## Using TAESD to faster decoding You can use TAESD to accelerate the decoding of latent images by following these steps: - Download the model [weights](https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors). Or curl ```bash curl -L -O https://huggingface.co/madebyollin/taesd/resolve/main/diffusion_pytorch_model.safetensors ``` - Specify the model path using the `--taesd PATH` parameter. example: ```bash sd-cli -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors ``` ### Qwen-Image and wan (TAEHV) sd.cpp also supports [TAEHV](https://github.com/madebyollin/taehv) (#937), which can be used for Qwen-Image and wan. - For **Qwen-Image and wan2.1 and wan2.2-A14B**, download the wan2.1 tae [safetensors weights](https://github.com/madebyollin/taehv/blob/main/safetensors/taew2_1.safetensors) Or curl ```bash curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_1.safetensors ``` - For **wan2.2-TI2V-5B**, use the wan2.2 tae [safetensors weights](https://github.com/madebyollin/taehv/blob/main/safetensors/taew2_2.safetensors) Or curl ```bash curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_2.safetensors ``` Then simply replace the `--vae xxx.safetensors` with `--tae xxx.safetensors` in the commands. If it still out of VRAM, add `--vae-conv-direct` to your command though might be slower.