mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
* add z-image support * use flux_latent_rgb_proj for z-image * fix qwen3 rope type * add support for qwen3 4b gguf * add support for diffusers format lora * fix nan issue that occurs when using CUDA with k-quants weights * add z-image docs
670 lines
33 KiB
C++
670 lines
33 KiB
C++
#ifndef __Z_IMAGE_HPP__
|
|
#define __Z_IMAGE_HPP__
|
|
|
|
#include <algorithm>
|
|
|
|
#include "flux.hpp"
|
|
#include "ggml_extend.hpp"
|
|
#include "mmdit.hpp"
|
|
|
|
// Ref: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
|
|
// Ref: https://github.com/huggingface/diffusers/pull/12703
|
|
|
|
#ifndef MIN
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#endif
|
|
|
|
namespace ZImage {
|
|
constexpr int Z_IMAGE_GRAPH_SIZE = 20480;
|
|
constexpr int ADALN_EMBED_DIM = 256;
|
|
constexpr int SEQ_MULTI_OF = 32;
|
|
|
|
struct JointAttention : public GGMLBlock {
|
|
protected:
|
|
int64_t head_dim;
|
|
int64_t num_heads;
|
|
int64_t num_kv_heads;
|
|
bool qk_norm;
|
|
|
|
public:
|
|
JointAttention(int64_t hidden_size, int64_t head_dim, int64_t num_heads, int64_t num_kv_heads, bool qk_norm)
|
|
: head_dim(head_dim), num_heads(num_heads), num_kv_heads(num_kv_heads), qk_norm(qk_norm) {
|
|
blocks["qkv"] = std::make_shared<Linear>(hidden_size, (num_heads + num_kv_heads * 2) * head_dim, false);
|
|
blocks["out"] = std::make_shared<Linear>(num_heads * head_dim, hidden_size, false);
|
|
if (qk_norm) {
|
|
blocks["q_norm"] = std::make_shared<RMSNorm>(head_dim);
|
|
blocks["k_norm"] = std::make_shared<RMSNorm>(head_dim);
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* pe,
|
|
struct ggml_tensor* mask = nullptr) {
|
|
// x: [N, n_token, hidden_size]
|
|
int64_t n_token = x->ne[1];
|
|
int64_t N = x->ne[2];
|
|
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
|
|
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks["out"]);
|
|
|
|
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
|
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
|
qkv = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1)); // [num_heads + num_kv_heads*2, N, n_token, head_dim]
|
|
|
|
auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0); // [num_heads, N, n_token, head_dim]
|
|
auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads); // [num_kv_heads, N, n_token, head_dim]
|
|
auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads)); // [num_kv_heads, N, n_token, head_dim]
|
|
|
|
q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2)); // [N, n_token, num_heads, head_dim]
|
|
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
|
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
|
|
|
if (qk_norm) {
|
|
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
|
auto k_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["k_norm"]);
|
|
|
|
q = q_norm->forward(ctx, q);
|
|
k = k_norm->forward(ctx, k);
|
|
}
|
|
|
|
x = Rope::attention(ctx, q, k, v, pe, mask, 1.f / 128.f); // [N, n_token, num_heads * head_dim]
|
|
|
|
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
|
return x;
|
|
}
|
|
};
|
|
|
|
class FeedForward : public GGMLBlock {
|
|
public:
|
|
FeedForward(int64_t dim,
|
|
int64_t hidden_dim,
|
|
int64_t multiple_of,
|
|
float ffn_dim_multiplier = 0.f) {
|
|
if (ffn_dim_multiplier > 0.f) {
|
|
hidden_dim = static_cast<int64_t>(ffn_dim_multiplier * hidden_dim);
|
|
}
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) / multiple_of);
|
|
blocks["w1"] = std::make_shared<Linear>(dim, hidden_dim, false);
|
|
|
|
bool force_prec_f32 = false;
|
|
float scale = 1.f / 128.f;
|
|
#ifdef SD_USE_VULKAN
|
|
force_prec_f32 = true;
|
|
#endif
|
|
// The purpose of the scale here is to prevent NaN issues in certain situations.
|
|
// For example, when using CUDA but the weights are k-quants.
|
|
blocks["w2"] = std::make_shared<Linear>(hidden_dim, dim, false, false, force_prec_f32, 1.f / 128.f);
|
|
blocks["w3"] = std::make_shared<Linear>(dim, hidden_dim, false);
|
|
}
|
|
|
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
|
auto w1 = std::dynamic_pointer_cast<Linear>(blocks["w1"]);
|
|
auto w2 = std::dynamic_pointer_cast<Linear>(blocks["w2"]);
|
|
auto w3 = std::dynamic_pointer_cast<Linear>(blocks["w3"]);
|
|
|
|
auto x1 = w1->forward(ctx, x);
|
|
auto x3 = w3->forward(ctx, x);
|
|
x = ggml_mul(ctx->ggml_ctx, ggml_silu(ctx->ggml_ctx, x1), x3);
|
|
x = w2->forward(ctx, x);
|
|
|
|
return x;
|
|
}
|
|
};
|
|
|
|
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* scale) {
|
|
// x: [N, L, C]
|
|
// scale: [N, C]
|
|
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
|
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
|
return x;
|
|
}
|
|
|
|
struct JointTransformerBlock : public GGMLBlock {
|
|
protected:
|
|
bool modulation;
|
|
|
|
public:
|
|
JointTransformerBlock(int layer_id,
|
|
int64_t hidden_size,
|
|
int64_t head_dim,
|
|
int64_t num_heads,
|
|
int64_t num_kv_heads,
|
|
int64_t multiple_of,
|
|
float ffn_dim_multiplier,
|
|
float norm_eps,
|
|
bool qk_norm,
|
|
bool modulation = true)
|
|
: modulation(modulation) {
|
|
blocks["attention"] = std::make_shared<JointAttention>(hidden_size, head_dim, num_heads, num_kv_heads, qk_norm);
|
|
blocks["feed_forward"] = std::make_shared<FeedForward>(hidden_size, hidden_size, multiple_of, ffn_dim_multiplier);
|
|
blocks["attention_norm1"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
|
blocks["ffn_norm1"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
|
blocks["attention_norm2"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
|
blocks["ffn_norm2"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
|
if (modulation) {
|
|
blocks["adaLN_modulation.0"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), 4 * hidden_size);
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* pe,
|
|
struct ggml_tensor* mask = nullptr,
|
|
struct ggml_tensor* adaln_input = nullptr) {
|
|
auto attention = std::dynamic_pointer_cast<JointAttention>(blocks["attention"]);
|
|
auto feed_forward = std::dynamic_pointer_cast<FeedForward>(blocks["feed_forward"]);
|
|
auto attention_norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm1"]);
|
|
auto ffn_norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm1"]);
|
|
auto attention_norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm2"]);
|
|
auto ffn_norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm2"]);
|
|
|
|
if (modulation) {
|
|
GGML_ASSERT(adaln_input != nullptr);
|
|
auto adaLN_modulation_0 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.0"]);
|
|
|
|
auto m = adaLN_modulation_0->forward(ctx, adaln_input); // [N, 4 * hidden_size]
|
|
auto mods = ggml_ext_chunk(ctx->ggml_ctx, m, 4, 0);
|
|
auto scale_msa = mods[0];
|
|
auto gate_msa = mods[1];
|
|
auto scale_mlp = mods[2];
|
|
auto gate_mlp = mods[3];
|
|
|
|
auto residual = x;
|
|
x = modulate(ctx->ggml_ctx, attention_norm1->forward(ctx, x), scale_msa);
|
|
x = attention->forward(ctx, x, pe, mask);
|
|
x = attention_norm2->forward(ctx, x);
|
|
x = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_msa));
|
|
x = ggml_add(ctx->ggml_ctx, x, residual);
|
|
|
|
residual = x;
|
|
x = modulate(ctx->ggml_ctx, ffn_norm1->forward(ctx, x), scale_mlp);
|
|
x = feed_forward->forward(ctx, x);
|
|
x = ffn_norm2->forward(ctx, x);
|
|
x = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_mlp));
|
|
x = ggml_add(ctx->ggml_ctx, x, residual);
|
|
} else {
|
|
GGML_ASSERT(adaln_input == nullptr);
|
|
|
|
auto residual = x;
|
|
x = attention_norm1->forward(ctx, x);
|
|
x = attention->forward(ctx, x, pe, mask);
|
|
x = attention_norm2->forward(ctx, x);
|
|
x = ggml_add(ctx->ggml_ctx, x, residual);
|
|
|
|
residual = x;
|
|
x = ffn_norm1->forward(ctx, x);
|
|
x = feed_forward->forward(ctx, x);
|
|
x = ffn_norm2->forward(ctx, x);
|
|
x = ggml_add(ctx->ggml_ctx, x, residual);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
};
|
|
|
|
struct FinalLayer : public GGMLBlock {
|
|
public:
|
|
FinalLayer(int64_t hidden_size,
|
|
int64_t patch_size,
|
|
int64_t out_channels) {
|
|
blocks["norm_final"] = std::make_shared<LayerNorm>(hidden_size, 1e-06f, false);
|
|
blocks["linear"] = std::make_shared<Linear>(hidden_size, patch_size * patch_size * out_channels, true, true);
|
|
blocks["adaLN_modulation.1"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), hidden_size);
|
|
}
|
|
|
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* c) {
|
|
// x: [N, n_token, hidden_size]
|
|
// c: [N, hidden_size]
|
|
// return: [N, n_token, patch_size * patch_size * out_channels]
|
|
auto norm_final = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]);
|
|
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
|
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
|
|
|
auto scale = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, hidden_size]
|
|
x = norm_final->forward(ctx, x);
|
|
x = modulate(ctx->ggml_ctx, x, scale);
|
|
x = linear->forward(ctx, x);
|
|
|
|
return x;
|
|
}
|
|
};
|
|
|
|
struct ZImageParams {
|
|
int64_t patch_size = 2;
|
|
int64_t hidden_size = 3840;
|
|
int64_t in_channels = 16;
|
|
int64_t out_channels = 16;
|
|
int64_t num_layers = 30;
|
|
int64_t num_refiner_layers = 2;
|
|
int64_t head_dim = 128;
|
|
int64_t num_heads = 30;
|
|
int64_t num_kv_heads = 30;
|
|
int64_t multiple_of = 256;
|
|
float ffn_dim_multiplier = 8.0 / 3.0f;
|
|
float norm_eps = 1e-5f;
|
|
bool qk_norm = true;
|
|
int64_t cap_feat_dim = 2560;
|
|
float theta = 256.f;
|
|
std::vector<int> axes_dim = {32, 48, 48};
|
|
int64_t axes_dim_sum = 128;
|
|
};
|
|
|
|
class ZImageModel : public GGMLBlock {
|
|
protected:
|
|
ZImageParams z_image_params;
|
|
|
|
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
|
params["cap_pad_token"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
|
|
params["x_pad_token"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
|
|
}
|
|
|
|
public:
|
|
ZImageModel() = default;
|
|
ZImageModel(ZImageParams z_image_params)
|
|
: z_image_params(z_image_params) {
|
|
blocks["x_embedder"] = std::make_shared<Linear>(z_image_params.patch_size * z_image_params.patch_size * z_image_params.in_channels, z_image_params.hidden_size);
|
|
blocks["t_embedder"] = std::make_shared<TimestepEmbedder>(MIN(z_image_params.hidden_size, 1024), 256, 256);
|
|
blocks["cap_embedder.0"] = std::make_shared<RMSNorm>(z_image_params.cap_feat_dim, z_image_params.norm_eps);
|
|
blocks["cap_embedder.1"] = std::make_shared<Linear>(z_image_params.cap_feat_dim, z_image_params.hidden_size);
|
|
|
|
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
|
auto block = std::make_shared<JointTransformerBlock>(i,
|
|
z_image_params.hidden_size,
|
|
z_image_params.head_dim,
|
|
z_image_params.num_heads,
|
|
z_image_params.num_kv_heads,
|
|
z_image_params.multiple_of,
|
|
z_image_params.ffn_dim_multiplier,
|
|
z_image_params.norm_eps,
|
|
z_image_params.qk_norm,
|
|
true);
|
|
|
|
blocks["noise_refiner." + std::to_string(i)] = block;
|
|
}
|
|
|
|
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
|
auto block = std::make_shared<JointTransformerBlock>(i,
|
|
z_image_params.hidden_size,
|
|
z_image_params.head_dim,
|
|
z_image_params.num_heads,
|
|
z_image_params.num_kv_heads,
|
|
z_image_params.multiple_of,
|
|
z_image_params.ffn_dim_multiplier,
|
|
z_image_params.norm_eps,
|
|
z_image_params.qk_norm,
|
|
false);
|
|
|
|
blocks["context_refiner." + std::to_string(i)] = block;
|
|
}
|
|
|
|
for (int i = 0; i < z_image_params.num_layers; i++) {
|
|
auto block = std::make_shared<JointTransformerBlock>(i,
|
|
z_image_params.hidden_size,
|
|
z_image_params.head_dim,
|
|
z_image_params.num_heads,
|
|
z_image_params.num_kv_heads,
|
|
z_image_params.multiple_of,
|
|
z_image_params.ffn_dim_multiplier,
|
|
z_image_params.norm_eps,
|
|
z_image_params.qk_norm,
|
|
true);
|
|
|
|
blocks["layers." + std::to_string(i)] = block;
|
|
}
|
|
|
|
blocks["final_layer"] = std::make_shared<FinalLayer>(z_image_params.hidden_size, z_image_params.patch_size, z_image_params.out_channels);
|
|
}
|
|
|
|
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
|
struct ggml_tensor* x) {
|
|
int64_t W = x->ne[0];
|
|
int64_t H = x->ne[1];
|
|
|
|
int pad_h = (z_image_params.patch_size - H % z_image_params.patch_size) % z_image_params.patch_size;
|
|
int pad_w = (z_image_params.patch_size - W % z_image_params.patch_size) % z_image_params.patch_size;
|
|
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
|
return x;
|
|
}
|
|
|
|
struct ggml_tensor* patchify(struct ggml_context* ctx,
|
|
struct ggml_tensor* x) {
|
|
// x: [N, C, H, W]
|
|
// return: [N, h*w, patch_size*patch_size*C]
|
|
int64_t N = x->ne[3];
|
|
int64_t C = x->ne[2];
|
|
int64_t H = x->ne[1];
|
|
int64_t W = x->ne[0];
|
|
int64_t p = z_image_params.patch_size;
|
|
int64_t h = H / z_image_params.patch_size;
|
|
int64_t w = W / z_image_params.patch_size;
|
|
|
|
GGML_ASSERT(h * p == H && w * p == W);
|
|
|
|
x = ggml_reshape_4d(ctx, x, p, w, p, h * C * N); // [N*C*h, p, w, p]
|
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, w, p, p]
|
|
x = ggml_reshape_4d(ctx, x, p * p, w * h, C, N); // [N, C, h*w, p*p]
|
|
x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 2, 0, 1, 3)); // [N, h*w, C, p*p]
|
|
x = ggml_reshape_3d(ctx, x, C * p * p, w * h, N); // [N, h*w, p*p*C]
|
|
return x;
|
|
}
|
|
|
|
struct ggml_tensor* process_img(struct ggml_context* ctx,
|
|
struct ggml_tensor* x) {
|
|
x = pad_to_patch_size(ctx, x);
|
|
x = patchify(ctx, x);
|
|
return x;
|
|
}
|
|
|
|
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
|
|
struct ggml_tensor* x,
|
|
int64_t h,
|
|
int64_t w) {
|
|
// x: [N, h*w, patch_size*patch_size*C]
|
|
// return: [N, C, H, W]
|
|
int64_t N = x->ne[2];
|
|
int64_t C = x->ne[0] / z_image_params.patch_size / z_image_params.patch_size;
|
|
int64_t H = h * z_image_params.patch_size;
|
|
int64_t W = w * z_image_params.patch_size;
|
|
int64_t p = z_image_params.patch_size;
|
|
|
|
GGML_ASSERT(C * p * p == x->ne[0]);
|
|
|
|
x = ggml_reshape_4d(ctx, x, C, p * p, w * h, N); // [N, h*w, p*p, C]
|
|
x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 1, 2, 0, 3)); // [N, C, h*w, p*p]
|
|
x = ggml_reshape_4d(ctx, x, p, p, w, h * C * N); // [N*C*h, w, p, p]
|
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, p, w, p]
|
|
x = ggml_reshape_4d(ctx, x, W, H, C, N); // [N, C, h*p, w*p]
|
|
|
|
return x;
|
|
}
|
|
|
|
struct ggml_tensor* forward_core(GGMLRunnerContext* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* timestep,
|
|
struct ggml_tensor* context,
|
|
struct ggml_tensor* pe) {
|
|
auto x_embedder = std::dynamic_pointer_cast<Linear>(blocks["x_embedder"]);
|
|
auto t_embedder = std::dynamic_pointer_cast<TimestepEmbedder>(blocks["t_embedder"]);
|
|
auto cap_embedder_0 = std::dynamic_pointer_cast<RMSNorm>(blocks["cap_embedder.0"]);
|
|
auto cap_embedder_1 = std::dynamic_pointer_cast<Linear>(blocks["cap_embedder.1"]);
|
|
auto norm_final = std::dynamic_pointer_cast<RMSNorm>(blocks["norm_final"]);
|
|
auto final_layer = std::dynamic_pointer_cast<FinalLayer>(blocks["final_layer"]);
|
|
|
|
auto txt_pad_token = params["cap_pad_token"];
|
|
auto img_pad_token = params["x_pad_token"];
|
|
|
|
int64_t N = x->ne[2];
|
|
int64_t n_img_token = x->ne[1];
|
|
int64_t n_txt_token = context->ne[1];
|
|
|
|
auto t_emb = t_embedder->forward(ctx, timestep);
|
|
|
|
auto txt = cap_embedder_1->forward(ctx, cap_embedder_0->forward(ctx, context)); // [N, n_txt_token, hidden_size]
|
|
auto img = x_embedder->forward(ctx, x); // [N, n_img_token, hidden_size]
|
|
|
|
int64_t n_txt_pad_token = Rope::bound_mod(n_txt_token, SEQ_MULTI_OF);
|
|
if (n_txt_pad_token > 0) {
|
|
auto txt_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, txt_pad_token, txt_pad_token->ne[0], n_txt_pad_token, N, 1);
|
|
txt = ggml_concat(ctx->ggml_ctx, txt, txt_pad_tokens, 1); // [N, n_txt_token + n_txt_pad_token, hidden_size]
|
|
}
|
|
|
|
int64_t n_img_pad_token = Rope::bound_mod(n_img_token, SEQ_MULTI_OF);
|
|
if (n_img_pad_token > 0) {
|
|
auto img_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, img_pad_token, img_pad_token->ne[0], n_img_pad_token, N, 1);
|
|
img = ggml_concat(ctx->ggml_ctx, img, img_pad_tokens, 1); // [N, n_img_token + n_img_pad_token, hidden_size]
|
|
}
|
|
|
|
GGML_ASSERT(txt->ne[1] + img->ne[1] == pe->ne[3]);
|
|
|
|
auto txt_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, 0, txt->ne[1]);
|
|
auto img_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, txt->ne[1], pe->ne[3]);
|
|
|
|
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
|
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["context_refiner." + std::to_string(i)]);
|
|
|
|
txt = block->forward(ctx, txt, txt_pe, nullptr, nullptr);
|
|
}
|
|
|
|
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
|
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["noise_refiner." + std::to_string(i)]);
|
|
|
|
img = block->forward(ctx, img, img_pe, nullptr, t_emb);
|
|
}
|
|
|
|
auto txt_img = ggml_concat(ctx->ggml_ctx, txt, img, 1); // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, hidden_size]
|
|
|
|
for (int i = 0; i < z_image_params.num_layers; i++) {
|
|
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["layers." + std::to_string(i)]);
|
|
|
|
txt_img = block->forward(ctx, txt_img, pe, nullptr, t_emb);
|
|
}
|
|
|
|
txt_img = final_layer->forward(ctx, txt_img, t_emb); // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, ph*pw*C]
|
|
|
|
img = ggml_ext_slice(ctx->ggml_ctx, txt_img, 1, n_txt_token + n_txt_pad_token, n_txt_token + n_txt_pad_token + n_img_token); // [N, n_img_token, ph*pw*C]
|
|
|
|
return img;
|
|
}
|
|
|
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* timestep,
|
|
struct ggml_tensor* context,
|
|
struct ggml_tensor* pe,
|
|
std::vector<ggml_tensor*> ref_latents = {}) {
|
|
// Forward pass of DiT.
|
|
// x: [N, C, H, W]
|
|
// timestep: [N,]
|
|
// context: [N, L, D]
|
|
// pe: [L, d_head/2, 2, 2]
|
|
// return: [N, C, H, W]
|
|
|
|
int64_t W = x->ne[0];
|
|
int64_t H = x->ne[1];
|
|
int64_t C = x->ne[2];
|
|
int64_t N = x->ne[3];
|
|
|
|
auto img = process_img(ctx->ggml_ctx, x);
|
|
uint64_t n_img_token = img->ne[1];
|
|
|
|
if (ref_latents.size() > 0) {
|
|
for (ggml_tensor* ref : ref_latents) {
|
|
ref = process_img(ctx->ggml_ctx, ref);
|
|
img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
|
|
}
|
|
}
|
|
|
|
int64_t h_len = ((H + (z_image_params.patch_size / 2)) / z_image_params.patch_size);
|
|
int64_t w_len = ((W + (z_image_params.patch_size / 2)) / z_image_params.patch_size);
|
|
|
|
auto out = forward_core(ctx, img, timestep, context, pe);
|
|
|
|
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, n_img_token); // [N, n_img_token, ph*pw*C]
|
|
out = unpatchify(ctx->ggml_ctx, out, h_len, w_len); // [N, C, H + pad_h, W + pad_w]
|
|
|
|
// slice
|
|
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
|
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
|
|
|
out = ggml_scale(ctx->ggml_ctx, out, -1.f);
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
struct ZImageRunner : public GGMLRunner {
|
|
public:
|
|
ZImageParams z_image_params;
|
|
ZImageModel z_image;
|
|
std::vector<float> pe_vec;
|
|
std::vector<float> timestep_vec;
|
|
SDVersion version;
|
|
|
|
ZImageRunner(ggml_backend_t backend,
|
|
bool offload_params_to_cpu,
|
|
const String2TensorStorage& tensor_storage_map = {},
|
|
const std::string prefix = "",
|
|
SDVersion version = VERSION_Z_IMAGE)
|
|
: GGMLRunner(backend, offload_params_to_cpu) {
|
|
z_image = ZImageModel(z_image_params);
|
|
z_image.init(params_ctx, tensor_storage_map, prefix);
|
|
}
|
|
|
|
std::string get_desc() override {
|
|
return "z_image";
|
|
}
|
|
|
|
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
|
z_image.get_param_tensors(tensors, prefix);
|
|
}
|
|
|
|
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
|
|
struct ggml_tensor* timesteps,
|
|
struct ggml_tensor* context,
|
|
std::vector<ggml_tensor*> ref_latents = {},
|
|
bool increase_ref_index = false) {
|
|
GGML_ASSERT(x->ne[3] == 1);
|
|
struct ggml_cgraph* gf = new_graph_custom(Z_IMAGE_GRAPH_SIZE);
|
|
|
|
x = to_backend(x);
|
|
context = to_backend(context);
|
|
timesteps = to_backend(timesteps);
|
|
|
|
for (int i = 0; i < ref_latents.size(); i++) {
|
|
ref_latents[i] = to_backend(ref_latents[i]);
|
|
}
|
|
|
|
pe_vec = Rope::gen_z_image_pe(x->ne[1],
|
|
x->ne[0],
|
|
z_image_params.patch_size,
|
|
x->ne[3],
|
|
context->ne[1],
|
|
SEQ_MULTI_OF,
|
|
ref_latents,
|
|
increase_ref_index,
|
|
z_image_params.theta,
|
|
z_image_params.axes_dim);
|
|
int pos_len = pe_vec.size() / z_image_params.axes_dim_sum / 2;
|
|
// LOG_DEBUG("pos_len %d", pos_len);
|
|
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, z_image_params.axes_dim_sum / 2, pos_len);
|
|
// pe->data = pe_vec.data();
|
|
// print_ggml_tensor(pe, true, "pe");
|
|
// pe->data = nullptr;
|
|
set_backend_tensor_data(pe, pe_vec.data());
|
|
auto runner_ctx = get_context();
|
|
|
|
struct ggml_tensor* out = z_image.forward(&runner_ctx,
|
|
x,
|
|
timesteps,
|
|
context,
|
|
pe,
|
|
ref_latents);
|
|
|
|
ggml_build_forward_expand(gf, out);
|
|
|
|
return gf;
|
|
}
|
|
|
|
void compute(int n_threads,
|
|
struct ggml_tensor* x,
|
|
struct ggml_tensor* timesteps,
|
|
struct ggml_tensor* context,
|
|
std::vector<ggml_tensor*> ref_latents = {},
|
|
bool increase_ref_index = false,
|
|
struct ggml_tensor** output = nullptr,
|
|
struct ggml_context* output_ctx = nullptr) {
|
|
// x: [N, in_channels, h, w]
|
|
// timesteps: [N, ]
|
|
// context: [N, max_position, hidden_size]
|
|
auto get_graph = [&]() -> struct ggml_cgraph* {
|
|
return build_graph(x, timesteps, context, ref_latents, increase_ref_index);
|
|
};
|
|
|
|
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
|
|
}
|
|
|
|
void test() {
|
|
struct ggml_init_params params;
|
|
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1GB
|
|
params.mem_buffer = nullptr;
|
|
params.no_alloc = false;
|
|
|
|
struct ggml_context* work_ctx = ggml_init(params);
|
|
GGML_ASSERT(work_ctx != nullptr);
|
|
|
|
{
|
|
// auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
|
|
// ggml_set_f32(x, 0.01f);
|
|
auto x = load_tensor_from_file(work_ctx, "./z_image_x.bin");
|
|
print_ggml_tensor(x);
|
|
|
|
std::vector<float> timesteps_vec(1, 0.f);
|
|
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
|
|
|
|
// auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 2560, 256, 1);
|
|
// ggml_set_f32(context, 0.01f);
|
|
auto context = load_tensor_from_file(work_ctx, "./z_image_context.bin");
|
|
print_ggml_tensor(context);
|
|
|
|
struct ggml_tensor* out = nullptr;
|
|
|
|
int t0 = ggml_time_ms();
|
|
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
|
int t1 = ggml_time_ms();
|
|
|
|
print_ggml_tensor(out);
|
|
LOG_DEBUG("z_image test done in %dms", t1 - t0);
|
|
}
|
|
}
|
|
|
|
static void load_from_file_and_test(const std::string& file_path) {
|
|
// cuda q8: pass
|
|
// cuda q8 fa: pass
|
|
// ggml_backend_t backend = ggml_backend_cuda_init(0);
|
|
ggml_backend_t backend = ggml_backend_cpu_init();
|
|
ggml_type model_data_type = GGML_TYPE_Q8_0;
|
|
|
|
ModelLoader model_loader;
|
|
if (!model_loader.init_from_file_and_convert_name(file_path, "model.diffusion_model.")) {
|
|
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
|
|
return;
|
|
}
|
|
|
|
auto& tensor_storage_map = model_loader.get_tensor_storage_map();
|
|
if (model_data_type != GGML_TYPE_COUNT) {
|
|
for (auto& [name, tensor_storage] : tensor_storage_map) {
|
|
if (ends_with(name, "weight")) {
|
|
tensor_storage.expected_type = model_data_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<ZImageRunner> z_image = std::make_shared<ZImageRunner>(backend,
|
|
false,
|
|
tensor_storage_map,
|
|
"model.diffusion_model",
|
|
VERSION_QWEN_IMAGE);
|
|
|
|
z_image->alloc_params_buffer();
|
|
std::map<std::string, ggml_tensor*> tensors;
|
|
z_image->get_param_tensors(tensors, "model.diffusion_model");
|
|
|
|
bool success = model_loader.load_tensors(tensors);
|
|
|
|
if (!success) {
|
|
LOG_ERROR("load tensors from model loader failed");
|
|
return;
|
|
}
|
|
|
|
LOG_INFO("z_image model loaded");
|
|
z_image->test();
|
|
}
|
|
};
|
|
|
|
} // namespace ZImage
|
|
|
|
#endif // __Z_IMAGE_HPP__
|