative_transformation_rate = 0.0f;
cumulative_change_rate = 0.0f;
last_input_change = 0.0f;
has_last_input_change = false;
total_steps_skipped = 0;
current_step_index = -1;
}
void init(const EasyCacheConfig& cfg, Denoiser* d) {
config = cfg;
denoiser = d;
initialized = cfg.enabled && d != nullptr;
reset_runtime();
if (initialized) {
start_sigma = percent_to_sigma(config.start_percent);
end_sigma = percent_to_sigma(config.end_percent);
}
}
bool enabled() const {
return initialized && config.enabled;
}
float percent_to_sigma(float percent) const {
if (!denoiser) {
return 0.0f;
}
if (percent <= 0.0f) {
return std::numeric_limits<float>::max();
}
if (percent >= 1.0f) {
return 0.0f;
}
float t = (1.0f - percent) * (TIMESTEPS - 1);
return denoiser->t_to_sigma(t);
}
void begin_step(int step_index, float sigma) {
if (!enabled()) {
return;
}
if (step_index == current_step_index) {
return;
}
current_step_index = step_index;
skip_current_step = false;
has_last_input_change = false;
step_active = false;
if (sigma > start_sigma) {
return;
}
if (!(sigma > end_sigma)) {
return;
}
step_active = true;
}
bool step_is_active() const {
return enabled() && step_active;
}
bool is_step_skipped() const {
return enabled() && step_active && skip_current_step;
}
bool has_cache(const SDCondition* cond) const {
auto it = cache_diffs.find(cond);
return it != cache_diffs.end() && !it->second.diff.empty();
}
void update_cache(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
EasyCacheCacheEntry& entry = cache_diffs[cond];
size_t ne = static_cast<size_t>(ggml_nelements(output));
entry.diff.resize(ne);
float* out_data = (float*)output->data;
float* in_data = (float*)input->data;
for (size_t i = 0; i < ne; ++i) {
entry.diff[i] = out_data[i] - in_data[i];
}
}
void apply_cache(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
auto it = cache_diffs.find(cond);
if (it == cache_diffs.end() || it->second.diff.empty()) {
return;
}
copy_ggml_tensor(output, input);
float* out_data = (float*)output->data;
const std::vector<float>& diff = it->second.diff;
for (size_t i = 0; i < diff.size(); ++i) {
out_data[i] += diff[i];
}
}
bool before_condition(const SDCondition* cond,
ggml_tensor* input,
ggml_tensor* output,
float sigma,
int step_index) {
if (!enabled() || step_index < 0) {
return false;
}
if (step_index != current_step_index) {
begin_step(step_index, sigma);
}
if (!step_active) {
return false;
}
if (initial_step) {
anchor_condition = cond;
initial_step = false;
}
bool is_anchor = (cond == anchor_condition);
if (skip_current_step) {
if (has_cache(cond)) {
apply_cache(cond, input, output);
return true;
}
return false;
}
if (!is_anchor) {
return false;
}
if (!has_prev_input || !has_prev_output || !has_cache(cond)) {
return false;
}
size_t ne = static_cast<size_t>(ggml_nelements(input));
if (prev_input.size() != ne) {
return false;
}
float* input_data = (float*)input->data;
last_input_change = 0.0f;
for (size_t i = 0; i < ne; ++i) {
last_input_change += std::fabs(input_data[i] - prev_input[i]);
}
if (ne > 0) {
last_input_change /= static_cast<float>(ne);
}
has_last_input_change = true;
if (has_output_prev_norm && has_relative_transformation_rate && last_input_change > 0.0f && output_prev_norm > 0.0f) {
float approx_output_change_rate = (relative_transformation_rate * last_input_change) / output_prev_norm;
cumulative_change_rate += approx_output_change_rate;
if (cumulative_change_rate < config.reuse_threshold) {
skip_current_step = true;
total_steps_skipped++;
apply_cache(cond, input, output);
return true;
} else {
cumulative_change_rate = 0.0f;
}
}
return false;
}
void after_condition(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
if (!step_is_active()) {
return;
}
update_cache(cond, input, output);
if (cond != anchor_condition) {
return;
}
size_t ne = static_cast<size_t>(ggml_nelements(input));
float* in_data = (float*)input->data;
prev_input.resize(ne);
for (size_t i = 0; i < ne; ++i) {
prev_input[i] = in_data[i];
}
has_prev_input = true;
float* out_data = (float*)output->data;
float output_change = 0.0f;
if (has_prev_output && prev_output.size() == ne) {
for (size_t i = 0; i < ne; ++i) {
output_change += std::fabs(out_data[i] - prev_output[i]);
}
if (ne > 0) {
output_change /= static_cast<float>(ne);
}
}
prev_output.resize(ne);
for (size_t i = 0; i < ne; ++i) {
prev_output[i] = out_data[i];
}
has_prev_output = true;
float mean_abs = 0.0f;
for (size_t i = 0; i < ne; ++i) {
mean_abs += std::fabs(out_data[i]);
}
output_prev_norm = (ne > 0) ? (mean_abs / static_cast<float>(ne)) : 0.0f;
has_output_prev_norm = output_prev_norm > 0.0f;
if (has_last_input_change && last_input_change > 0.0f && output_change > 0.0f) {
float rate = output_change / last_input_change;
if (std::isfinite(rate)) {
relative_transformation_rate = rate;
has_relative_transformation_rate = true;
}
}
cumulative_change_rate = 0.0f;
has_last_input_change = false;
}
};