#ifndef __WAN_HPP__ #define __WAN_HPP__ #include #include "common.hpp" #include "ggml_extend.hpp" namespace WAN { constexpr int CACHE_T = 2; class CausalConv3d : public GGMLBlock { protected: int64_t in_channels; int64_t out_channels; std::tuple kernel_size; std::tuple stride; std::tuple padding; std::tuple dilation; bool bias; void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") { params["weight"] = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, std::get<2>(kernel_size), std::get<1>(kernel_size), std::get<0>(kernel_size), in_channels * out_channels); if (bias) { params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } } public: CausalConv3d(int64_t in_channels, int64_t out_channels, std::tuple kernel_size, std::tuple stride = {1, 1, 1}, std::tuple padding = {0, 0, 0}, std::tuple dilation = {1, 1, 1}, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* cache_x = NULL) { // x: [N*IC, ID, IH, IW] // result: x: [N*OC, ID, IH, IW] struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = NULL; if (bias) { b = params["bias"]; } int lp0 = std::get<2>(padding); int rp0 = std::get<2>(padding); int lp1 = std::get<1>(padding); int rp1 = std::get<1>(padding); int lp2 = 2 * std::get<0>(padding); int rp2 = 0; if (cache_x != NULL && std::get<0>(padding) > 0) { x = ggml_concat(ctx, cache_x, x, 2); lp2 -= (int)cache_x->ne[2]; } x = ggml_pad_ext(ctx, x, lp0, rp0, lp1, rp1, lp2, rp2, 0, 0); return ggml_nn_conv_3d(ctx, x, w, b, in_channels, std::get<2>(stride), std::get<1>(stride), std::get<0>(stride), 0, 0, 0, std::get<2>(dilation), std::get<1>(dilation), std::get<0>(dilation)); } }; class RMS_norm : public UnaryBlock { protected: int64_t dim; void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") { ggml_type wtype = GGML_TYPE_F32; params["gamma"] = ggml_new_tensor_1d(ctx, wtype, dim); } public: RMS_norm(int64_t dim) : dim(dim) {} struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { // x: [N*IC, ID, IH, IW], IC == dim // assert N == 1 struct ggml_tensor* w = params["gamma"]; auto h = ggml_cont(ctx, ggml_torch_permute(ctx, x, 3, 0, 1, 2)); // [ID, IH, IW, N*IC] h = ggml_rms_norm(ctx, h, 1e-12); h = ggml_mul(ctx, h, w); h = ggml_cont(ctx, ggml_torch_permute(ctx, h, 1, 2, 3, 0)); return h; } }; class Resample : public GGMLBlock { protected: int64_t dim; std::string mode; public: Resample(int64_t dim, const std::string& mode) : dim(dim), mode(mode) { if (mode == "upsample2d") { blocks["resample.1"] = std::shared_ptr(new Conv2d(dim, dim / 2, {3, 3}, {1, 1}, {1, 1})); } else if (mode == "upsample3d") { blocks["resample.1"] = std::shared_ptr(new Conv2d(dim, dim / 2, {3, 3}, {1, 1}, {1, 1})); blocks["time_conv"] = std::shared_ptr(new CausalConv3d(dim, dim * 2, {3, 1, 1}, {1, 1, 1}, {1, 0, 0})); } else if (mode == "downsample2d") { blocks["resample.1"] = std::shared_ptr(new Conv2d(dim, dim, {3, 3}, {2, 2})); } else if (mode == "downsample3d") { blocks["resample.1"] = std::shared_ptr(new Conv2d(dim, dim, {3, 3}, {2, 2})); blocks["time_conv"] = std::shared_ptr(new CausalConv3d(dim, dim, {3, 1, 1}, {2, 1, 1}, {0, 0, 0})); } else if (mode == "none") { // nn.Identity() } else { GGML_ASSERT(false && "invalid mode"); } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b, std::vector& feat_cache, int& feat_idx) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); int64_t c = x->ne[3] / b; int64_t t = x->ne[2]; int64_t h = x->ne[1]; int64_t w = x->ne[0]; struct ggml_tensor* Rep = (struct ggml_tensor*)1; if (mode == "upsample3d") { if (feat_cache.size() > 0) { int idx = feat_idx; if (feat_cache[idx] == NULL) { feat_cache[idx] = Rep; // Rep feat_idx += 1; } else { auto time_conv = std::dynamic_pointer_cast(blocks["time_conv"]); auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL && feat_cache[idx] != Rep) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } if (cache_x->ne[1] < 2 && feat_cache[idx] != NULL && feat_cache[idx] == Rep) { cache_x = ggml_pad_ext(ctx, cache_x, 0, 0, 1, 1, (int)cache_x->ne[2], 0, 0, 0); // aka cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device),cache_x],dim=2) } if (feat_cache[idx] == Rep) { x = time_conv->forward(ctx, x); } else { x = time_conv->forward(ctx, x, feat_cache[idx]); } feat_cache[idx] = cache_x; feat_idx += 1; x = ggml_reshape_4d(ctx, x, w * h, t, c, 2); // (2, c, t, h*w) x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 3, 1, 2)); // (c, t, 2, h*w) x = ggml_reshape_4d(ctx, x, w, h, 2 * t, c); // (c, t*2, h, w) } } } t = x->ne[2]; if (mode != "none") { auto resample_1 = std::dynamic_pointer_cast(blocks["resample.1"]); x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 1, 3, 2)); // (t, c, h, w) if (mode == "upsample2d") { x = ggml_upscale(ctx, x, 2, GGML_SCALE_MODE_NEAREST); } else if (mode == "upsample3d") { x = ggml_upscale(ctx, x, 2, GGML_SCALE_MODE_NEAREST); } else if (mode == "downsample2d") { x = ggml_pad(ctx, x, 1, 1, 0, 0); } else if (mode == "downsample3d") { x = ggml_pad(ctx, x, 1, 1, 0, 0); } x = resample_1->forward(ctx, x); x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 1, 3, 2)); // (c, t, h, w) } if (mode == "downsample3d") { if (feat_cache.size() > 0) { int idx = feat_idx; if (feat_cache[idx] == NULL) { feat_cache[idx] = x; feat_idx += 1; } else { auto time_conv = std::dynamic_pointer_cast(blocks["time_conv"]); auto cache_x = ggml_slice(ctx, x, 2, -1, x->ne[2]); x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), x, 2); x = time_conv->forward(ctx, x); feat_cache[idx] = cache_x; feat_idx += 1; } } } return x; } }; class ResidualBlock : public GGMLBlock { protected: int64_t in_dim; int64_t out_dim; public: ResidualBlock(int64_t in_dim, int64_t out_dim) : in_dim(in_dim), out_dim(out_dim) { blocks["residual.0"] = std::shared_ptr(new RMS_norm(in_dim)); // residual.1 is nn.SiLU() blocks["residual.2"] = std::shared_ptr(new CausalConv3d(in_dim, out_dim, {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); blocks["residual.3"] = std::shared_ptr(new RMS_norm(out_dim)); // residual.4 is nn.SiLU() // residual.5 is nn.Dropout() blocks["residual.6"] = std::shared_ptr(new CausalConv3d(out_dim, out_dim, {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); if (in_dim != out_dim) { blocks["shortcut"] = std::shared_ptr(new CausalConv3d(in_dim, out_dim, {1, 1, 1})); } } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b, std::vector& feat_cache, int& feat_idx) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); struct ggml_tensor* h = x; if (in_dim != out_dim) { auto shortcut = std::dynamic_pointer_cast(blocks["shortcut"]); h = shortcut->forward(ctx, x); } for (int i = 0; i < 7; i++) { if (i == 0 || i == 3) { // RMS_norm auto layer = std::dynamic_pointer_cast(blocks["residual." + std::to_string(i)]); x = layer->forward(ctx, x); } else if (i == 2 || i == 6) { // CausalConv3d auto layer = std::dynamic_pointer_cast(blocks["residual." + std::to_string(i)]); if (feat_cache.size() > 0) { int idx = feat_idx; auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } x = layer->forward(ctx, x, feat_cache[idx]); feat_cache[idx] = cache_x; feat_idx += 1; } } else if (i == 1 || i == 4) { x = ggml_silu(ctx, x); } else { // i == 5 // nn.Dropout(), ignore } } x = ggml_add(ctx, x, h); return x; } }; class AttentionBlock : public GGMLBlock { protected: int64_t dim; public: AttentionBlock(int64_t dim) : dim(dim) { blocks["norm"] = std::shared_ptr(new RMS_norm(dim)); blocks["to_qkv"] = std::shared_ptr(new Conv2d(dim, dim * 3, {1, 1})); blocks["proj"] = std::shared_ptr(new Conv2d(dim, dim, {1, 1})); } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); auto norm = std::dynamic_pointer_cast(blocks["norm"]); auto to_qkv = std::dynamic_pointer_cast(blocks["to_qkv"]); auto proj = std::dynamic_pointer_cast(blocks["proj"]); auto identity = x; x = norm->forward(ctx, x); x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 1, 3, 2)); // (t, c, h, w) const int64_t n = x->ne[3]; const int64_t c = x->ne[2]; const int64_t h = x->ne[1]; const int64_t w = x->ne[0]; auto qkv = to_qkv->forward(ctx, x); auto qkv_vec = split_image_qkv(ctx, qkv); auto q = qkv_vec[0]; q = ggml_cont(ctx, ggml_torch_permute(ctx, q, 2, 0, 1, 3)); // [t, h, w, c] q = ggml_reshape_3d(ctx, q, c, h * w, n); // [t, h * w, c] auto k = qkv_vec[1]; k = ggml_cont(ctx, ggml_torch_permute(ctx, k, 2, 0, 1, 3)); // [t, h, w, c] k = ggml_reshape_3d(ctx, k, c, h * w, n); // [t, h * w, c] auto v = qkv_vec[2]; v = ggml_reshape_3d(ctx, v, h * w, c, n); // [t, c, h * w] x = ggml_nn_attention(ctx, q, k, v, false); // [t, h * w, c] x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 0, 2, 3)); // [t, c, h * w] x = ggml_reshape_4d(ctx, x, w, h, c, n); // [t, c, h, w] x = proj->forward(ctx, x); x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 1, 3, 2)); // (c, t, h, w) x = ggml_add(ctx, x, identity); return x; } }; class Encoder3d : public GGMLBlock { protected: int64_t dim; int64_t z_dim; std::vector dim_mult; int num_res_blocks; std::vector temperal_downsample; public: Encoder3d(int64_t dim = 128, int64_t z_dim = 4, std::vector dim_mult = {1, 2, 4, 4}, int num_res_blocks = 2, std::vector temperal_downsample = {false, true, true}) : dim(dim), z_dim(z_dim), dim_mult(dim_mult), num_res_blocks(num_res_blocks), temperal_downsample(temperal_downsample) { // attn_scales is always [] std::vector dims = {dim}; for (int u : dim_mult) { dims.push_back(dim * u); } blocks["conv1"] = std::shared_ptr(new CausalConv3d(3, dims[0], {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); int index = 0; int64_t in_dim; int64_t out_dim; for (int i = 0; i < dims.size() - 1; i++) { in_dim = dims[i]; out_dim = dims[i + 1]; for (int j = 0; j < num_res_blocks; j++) { auto block = std::shared_ptr(new ResidualBlock(in_dim, out_dim)); blocks["downsamples." + std::to_string(index++)] = block; in_dim = out_dim; } if (i != dim_mult.size() - 1) { std::string mode = temperal_downsample[i] ? "downsample3d" : "downsample2d"; auto block = std::shared_ptr(new Resample(out_dim, mode)); blocks["downsamples." + std::to_string(index++)] = block; } } blocks["middle.0"] = std::shared_ptr(new ResidualBlock(out_dim, out_dim)); blocks["middle.1"] = std::shared_ptr(new AttentionBlock(out_dim)); blocks["middle.2"] = std::shared_ptr(new ResidualBlock(out_dim, out_dim)); blocks["head.0"] = std::shared_ptr(new RMS_norm(out_dim)); // head.1 is nn.SiLU() blocks["head.2"] = std::shared_ptr(new CausalConv3d(out_dim, z_dim, {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b, std::vector& feat_cache, int& feat_idx) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); auto conv1 = std::dynamic_pointer_cast(blocks["conv1"]); auto middle_0 = std::dynamic_pointer_cast(blocks["middle.0"]); auto middle_1 = std::dynamic_pointer_cast(blocks["middle.1"]); auto middle_2 = std::dynamic_pointer_cast(blocks["middle.2"]); auto head_0 = std::dynamic_pointer_cast(blocks["head.0"]); auto head_2 = std::dynamic_pointer_cast(blocks["head.2"]); // conv1 if (feat_cache.size() > 0) { int idx = feat_idx; auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } x = conv1->forward(ctx, x, feat_cache[idx]); feat_cache[idx] = cache_x; feat_idx += 1; } else { x = conv1->forward(ctx, x); } // downsamples std::vector dims = {dim}; for (int u : dim_mult) { dims.push_back(dim * u); } int index = 0; for (int i = 0; i < dims.size() - 1; i++) { for (int j = 0; j < num_res_blocks; j++) { auto layer = std::dynamic_pointer_cast(blocks["downsamples." + std::to_string(index++)]); x = layer->forward(ctx, x, b, feat_cache, feat_idx); } if (i != dim_mult.size() - 1) { auto layer = std::dynamic_pointer_cast(blocks["downsamples." + std::to_string(index++)]); x = layer->forward(ctx, x, b, feat_cache, feat_idx); } } // middle x = middle_0->forward(ctx, x, b, feat_cache, feat_idx); x = middle_1->forward(ctx, x, b); x = middle_2->forward(ctx, x, b, feat_cache, feat_idx); // head x = head_0->forward(ctx, x); x = ggml_silu(ctx, x); if (feat_cache.size() > 0) { int idx = feat_idx; auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } x = head_2->forward(ctx, x, feat_cache[idx]); feat_cache[idx] = cache_x; feat_idx += 1; } else { x = head_2->forward(ctx, x); } return x; } }; class Decoder3d : public GGMLBlock { protected: int64_t dim; int64_t z_dim; std::vector dim_mult; int num_res_blocks; std::vector temperal_upsample; public: Decoder3d(int64_t dim = 128, int64_t z_dim = 4, std::vector dim_mult = {1, 2, 4, 4}, int num_res_blocks = 2, std::vector temperal_upsample = {true, true, false}) : dim(dim), z_dim(z_dim), dim_mult(dim_mult), num_res_blocks(num_res_blocks), temperal_upsample(temperal_upsample) { // attn_scales is always [] std::vector dims = {dim_mult[dim_mult.size() - 1] * dim}; for (int i = static_cast(dim_mult.size()) - 1; i >= 0; i--) { dims.push_back(dim * dim_mult[i]); } // init block blocks["conv1"] = std::shared_ptr(new CausalConv3d(z_dim, dims[0], {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); // middle blocks blocks["middle.0"] = std::shared_ptr(new ResidualBlock(dims[0], dims[0])); blocks["middle.1"] = std::shared_ptr(new AttentionBlock(dims[0])); blocks["middle.2"] = std::shared_ptr(new ResidualBlock(dims[0], dims[0])); // upsample blocks int index = 0; int64_t in_dim; int64_t out_dim; for (int i = 0; i < dims.size() - 1; i++) { in_dim = dims[i]; out_dim = dims[i + 1]; LOG_DEBUG("in_dim %u out_dim %u", in_dim, out_dim); if (i == 1 || i == 2 || i == 3) { in_dim = in_dim / 2; } for (int j = 0; j < num_res_blocks + 1; j++) { auto block = std::shared_ptr(new ResidualBlock(in_dim, out_dim)); blocks["upsamples." + std::to_string(index++)] = block; in_dim = out_dim; } if (i != dim_mult.size() - 1) { std::string mode = temperal_upsample[i] ? "upsample3d" : "upsample2d"; auto block = std::shared_ptr(new Resample(out_dim, mode)); blocks["upsamples." + std::to_string(index++)] = block; } } // output blocks blocks["head.0"] = std::shared_ptr(new RMS_norm(out_dim)); // head.1 is nn.SiLU() blocks["head.2"] = std::shared_ptr(new CausalConv3d(out_dim, 3, {3, 3, 3}, {1, 1, 1}, {1, 1, 1})); } struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b, std::vector& feat_cache, int& feat_idx) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); auto conv1 = std::dynamic_pointer_cast(blocks["conv1"]); auto middle_0 = std::dynamic_pointer_cast(blocks["middle.0"]); auto middle_1 = std::dynamic_pointer_cast(blocks["middle.1"]); auto middle_2 = std::dynamic_pointer_cast(blocks["middle.2"]); auto head_0 = std::dynamic_pointer_cast(blocks["head.0"]); auto head_2 = std::dynamic_pointer_cast(blocks["head.2"]); // conv1 if (feat_cache.size() > 0) { int idx = feat_idx; auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } x = conv1->forward(ctx, x, feat_cache[idx]); feat_cache[idx] = cache_x; feat_idx += 1; } else { x = conv1->forward(ctx, x); } // middle x = middle_0->forward(ctx, x, b, feat_cache, feat_idx); x = middle_1->forward(ctx, x, b); x = middle_2->forward(ctx, x, b, feat_cache, feat_idx); // upsamples std::vector dims = {dim_mult[dim_mult.size() - 1] * dim}; for (int i = static_cast(dim_mult.size()) - 1; i >= 0; i--) { dims.push_back(dim * dim_mult[i]); } int index = 0; for (int i = 0; i < dims.size() - 1; i++) { for (int j = 0; j < num_res_blocks + 1; j++) { auto layer = std::dynamic_pointer_cast(blocks["upsamples." + std::to_string(index++)]); x = layer->forward(ctx, x, b, feat_cache, feat_idx); } if (i != dim_mult.size() - 1) { auto layer = std::dynamic_pointer_cast(blocks["upsamples." + std::to_string(index++)]); x = layer->forward(ctx, x, b, feat_cache, feat_idx); } } // head x = head_0->forward(ctx, x); x = ggml_silu(ctx, x); if (feat_cache.size() > 0) { int idx = feat_idx; auto cache_x = ggml_slice(ctx, x, 2, -CACHE_T, x->ne[2]); if (cache_x->ne[2] < 2 && feat_cache[idx] != NULL) { // cache last frame of last two chunk cache_x = ggml_concat(ctx, ggml_slice(ctx, feat_cache[idx], 2, -1, feat_cache[idx]->ne[2]), cache_x, 2); } x = head_2->forward(ctx, x, feat_cache[idx]); feat_cache[idx] = cache_x; feat_idx += 1; } else { x = head_2->forward(ctx, x); } return x; } }; class WanVAE : public GGMLBlock { protected: bool decode_only = true; int64_t dim = 96; int64_t z_dim = 16; std::vector dim_mult = {1, 2, 4, 4}; int num_res_blocks = 2; std::vector temperal_upsample = {true, true, false}; std::vector temperal_downsample = {false, true, true}; int _conv_num = 33; int _conv_idx = 0; std::vector _feat_map; int _enc_conv_num = 28; int _enc_conv_idx = 0; std::vector _enc_feat_map; void clear_cache() { _conv_idx = 0; _feat_map = std::vector(_conv_num, NULL); _enc_conv_idx = 0; _enc_feat_map = std::vector(_enc_conv_num, NULL); } public: WanVAE(bool decode_only = true) : decode_only(decode_only) { // attn_scales is always [] if (!decode_only) { blocks["encoder"] = std::shared_ptr(new Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, temperal_downsample)); blocks["conv1"] = std::shared_ptr(new CausalConv3d(z_dim * 2, z_dim * 2, {1, 1, 1})); } blocks["decoder"] = std::shared_ptr(new Decoder3d(dim, z_dim, dim_mult, num_res_blocks, temperal_upsample)); blocks["conv2"] = std::shared_ptr(new CausalConv3d(z_dim, z_dim, {1, 1, 1})); } struct ggml_tensor* encode(struct ggml_context* ctx, struct ggml_tensor* x, int64_t b = 1) { // x: [b*c, t, h, w] GGML_ASSERT(b == 1); GGML_ASSERT(decode_only == false); clear_cache(); auto encoder = std::dynamic_pointer_cast(blocks["encoder"]); auto conv1 = std::dynamic_pointer_cast(blocks["conv1"]); int64_t t = x->ne[2]; int64_t iter_ = 1 + (t - 1) / 4; struct ggml_tensor* out; for (int i = 0; i < iter_; i++) { _enc_conv_idx = 0; if (i == 0) { auto in = ggml_slice(ctx, x, 2, 0, 1); // [b*c, 1, h, w] out = encoder->forward(ctx, in, b, _enc_feat_map, _enc_conv_idx); } else { auto in = ggml_slice(ctx, x, 2, 1 + 4 * (i - 1), 1 + 4 * i); // [b*c, 4, h, w] auto out_ = encoder->forward(ctx, in, b, _enc_feat_map, _enc_conv_idx); out = ggml_concat(ctx, out, out_, 2); } } out = conv1->forward(ctx, out); auto mu = ggml_chunk(ctx, out, 2, 3)[0]; clear_cache(); return mu; } struct ggml_tensor* decode(struct ggml_context* ctx, struct ggml_tensor* z, int64_t b = 1) { // z: [b*c, t, h, w] GGML_ASSERT(b == 1); clear_cache(); auto decoder = std::dynamic_pointer_cast(blocks["decoder"]); auto conv2 = std::dynamic_pointer_cast(blocks["conv2"]); int64_t iter_ = z->ne[2]; auto x = conv2->forward(ctx, z); struct ggml_tensor* out; for (int64_t i = 0; i < iter_; i++) { _conv_idx = 0; if (i == 0) { auto in = ggml_slice(ctx, x, 2, i, i + 1); // [b*c, 1, h, w] out = decoder->forward(ctx, in, b, _feat_map, _conv_idx); } else { auto in = ggml_slice(ctx, x, 2, i, i + 1); // [b*c, 1, h, w] auto out_ = decoder->forward(ctx, in, b, _feat_map, _conv_idx); out = ggml_concat(ctx, out, out_, 2); } } clear_cache(); return out; } }; struct WanVAERunner : public GGMLRunner { bool decode_only = true; WanVAE ae; WanVAERunner(ggml_backend_t backend, const String2GGMLType& tensor_types = {}, const std::string prefix = "", bool decode_only = false) : decode_only(decode_only), ae(decode_only), GGMLRunner(backend) { ae.init(params_ctx, tensor_types, prefix); } std::string get_desc() { return "wan_vae"; } void get_param_tensors(std::map& tensors, const std::string prefix) { ae.get_param_tensors(tensors, prefix); } struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) { struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, 20480, false); z = to_backend(z); struct ggml_tensor* out = decode_graph ? ae.decode(compute_ctx, z) : ae.encode(compute_ctx, z); ggml_build_forward_expand(gf, out); return gf; } void compute(const int n_threads, struct ggml_tensor* z, bool decode_graph, struct ggml_tensor** output, struct ggml_context* output_ctx = NULL) { auto get_graph = [&]() -> struct ggml_cgraph* { return build_graph(z, decode_graph); }; // ggml_set_f32(z, 0.5f); // print_ggml_tensor(z); GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx); } void test() { struct ggml_init_params params; params.mem_size = static_cast(10 * 1024 * 1024); // 10 MB params.mem_buffer = NULL; params.no_alloc = false; struct ggml_context* work_ctx = ggml_init(params); GGML_ASSERT(work_ctx != NULL); if (true) { // cpu f32, pass // cpu f16, pass // cuda f16, pass // cuda f32, pass auto z = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 1, 16); z = load_tensor_from_file(work_ctx, "wan_vae_z.bin"); // ggml_set_f32(z, 0.5f); print_ggml_tensor(z); struct ggml_tensor* out = NULL; int64_t t0 = ggml_time_ms(); compute(8, z, true, &out, work_ctx); int64_t t1 = ggml_time_ms(); print_ggml_tensor(out); LOG_DEBUG("decode test done in %ldms", t1 - t0); } }; static void load_from_file_and_test(const std::string& file_path) { ggml_backend_t backend = ggml_backend_cuda_init(0); // ggml_backend_t backend = ggml_backend_cpu_init(); ggml_type model_data_type = GGML_TYPE_F32; std::shared_ptr vae = std::shared_ptr(new WanVAERunner(backend)); { LOG_INFO("loading from '%s'", file_path.c_str()); vae->alloc_params_buffer(); std::map tensors; vae->get_param_tensors(tensors, "first_stage_model"); ModelLoader model_loader; if (!model_loader.init_from_file(file_path, "vae.")) { LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str()); return; } bool success = model_loader.load_tensors(tensors, backend); if (!success) { LOG_ERROR("load tensors from model loader failed"); return; } LOG_INFO("vae model loaded"); } vae->test(); } }; }; #endif