1391 lines
66 KiB
C++

#ifndef __QWENVL_HPP__
#define __QWENVL_HPP__
#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <optional>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "clip.hpp"
#include "ggml_extend.hpp"
#include "json.hpp"
#include "rope.hpp"
#include "tokenize_util.h"
namespace Qwen {
constexpr int QWENVL_GRAPH_SIZE = 10240;
class Qwen2Tokenizer {
private:
std::map<int, std::u32string> byte_encoder;
std::map<std::u32string, int> byte_decoder;
std::map<std::u32string, int> encoder;
std::map<int, std::u32string> decoder;
std::map<std::pair<std::u32string, std::u32string>, int> bpe_ranks;
std::regex pat;
int encoder_len;
int bpe_len;
public:
const std::string UNK_TOKEN = "<|endoftext|>";
const std::string EOS_TOKEN = "<|endoftext|>";
const std::string PAD_TOKEN = "<|endoftext|>";
const int UNK_TOKEN_ID = 151643;
const int EOS_TOKEN_ID = 151643;
const int PAD_TOKEN_ID = 151643;
std::vector<std::string> special_tokens = {
"<|endoftext|>",
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>",
"<tool_call>",
"</tool_call>",
"<|fim_prefix|>",
"<|fim_middle|>",
"<|fim_suffix|>",
"<|fim_pad|>",
"<|repo_name|>",
"<|file_sep|>",
};
private:
static std::string strip(const std::string& str) {
std::string::size_type start = str.find_first_not_of(" \t\n\r\v\f");
std::string::size_type end = str.find_last_not_of(" \t\n\r\v\f");
if (start == std::string::npos) {
// String contains only whitespace characters
return "";
}
return str.substr(start, end - start + 1);
}
static std::string whitespace_clean(std::string text) {
text = std::regex_replace(text, std::regex(R"(\s+)"), " ");
text = strip(text);
return text;
}
static std::set<std::pair<std::u32string, std::u32string>> get_pairs(const std::vector<std::u32string>& subwords) {
std::set<std::pair<std::u32string, std::u32string>> pairs;
if (subwords.size() == 0) {
return pairs;
}
std::u32string prev_subword = subwords[0];
for (int i = 1; i < subwords.size(); i++) {
std::u32string subword = subwords[i];
std::pair<std::u32string, std::u32string> pair(prev_subword, subword);
pairs.insert(pair);
prev_subword = subword;
}
return pairs;
}
bool is_special_token(const std::string& token) {
for (auto& special_token : special_tokens) {
if (special_token == token) {
return true;
}
}
return false;
}
public:
explicit Qwen2Tokenizer(const std::string& merges_utf8_str = "") {
if (merges_utf8_str.size() > 0) {
load_from_merges(merges_utf8_str);
} else {
load_from_merges(ModelLoader::load_qwen2_merges());
}
}
void load_from_merges(const std::string& merges_utf8_str) {
auto byte_unicode_pairs = bytes_to_unicode();
// printf("byte_unicode_pairs have %lu pairs \n", byte_unicode_pairs.size());
byte_encoder = std::map<int, std::u32string>(byte_unicode_pairs.begin(), byte_unicode_pairs.end());
for (auto& pair : byte_unicode_pairs) {
byte_decoder[pair.second] = pair.first;
}
// for (auto & pair: byte_unicode_pairs) {
// std::cout << pair.first << ": " << pair.second << std::endl;
// }
std::vector<std::u32string> merges;
size_t start = 0;
size_t pos;
std::u32string merges_utf32_str = utf8_to_utf32(merges_utf8_str);
while ((pos = merges_utf32_str.find('\n', start)) != std::string::npos) {
merges.push_back(merges_utf32_str.substr(start, pos - start));
start = pos + 1;
}
LOG_DEBUG("merges size %llu", merges.size());
merges = std::vector<std::u32string>(merges.begin(), merges.end());
std::vector<std::pair<std::u32string, std::u32string>> merge_pairs;
for (const auto& merge : merges) {
size_t space_pos = merge.find(' ');
merge_pairs.emplace_back(merge.substr(0, space_pos), merge.substr(space_pos + 1));
// LOG_DEBUG("%s", utf32_to_utf8(merge.substr(space_pos + 1)).c_str());
// printf("%s :: %s | %s \n", utf32_to_utf8(merge).c_str(), utf32_to_utf8(merge.substr(0, space_pos)).c_str(),
// utf32_to_utf8(merge.substr(space_pos + 1)).c_str());
}
std::vector<std::u32string> vocab;
for (const auto& pair : byte_unicode_pairs) {
vocab.push_back(pair.second);
}
for (const auto& merge : merge_pairs) {
vocab.push_back(merge.first + merge.second);
}
for (auto& special_token : special_tokens) {
vocab.push_back(utf8_to_utf32(special_token));
}
LOG_DEBUG("vocab size: %llu", vocab.size());
int i = 0;
for (const auto& token : vocab) {
encoder[token] = i;
decoder[i] = token;
i++;
}
encoder_len = i;
int rank = 0;
for (const auto& merge : merge_pairs) {
bpe_ranks[merge] = rank++;
}
bpe_len = rank;
};
std::u32string bpe(const std::u32string& token) {
std::vector<std::u32string> word;
for (int i = 0; i < token.size(); i++) {
word.emplace_back(1, token[i]);
}
std::set<std::pair<std::u32string, std::u32string>> pairs = get_pairs(word);
if (pairs.empty()) {
return token;
}
while (true) {
auto min_pair_iter = std::min_element(pairs.begin(),
pairs.end(),
[&](const std::pair<std::u32string, std::u32string>& a,
const std::pair<std::u32string, std::u32string>& b) {
if (bpe_ranks.find(a) == bpe_ranks.end()) {
return false;
} else if (bpe_ranks.find(b) == bpe_ranks.end()) {
return true;
}
return bpe_ranks.at(a) < bpe_ranks.at(b);
});
const std::pair<std::u32string, std::u32string>& bigram = *min_pair_iter;
if (bpe_ranks.find(bigram) == bpe_ranks.end()) {
break;
}
std::u32string first = bigram.first;
std::u32string second = bigram.second;
std::vector<std::u32string> new_word;
int32_t i = 0;
while (i < word.size()) {
auto it = std::find(word.begin() + i, word.end(), first);
if (it == word.end()) {
new_word.insert(new_word.end(), word.begin() + i, word.end());
break;
}
new_word.insert(new_word.end(), word.begin() + i, it);
i = static_cast<int32_t>(std::distance(word.begin(), it));
if (word[i] == first && i < static_cast<int32_t>(word.size()) - 1 && word[i + 1] == second) {
new_word.push_back(first + second);
i += 2;
} else {
new_word.push_back(word[i]);
i += 1;
}
}
word = new_word;
if (word.size() == 1) {
break;
}
pairs = get_pairs(word);
}
std::u32string result;
for (int i = 0; i < word.size(); i++) {
result += word[i];
if (i != word.size() - 1) {
result += utf8_to_utf32(" ");
}
}
return result;
}
std::vector<int> tokenize(std::string text,
on_new_token_cb_t on_new_token_cb = nullptr,
size_t max_length = 0,
bool padding = false) {
std::vector<int32_t> tokens = encode(text, on_new_token_cb);
if (max_length > 0) {
if (tokens.size() < max_length) {
tokens.resize(max_length);
} else {
if (padding) {
tokens.insert(tokens.end(), max_length - tokens.size(), PAD_TOKEN_ID);
}
}
}
return tokens;
}
void pad_tokens(std::vector<int>& tokens,
std::vector<float>& weights,
size_t max_length = 0,
bool padding = false) {
if (max_length > 0 && padding) {
size_t n = std::ceil(tokens.size() * 1.0 / max_length);
if (n == 0) {
n = 1;
}
size_t length = max_length * n;
LOG_DEBUG("token length: %llu", length);
tokens.insert(tokens.end(), length - tokens.size(), PAD_TOKEN_ID);
weights.insert(weights.end(), length - weights.size(), 1.0);
}
}
std::vector<int> encode(std::string text, on_new_token_cb_t on_new_token_cb = nullptr) {
std::string original_text = text;
std::vector<int32_t> bpe_tokens;
std::vector<std::string> token_strs;
auto splited_texts = split_with_special_tokens(text, special_tokens);
for (auto& splited_text : splited_texts) {
if (is_special_token(splited_text)) {
bpe_tokens.push_back(encoder[utf8_to_utf32(splited_text)]);
token_strs.push_back(splited_text);
continue;
}
auto tokens = token_split(splited_text);
for (auto& token : tokens) {
if (on_new_token_cb != nullptr) {
bool skip = on_new_token_cb(token, bpe_tokens);
if (skip) {
continue;
}
}
std::string token_str = token;
std::u32string utf32_token;
for (int i = 0; i < token_str.length(); i++) {
unsigned char b = token_str[i];
utf32_token += byte_encoder[b];
}
auto bpe_strs = bpe(utf32_token);
size_t start = 0;
size_t pos;
while ((pos = bpe_strs.find(' ', start)) != std::u32string::npos) {
auto bpe_str = bpe_strs.substr(start, pos - start);
bpe_tokens.push_back(encoder[bpe_str]);
token_strs.push_back(utf32_to_utf8(bpe_str));
start = pos + 1;
}
auto bpe_str = bpe_strs.substr(start, bpe_strs.size() - start);
bpe_tokens.push_back(encoder[bpe_str]);
token_strs.push_back(utf32_to_utf8(bpe_str));
}
}
std::stringstream ss;
ss << "[";
for (auto token : token_strs) {
ss << "\"" << token << "\", ";
}
ss << "]";
// LOG_DEBUG("split prompt \"%s\" to tokens %s", original_text.c_str(), ss.str().c_str());
// printf("split prompt \"%s\" to tokens %s \n", original_text.c_str(), ss.str().c_str());
return bpe_tokens;
}
};
struct Qwen2_5_VLMLP : public GGMLBlock {
public:
Qwen2_5_VLMLP(int64_t hidden_size, int64_t intermediate_size, bool bias = false) {
blocks["gate_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, bias));
blocks["up_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, bias));
blocks["down_proj"] = std::shared_ptr<GGMLBlock>(new Linear(intermediate_size, hidden_size, bias));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, hidden_size]
auto gate_proj = std::dynamic_pointer_cast<Linear>(blocks["gate_proj"]);
auto up_proj = std::dynamic_pointer_cast<Linear>(blocks["up_proj"]);
auto down_proj = std::dynamic_pointer_cast<Linear>(blocks["down_proj"]);
auto h = gate_proj->forward(ctx, x);
h = ggml_silu_inplace(ctx, h);
h = ggml_mul_inplace(ctx, h, up_proj->forward(ctx, x));
h = down_proj->forward(ctx, h);
return h;
}
};
struct Qwen2_5_VisionPatchEmbed : public GGMLBlock {
protected:
bool llama_cpp_style;
int patch_size;
int temporal_patch_size;
int64_t in_channels;
int64_t embed_dim;
public:
Qwen2_5_VisionPatchEmbed(bool llama_cpp_style,
int patch_size = 14,
int temporal_patch_size = 2,
int64_t in_channels = 3,
int64_t embed_dim = 1152)
: llama_cpp_style(llama_cpp_style),
patch_size(patch_size),
temporal_patch_size(temporal_patch_size),
in_channels(in_channels),
embed_dim(embed_dim) {
if (llama_cpp_style) {
blocks["proj.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels,
embed_dim,
{patch_size, patch_size},
{patch_size, patch_size}, // stride
{0, 0}, // padding
{1, 1}, // dilation
false));
blocks["proj.1"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels,
embed_dim,
{patch_size, patch_size},
{patch_size, patch_size}, // stride
{0, 0}, // padding
{1, 1}, // dilation
false));
} else {
std::tuple<int, int, int> kernel_size = {(int)temporal_patch_size, (int)patch_size, (int)patch_size};
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Conv3d(in_channels,
embed_dim,
kernel_size,
kernel_size, // stride
{0, 0, 0}, // padding
{1, 1, 1}, // dilation
false));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N*grid_t*grid_h*grid_w, in_channels, temporal_patch_size*patch_size*patch_size]
// return: [N*grid_t*grid_h*grid_w, embed_dim]
x = ggml_reshape_4d(ctx,
x,
patch_size,
patch_size,
temporal_patch_size,
ggml_nelements(x) / (temporal_patch_size * patch_size * patch_size));
if (llama_cpp_style) {
auto proj_0 = std::dynamic_pointer_cast<Conv2d>(blocks["proj.0"]);
auto proj_1 = std::dynamic_pointer_cast<Conv2d>(blocks["proj.1"]);
auto x0 = ggml_slice(ctx, x, 2, 0, 1);
x0 = ggml_reshape_4d(ctx, x0, x0->ne[0], x0->ne[1], in_channels, x0->ne[3] / in_channels);
x0 = proj_0->forward(ctx, x0);
auto x1 = ggml_slice(ctx, x, 2, 1, 2);
x1 = ggml_reshape_4d(ctx, x1, x1->ne[0], x1->ne[1], in_channels, x1->ne[3] / in_channels);
x1 = proj_1->forward(ctx, x1);
x = ggml_add(ctx, x0, x1);
} else {
auto proj = std::dynamic_pointer_cast<Conv3d>(blocks["proj"]);
x = proj->forward(ctx, x);
}
x = ggml_reshape_2d(ctx, x, embed_dim, ggml_nelements(x) / embed_dim);
return x;
}
};
struct Qwen2_5_VLPatchMerger : public GGMLBlock {
protected:
int64_t hidden_size;
public:
Qwen2_5_VLPatchMerger(int64_t dim,
int64_t context_dim,
int64_t spatial_merge_size) {
hidden_size = context_dim * spatial_merge_size * spatial_merge_size;
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(context_dim, 1e-6f));
blocks["mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
// mlp.1 is nn.GELU()
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
auto ln_q = std::dynamic_pointer_cast<RMSNorm>(blocks["ln_q"]);
auto mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["mlp.0"]);
auto mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["mlp.2"]);
x = ln_q->forward(ctx, x);
x = ggml_reshape_2d(ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
x = mlp_0->forward(ctx, x);
x = ggml_gelu(ctx, x);
x = mlp_2->forward(ctx, x);
return x;
}
};
struct Qwen2_5_VLVisionAttention : public GGMLBlock {
protected:
bool llama_cpp_style;
int64_t head_dim;
int64_t num_heads;
public:
Qwen2_5_VLVisionAttention(bool llama_cpp_style,
int64_t hidden_size,
int64_t num_heads)
: llama_cpp_style(llama_cpp_style), num_heads(num_heads) {
head_dim = hidden_size / num_heads;
GGML_ASSERT(num_heads * head_dim == hidden_size);
if (llama_cpp_style) {
blocks["q_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
blocks["k_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
blocks["v_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
} else {
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size * 3));
}
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask = nullptr) {
// x: [N, n_token, hidden_size]
int64_t n_token = x->ne[1];
int64_t N = x->ne[2];
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
std::vector<ggml_tensor*> qkv_vec;
if (llama_cpp_style) {
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks["q_proj"]);
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks["k_proj"]);
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks["v_proj"]);
auto q = q_proj->forward(ctx, x);
auto k = k_proj->forward(ctx, x);
auto v = v_proj->forward(ctx, x);
qkv_vec = {q, k, v};
} else {
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
auto qkv = qkv_proj->forward(ctx, x);
qkv_vec = split_qkv(ctx, qkv);
}
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
x = Rope::attention(ctx, backend, q, k, v, pe, mask, false, 1.f, false); // [N, n_token, hidden_size]
x = proj->forward(ctx, x); // [N, n_token, hidden_size]
return x;
}
};
struct Qwen2_5_VLVisionBlock : public GGMLBlock {
public:
Qwen2_5_VLVisionBlock(bool llama_cpp_style,
int64_t hidden_size,
int64_t intermediate_size,
int64_t num_heads,
float eps = 1e-6f) {
blocks["attn"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionAttention(llama_cpp_style, hidden_size, num_heads));
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLMLP(hidden_size, intermediate_size, true));
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask = nullptr) {
// x: [N, n_token, hidden_size]
auto attn = std::dynamic_pointer_cast<Qwen2_5_VLVisionAttention>(blocks["attn"]);
auto mlp = std::dynamic_pointer_cast<Qwen2_5_VLMLP>(blocks["mlp"]);
auto norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["norm2"]);
auto residual = x;
x = norm1->forward(ctx, x);
x = attn->forward(ctx, backend, x, pe, mask);
x = ggml_add_inplace(ctx, x, residual);
residual = x;
x = norm2->forward(ctx, x);
x = mlp->forward(ctx, x);
x = ggml_add_inplace(ctx, x, residual);
return x;
}
};
struct Qwen2_5_VLVisionModel : public GGMLBlock {
protected:
int64_t num_layers;
int64_t spatial_merge_size;
std::set<int> fullatt_block_indexes;
public:
Qwen2_5_VLVisionModel(bool llama_cpp_style,
int64_t num_layers,
int64_t in_channels,
int64_t hidden_size,
int64_t out_hidden_size,
int64_t intermediate_size,
int64_t num_heads,
int64_t spatial_merge_size,
int64_t patch_size,
int64_t temporal_patch_size,
int64_t window_size,
std::set<int> fullatt_block_indexes = {7, 15, 23, 31},
float eps = 1e-6f)
: num_layers(num_layers), fullatt_block_indexes(std::move(fullatt_block_indexes)), spatial_merge_size(spatial_merge_size) {
blocks["patch_embed"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VisionPatchEmbed(llama_cpp_style,
patch_size,
temporal_patch_size,
in_channels,
hidden_size));
for (int i = 0; i < num_layers; i++) {
blocks["blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionBlock(llama_cpp_style,
hidden_size,
intermediate_size,
num_heads,
eps));
}
blocks["merger"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLPatchMerger(out_hidden_size, hidden_size, spatial_merge_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* pe,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
// pixel_values: [grid_t*(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw]
// window_index: [grid_t*(H/mh/ph)*(W/mw/pw)]
// window_inverse_index: [grid_t*(H/mh/ph)*(W/mw/pw)]
// window_mask: [grid_h*grid_w, grid_h*grid_w]
auto patch_embed = std::dynamic_pointer_cast<Qwen2_5_VisionPatchEmbed>(blocks["patch_embed"]);
auto merger = std::dynamic_pointer_cast<Qwen2_5_VLPatchMerger>(blocks["merger"]);
auto x = patch_embed->forward(ctx, pixel_values);
x = ggml_reshape_4d(ctx, x, x->ne[0] * spatial_merge_size * spatial_merge_size, x->ne[1] / spatial_merge_size / spatial_merge_size, x->ne[2], x->ne[3]);
x = ggml_get_rows(ctx, x, window_index);
x = ggml_reshape_4d(ctx, x, x->ne[0] / spatial_merge_size / spatial_merge_size, x->ne[1] * spatial_merge_size * spatial_merge_size, x->ne[2], x->ne[3]);
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<Qwen2_5_VLVisionBlock>(blocks["blocks." + std::to_string(i)]);
auto mask = window_mask;
if (fullatt_block_indexes.find(i) != fullatt_block_indexes.end()) {
mask = nullptr;
}
x = block->forward(ctx, backend, x, pe, mask);
}
x = merger->forward(ctx, x);
x = ggml_get_rows(ctx, x, window_inverse_index);
return x;
}
};
struct Qwen2_5_VLAttention : public GGMLBlock {
protected:
int64_t head_dim;
int64_t num_heads;
int64_t num_kv_heads;
public:
Qwen2_5_VLAttention(int64_t hidden_size,
int64_t num_heads,
int64_t num_kv_heads)
: num_heads(num_heads), num_kv_heads(num_kv_heads) {
head_dim = hidden_size / num_heads;
GGML_ASSERT(num_heads * head_dim == hidden_size);
blocks["q_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, num_heads * head_dim));
blocks["k_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, num_kv_heads * head_dim));
blocks["v_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, num_kv_heads * head_dim));
blocks["o_proj"] = std::shared_ptr<GGMLBlock>(new Linear(num_heads * head_dim, hidden_size, false));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* input_pos) {
// x: [N, n_token, hidden_size]
int64_t n_token = x->ne[1];
int64_t N = x->ne[2];
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks["q_proj"]);
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks["k_proj"]);
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks["v_proj"]);
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks["o_proj"]);
auto q = q_proj->forward(ctx, x); // [N, n_token, num_heads*head_dim]
auto k = k_proj->forward(ctx, x); // [N, n_token, num_kv_heads*head_dim]
auto v = v_proj->forward(ctx, x); // [N, n_token, num_kv_heads*head_dim]
q = ggml_reshape_4d(ctx, q, head_dim, num_heads, n_token, N); // [N, n_token, num_heads, head_dim]
k = ggml_reshape_4d(ctx, k, head_dim, num_kv_heads, n_token, N); // [N, n_token, num_kv_heads, head_dim]
v = ggml_reshape_4d(ctx, v, head_dim, num_kv_heads, n_token, N); // [N, n_token, num_kv_heads, head_dim]
int sections[4] = {16, 24, 24, 0};
q = ggml_rope_multi(ctx, q, input_pos, nullptr, head_dim, sections, GGML_ROPE_TYPE_MROPE, 128000, 1000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
k = ggml_rope_multi(ctx, k, input_pos, nullptr, head_dim, sections, GGML_ROPE_TYPE_MROPE, 128000, 1000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
q = ggml_cont(ctx, ggml_torch_permute(ctx, q, 0, 2, 1, 3)); // [N, num_heads, n_token, head_dim]
q = ggml_reshape_3d(ctx, q, q->ne[0], q->ne[1], q->ne[2] * q->ne[3]); // [N*num_heads, n_token, head_dim]
k = ggml_cont(ctx, ggml_torch_permute(ctx, k, 0, 2, 1, 3)); // [N, num_kv_heads, n_token, head_dim]
k = ggml_reshape_3d(ctx, k, k->ne[0], k->ne[1], k->ne[2] * k->ne[3]); // [N*num_kv_heads, n_token, head_dim]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, num_heads, nullptr, true, true, false); // [N, n_token, hidden_size]
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
return x;
}
};
struct Qwen2_5_VLBlock : public GGMLBlock {
public:
Qwen2_5_VLBlock(int64_t hidden_size,
int64_t intermediate_size,
int64_t num_heads,
int64_t num_kv_heads,
float eps = 1e-6f) {
blocks["self_attn"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLAttention(hidden_size, num_heads, num_kv_heads));
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLMLP(hidden_size, intermediate_size));
blocks["input_layernorm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
blocks["post_attention_layernorm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* input_pos) {
// x: [N, n_token, hidden_size]
auto self_attn = std::dynamic_pointer_cast<Qwen2_5_VLAttention>(blocks["self_attn"]);
auto mlp = std::dynamic_pointer_cast<Qwen2_5_VLMLP>(blocks["mlp"]);
auto input_layernorm = std::dynamic_pointer_cast<RMSNorm>(blocks["input_layernorm"]);
auto post_attention_layernorm = std::dynamic_pointer_cast<RMSNorm>(blocks["post_attention_layernorm"]);
auto residual = x;
x = input_layernorm->forward(ctx, x);
x = self_attn->forward(ctx, backend, x, input_pos);
x = ggml_add_inplace(ctx, x, residual);
residual = x;
x = post_attention_layernorm->forward(ctx, x);
x = mlp->forward(ctx, x);
x = ggml_add_inplace(ctx, x, residual);
return x;
}
};
struct Qwen2_5_VLTextModel : public GGMLBlock {
protected:
int64_t num_layers;
public:
Qwen2_5_VLTextModel(int64_t num_layers,
int64_t vocab_size,
int64_t hidden_size,
int64_t intermediate_size,
int64_t num_heads,
int64_t num_kv_heads,
float eps = 1e-6f)
: num_layers(num_layers) {
blocks["embed_tokens"] = std::shared_ptr<GGMLBlock>(new Embedding(vocab_size, hidden_size));
for (int i = 0; i < num_layers; i++) {
blocks["layers." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLBlock(hidden_size,
intermediate_size,
num_heads,
num_kv_heads));
}
blocks["norm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* input_pos,
std::vector<std::pair<int, ggml_tensor*>> image_embeds) {
// input_ids: [N, n_token]
// return: [N, n_token, hidden_size]
auto embed_tokens = std::dynamic_pointer_cast<Embedding>(blocks["embed_tokens"]);
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["norm"]);
auto x = embed_tokens->forward(ctx, input_ids);
if (image_embeds.size() > 0) {
GGML_ASSERT(x->ne[2] == 1); // N == 1
auto raw_x = ggml_cast(ctx, x, image_embeds[0].second->type);
int64_t txt_token_start = 0;
int64_t txt_token_end = 0;
ggml_tensor* input_embed = nullptr;
for (int i = 0; i < image_embeds.size(); i++) {
if (i == 0) {
txt_token_start = 0;
} else {
txt_token_start = image_embeds[i - 1].first + image_embeds[i - 1].second->ne[1];
}
txt_token_end = image_embeds[i].first;
auto txt_embed = ggml_slice(ctx, raw_x, 1, txt_token_start, txt_token_end);
if (input_embed == nullptr) {
input_embed = txt_embed;
} else {
input_embed = ggml_concat(ctx, input_embed, txt_embed, 1);
}
auto image_embed = image_embeds[i].second;
input_embed = ggml_concat(ctx, input_embed, image_embed, 1);
}
txt_token_start = image_embeds[image_embeds.size() - 1].first + image_embeds[image_embeds.size() - 1].second->ne[1];
txt_token_end = raw_x->ne[1];
auto final_txt_embed = ggml_slice(ctx, raw_x, 1, txt_token_start, txt_token_end);
input_embed = ggml_concat(ctx, input_embed, final_txt_embed, 1);
GGML_ASSERT(raw_x->ne[1] == input_embed->ne[1]);
x = input_embed;
}
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<Qwen2_5_VLBlock>(blocks["layers." + std::to_string(i)]);
x = block->forward(ctx, backend, x, input_pos);
}
x = norm->forward(ctx, x);
return x;
}
};
struct Qwen2_5_VLVisionParams {
int64_t num_layers = 32;
int64_t hidden_size = 1280;
int64_t intermediate_size = 3420;
int64_t num_heads = 16;
int64_t in_channels = 3;
int64_t out_hidden_size = 3584;
int64_t temporal_patch_size = 2;
int64_t patch_size = 14;
int64_t spatial_merge_size = 2;
int64_t window_size = 112;
std::set<int> fullatt_block_indexes = {7, 15, 23, 31};
};
struct Qwen2_5_VLParams {
int64_t num_layers = 28;
int64_t hidden_size = 3584;
int64_t intermediate_size = 18944;
int64_t num_heads = 28;
int64_t num_kv_heads = 4;
int64_t vocab_size = 152064;
float rms_norm_eps = 1e-06f;
Qwen2_5_VLVisionParams vision;
};
struct Qwen2_5_VL : public GGMLBlock {
bool enable_vision;
Qwen2_5_VLParams params;
public:
Qwen2_5_VL() {}
Qwen2_5_VL(Qwen2_5_VLParams params, bool enable_vision = false, bool llama_cpp_style = false)
: enable_vision(enable_vision), params(params) {
blocks["model"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLTextModel(params.num_layers,
params.vocab_size,
params.hidden_size,
params.intermediate_size,
params.num_heads,
params.num_kv_heads,
params.rms_norm_eps));
if (enable_vision) {
blocks["visual"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionModel(llama_cpp_style,
params.vision.num_layers,
params.vision.in_channels,
params.vision.hidden_size,
params.vision.out_hidden_size,
params.vision.intermediate_size,
params.vision.num_heads,
params.vision.spatial_merge_size,
params.vision.patch_size,
params.vision.temporal_patch_size,
params.vision.window_size,
params.vision.fullatt_block_indexes));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* input_pos,
std::vector<std::pair<int, ggml_tensor*>> image_embeds) {
// input_ids: [N, n_token]
auto model = std::dynamic_pointer_cast<Qwen2_5_VLTextModel>(blocks["model"]);
auto x = model->forward(ctx, backend, input_ids, input_pos, image_embeds);
return x;
}
struct ggml_tensor* vision_forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* pe,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
GGML_ASSERT(enable_vision);
auto vision_model = std::dynamic_pointer_cast<Qwen2_5_VLVisionModel>(blocks["visual"]);
return vision_model->forward(ctx, backend, pixel_values, pe, window_index, window_inverse_index, window_mask);
}
};
struct Qwen2_5_VLRunner : public GGMLRunner {
Qwen2_5_VLParams params;
bool enable_vision;
Qwen2_5_VL model;
std::vector<int> input_pos_vec;
std::vector<float> window_mask_vec;
std::vector<int> window_index_vec;
std::vector<int> window_inverse_index_vec;
std::vector<float> pe_vec;
Qwen2_5_VLRunner(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types,
const std::string prefix,
bool enable_vision_ = false)
: GGMLRunner(backend, offload_params_to_cpu), enable_vision(enable_vision_) {
bool have_vision_weight = false;
bool llama_cpp_style = false;
for (auto pair : tensor_types) {
std::string tensor_name = pair.first;
if (tensor_name.find(prefix) == std::string::npos)
continue;
size_t pos = tensor_name.find("visual.");
if (pos != std::string::npos) {
have_vision_weight = true;
if (contains(tensor_name, "attn.q_proj")) {
llama_cpp_style = true;
break;
}
}
}
if (enable_vision && !have_vision_weight) {
LOG_WARN("no vision weights detected, vision disabled");
enable_vision = false;
}
if (enable_vision) {
LOG_DEBUG("enable qwen2vl vision");
if (llama_cpp_style) {
LOG_DEBUG("llama.cpp style vision weight");
}
}
model = Qwen2_5_VL(params, enable_vision, llama_cpp_style);
model.init(params_ctx, tensor_types, prefix);
}
std::string get_desc() override {
return "qwenvl2.5";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* input_pos,
std::vector<std::pair<int, ggml_tensor*>> image_embeds) {
auto hidden_states = model.forward(ctx, backend, input_ids, input_pos, image_embeds); // [N, n_token, hidden_size]
return hidden_states;
}
struct ggml_tensor* vision_forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* input_pos,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
auto hidden_states = model.vision_forward(ctx, backend, pixel_values, input_pos, window_index, window_inverse_index, window_mask);
return hidden_states;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids, std::vector<std::pair<int, ggml_tensor*>> image_embeds) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
input_ids = to_backend(input_ids);
for (auto& image_embed : image_embeds) {
image_embed.second = to_backend(image_embed.second);
}
int64_t n_tokens = input_ids->ne[0];
input_pos_vec.resize(n_tokens * 4);
for (int i = 0; i < n_tokens; ++i) {
input_pos_vec[i] = i;
input_pos_vec[n_tokens + i] = i;
input_pos_vec[2 * n_tokens + i] = i;
input_pos_vec[3 * n_tokens + i] = 0;
}
auto input_pos = ggml_new_tensor_1d(compute_ctx,
GGML_TYPE_I32,
n_tokens * 4);
set_backend_tensor_data(input_pos, input_pos_vec.data());
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, input_pos, image_embeds);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* input_ids,
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
ggml_tensor** output,
ggml_context* output_ctx = nullptr) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(input_ids, image_embeds);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
int64_t get_num_image_tokens(int64_t t, int64_t h, int64_t w) {
int grid_t = 1;
int grid_h = h / params.vision.patch_size;
int grid_w = w / params.vision.patch_size;
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
return grid_t * grid_h * grid_w;
}
struct ggml_tensor* process_image(struct ggml_context* ctx, struct ggml_tensor* image) {
// image: [C, H, W]
// return: [grid_t*(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw], grid_t == 1
int64_t C = image->ne[2];
int64_t H = image->ne[1];
int64_t W = image->ne[0];
int64_t mh = params.vision.spatial_merge_size;
int64_t mw = params.vision.spatial_merge_size;
int64_t pt = params.vision.temporal_patch_size;
int64_t ph = params.vision.patch_size;
int64_t pw = params.vision.patch_size;
image = ggml_reshape_4d(ctx, image, pw, mw, (W / mw / pw), H * C); // [C*H, (W/mw/pw), mw, pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 3, 1)); // [mw, C*H, (W/mw/pw), pw]
image = ggml_reshape_4d(ctx, image, pw * (W / mw / pw), H, C, mw); // [mw, C, H, (W/mw/pw)*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 3, 1)); // [H, mw, C, (W/mw/pw)*pw]
image = ggml_reshape_4d(ctx, image, pw, (W / mw / pw) * C * mw, ph, mh * (H / mh / ph)); // [(H/mh/ph)*mh, ph, mw*C*(W/mw/pw), pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph)*mh, mw*C*(W/mw/pw), ph, pw]
image = ggml_reshape_4d(ctx, image, pw * ph, (W / mw / pw), C, mw * mh * (H / mh / ph)); // [(H/mh/ph)*mh*mw, C, (W/mw/pw), ph*pw]
image = ggml_concat(ctx, image, image, 0); // [(H/mh/ph)*mh*mw, C, (W/mw/pw), pt*ph*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph)*mh*mw, (W/mw/pw), C, pt*ph*pw]
image = ggml_reshape_4d(ctx, image, pw * ph * pt * C, (W / mw / pw), mw * mh, (H / mh / ph)); // [(H/mh/ph), mh*mw, (W/mw/pw), C*pt*ph*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph), (W/mw/pw), mh*mw, C*pt*ph*pw]
image = ggml_reshape_2d(ctx, image, pw * ph * pt * C, mw * mh * (W / mw / pw) * (H / mh / ph)); // [(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw]
return image;
}
struct ggml_cgraph* build_encode_image_graph(struct ggml_tensor* image) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWENVL_GRAPH_SIZE, false);
GGML_ASSERT(image->ne[1] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
int grid_t = 1;
int grid_h = image->ne[1] / params.vision.patch_size;
int grid_w = image->ne[0] / params.vision.patch_size;
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
int vit_merger_window_size = params.vision.window_size / params.vision.patch_size / params.vision.spatial_merge_size;
image = to_backend(image);
auto pixel_values = process_image(compute_ctx, image);
// window index
int inverse_index = 0;
window_index_vec.resize(llm_grid_h * llm_grid_w);
window_inverse_index_vec.resize(llm_grid_h * llm_grid_w);
std::vector<int> seqlens;
for (int ih = 0; ih < llm_grid_h; ih += vit_merger_window_size) {
for (int iw = 0; iw < llm_grid_w; iw += vit_merger_window_size) {
int win_h = std::min(vit_merger_window_size, llm_grid_h - ih);
int win_w = std::min(vit_merger_window_size, llm_grid_w - iw);
for (int iy = 0; iy < win_h; iy++) {
for (int ix = 0; ix < win_w; ix++) {
int index = (ih + iy) * llm_grid_w + iw + ix;
window_index_vec[inverse_index] = index;
window_inverse_index_vec[index] = inverse_index;
inverse_index++;
}
}
seqlens.push_back(win_h * win_w * params.vision.spatial_merge_size * params.vision.spatial_merge_size);
}
}
// printf("window_index: ");
// for (int i : window_index_vec) {
// printf("%d ", i);
// }
// printf("\n");
// printf("window_inverse_index: ");
// for (int i : window_inverse_index_vec) {
// printf("%d ", i);
// }
// printf("\n");
// printf("seqlens: ");
// for (int i : seqlens) {
// printf("%d ", i);
// }
// printf("\n");
auto window_index = ggml_new_tensor_1d(compute_ctx,
GGML_TYPE_I32,
llm_grid_h * llm_grid_w);
auto window_inverse_index = ggml_new_tensor_1d(compute_ctx,
GGML_TYPE_I32,
llm_grid_h * llm_grid_w);
set_backend_tensor_data(window_index, window_index_vec.data());
set_backend_tensor_data(window_inverse_index, window_inverse_index_vec.data());
// window mask
int seq_window_size = (vit_merger_window_size * params.vision.spatial_merge_size) * (vit_merger_window_size * params.vision.spatial_merge_size);
window_mask_vec.resize((grid_h * grid_w) * (grid_h * grid_w));
int window_start_index = 0;
for (int seq_index = 0; seq_index < seqlens.size(); seq_index++) {
int window_end_index = window_start_index + seqlens[seq_index];
// LOG_DEBUG("%d %d", window_start_index, window_end_index);
GGML_ASSERT(window_end_index <= grid_h * grid_w);
for (int i = window_start_index; i < window_end_index; i++) {
for (int j = 0; j < grid_h * grid_w; j++) {
float mask_value = -INFINITY;
if (j >= window_start_index && j < window_end_index) {
mask_value = 0;
}
GGML_ASSERT((i * (grid_h * grid_w) + j) < window_mask_vec.size());
window_mask_vec[i * (grid_h * grid_w) + j] = mask_value;
}
}
window_start_index = window_end_index;
// printf("\n");
}
// printf("window_mask: \n");
// for (int i = 0; i < grid_h*grid_w; i++) {
// for (int j = 0; j < grid_h*grid_w; j++) {
// printf("%f ", window_mask_vec[i * (grid_h * grid_w) + j]);
// }
// printf("\n");
// }
auto window_mask = ggml_new_tensor_2d(compute_ctx,
GGML_TYPE_F32,
grid_h * grid_w,
grid_h * grid_w);
set_backend_tensor_data(window_mask, window_mask_vec.data());
// pe
int head_dim = params.vision.hidden_size / params.vision.num_heads;
pe_vec = Rope::gen_qwen2vl_pe(grid_h,
grid_w,
params.vision.spatial_merge_size,
window_inverse_index_vec,
10000.f,
{head_dim / 2, head_dim / 2});
int pos_len = pe_vec.size() / head_dim / 2;
// LOG_DEBUG("pos_len %d", pos_len);
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, head_dim / 2, pos_len);
// pe->data = pe_vec.data();
// print_ggml_tensor(pe);
// pe->data = nullptr;
set_backend_tensor_data(pe, pe_vec.data());
struct ggml_tensor* hidden_states = vision_forward(compute_ctx,
runtime_backend,
pixel_values,
pe,
window_index,
window_inverse_index,
window_mask);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void encode_image(const int n_threads,
struct ggml_tensor* image,
ggml_tensor** output,
ggml_context* output_ctx = nullptr) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_encode_image_graph(image);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};
struct Qwen2_5_VLEmbedder {
Qwen2Tokenizer tokenizer;
Qwen2_5_VLRunner model;
Qwen2_5_VLEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {},
const std::string prefix = "",
bool enable_vision = false)
: model(backend, offload_params_to_cpu, tensor_types, prefix, enable_vision) {
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
void alloc_params_buffer() {
model.alloc_params_buffer();
}
std::tuple<std::vector<int>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0,
bool padding = false) {
auto parsed_attention = parse_prompt_attention(text);
{
std::stringstream ss;
ss << "[";
for (const auto& item : parsed_attention) {
ss << "['" << item.first << "', " << item.second << "], ";
}
ss << "]";
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
}
std::vector<int> tokens;
std::vector<float> weights;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;
std::vector<int> curr_tokens = tokenizer.tokenize(curr_text, nullptr);
tokens.insert(tokens.end(), curr_tokens.begin(), curr_tokens.end());
weights.insert(weights.end(), curr_tokens.size(), curr_weight);
}
tokenizer.pad_tokens(tokens, weights, max_length, padding);
// for (int i = 0; i < tokens.size(); i++) {
// std::cout << tokens[i] << ":" << weights[i] << ", ";
// }
// std::cout << std::endl;
return {tokens, weights};
}
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1GB
params.mem_buffer = nullptr;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != nullptr);
bool test_vit = true;
bool test_decoder_with_vit = true;
if (test_decoder_with_vit) {
ggml_tensor* image_embed = nullptr;
{
auto image = load_tensor_from_file(work_ctx, "qwen2vl_normalized.bin");
print_ggml_tensor(image, false, "image");
struct ggml_tensor* out = nullptr;
int t0 = ggml_time_ms();
model.encode_image(8, image, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out, false, "image_embed");
image_embed = out;
LOG_DEBUG("qwen2vl encode_image test done in %dms", t1 - t0);
}
std::string placeholder = "<|image_pad|>";
std::string img_prompt = "Picture 1: <|vision_start|>"; // [24669, 220, 16, 25, 220, 151652]
int64_t num_image_tokens = image_embed->ne[1];
img_prompt.reserve(num_image_tokens * placeholder.size());
for (int i = 0; i < num_image_tokens; i++) {
img_prompt += placeholder;
}
img_prompt += "<|vision_end|>";
std::vector<std::pair<int, ggml_tensor*>> image_embeds;
image_embeds.emplace_back(64, image_embed);
std::string text = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n";
text += img_prompt;
text += "change 'flux.cpp' to 'edit.cpp'";
text += "<|im_end|>\n<|im_start|>assistant\n";
auto tokens_and_weights = tokenize(text, 0, false);
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
std::vector<float>& weights = std::get<1>(tokens_and_weights);
for (auto token : tokens) {
printf("%d ", token);
}
printf("\n");
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
struct ggml_tensor* out = nullptr;
int t0 = ggml_time_ms();
model.compute(8, input_ids, image_embeds, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("qwen2vl test done in %dms", t1 - t0);
} else if (test_vit) {
// auto image = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 280, 280, 3);
// ggml_set_f32(image, 0.f);
auto image = load_tensor_from_file(work_ctx, "qwen2vl_normalized.bin");
print_ggml_tensor(image, false, "image");
struct ggml_tensor* out = nullptr;
int t0 = ggml_time_ms();
model.encode_image(8, image, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out, false, "out");
// auto ref_out = load_tensor_from_file(work_ctx, "qwen2vl.bin");
// ggml_tensor_diff(ref_out, out, 0.01f);
LOG_DEBUG("qwen2vl test done in %dms", t1 - t0);
} else {
std::string text("<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\na lovely cat<|im_end|>\n<|im_start|>assistant\n");
auto tokens_and_weights = tokenize(text, 0, false);
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
std::vector<float>& weights = std::get<1>(tokens_and_weights);
for (auto token : tokens) {
printf("%d ", token);
}
printf("\n");
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
struct ggml_tensor* out = nullptr;
int t0 = ggml_time_ms();
model.compute(8, input_ids, {}, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);
LOG_DEBUG("qwen2vl test done in %dms", t1 - t0);
}
}
static void load_from_file_and_test(const std::string& file_path) {
// cpu f16: pass
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F16;
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path, "qwen2vl.")) {
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
return;
}
auto tensor_types = model_loader.tensor_storages_types;
for (auto& item : tensor_types) {
// LOG_DEBUG("%s %u", item.first.c_str(), item.second);
if (ends_with(item.first, "weight")) {
item.second = model_data_type;
}
}
std::shared_ptr<Qwen2_5_VLEmbedder> qwenvl = std::make_shared<Qwen2_5_VLEmbedder>(backend,
false,
tensor_types,
"qwen2vl",
true);
qwenvl->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
qwenvl->get_param_tensors(tensors, "qwen2vl");
bool success = model_loader.load_tensors(tensors);
if (!success) {
LOG_ERROR("load tensors from model loader failed");
return;
}
LOG_INFO("qwenvl model loaded");
qwenvl->test();
}
};
}; // Qwen
#endif // __QWENVL_HPP__