#ifndef __LORA_HPP__ #define __LORA_HPP__ #include #include "ggml_extend.hpp" #define LORA_GRAPH_BASE_SIZE 10240 struct LoraModel : public GGMLRunner { float multiplier = 1.0f; std::map lora_tensors; std::map original_tensor_to_final_tensor; std::string file_path; ModelLoader model_loader; bool load_failed = false; bool applied = false; bool tensor_preprocessed = false; std::vector zero_index_vec = {0}; ggml_tensor* zero_index = nullptr; LoraModel(ggml_backend_t backend, const std::string& file_path = "", std::string prefix = "", SDVersion version = VERSION_COUNT) : file_path(file_path), GGMLRunner(backend, false) { prefix = "lora." + prefix; if (!model_loader.init_from_file_and_convert_name(file_path, prefix, version)) { load_failed = true; } } std::string get_desc() override { return "lora"; } bool load_from_file(bool filter_tensor, int n_threads) { LOG_INFO("loading LoRA from '%s'", file_path.c_str()); if (load_failed) { LOG_ERROR("init lora model loader from file failed: '%s'", file_path.c_str()); return false; } std::unordered_map tensors_to_create; std::mutex lora_mutex; bool dry_run = true; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { if (dry_run) { const std::string& name = tensor_storage.name; if (filter_tensor && !contains(name, "lora.model")) { return true; } { std::lock_guard lock(lora_mutex); tensors_to_create[name] = tensor_storage; } } else { const std::string& name = tensor_storage.name; auto iter = lora_tensors.find(name); if (iter != lora_tensors.end()) { *dst_tensor = iter->second; } } return true; }; model_loader.load_tensors(on_new_tensor_cb, n_threads); for (const auto& pair : tensors_to_create) { const auto& name = pair.first; const auto& ts = pair.second; struct ggml_tensor* real = ggml_new_tensor(params_ctx, ts.type, ts.n_dims, ts.ne); lora_tensors[name] = real; } alloc_params_buffer(); dry_run = false; model_loader.load_tensors(on_new_tensor_cb, n_threads); LOG_DEBUG("finished loaded lora"); return true; } ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) { auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a)); out = ggml_get_rows(ctx, out, zero_index); out = ggml_reshape(ctx, out, a); // auto out = ggml_cast(ctx, a, GGML_TYPE_F32); return out; } void preprocess_lora_tensors(const std::map& model_tensors) { if (tensor_preprocessed) { return; } tensor_preprocessed = true; // I really hate these hardcoded processes. if (model_tensors.find("cond_stage_model.1.transformer.text_model.encoder.layers.0.self_attn.in_proj.weight") != model_tensors.end()) { std::map new_lora_tensors; for (auto& [old_name, tensor] : lora_tensors) { std::string new_name = old_name; if (contains(new_name, "cond_stage_model.1.transformer.text_model.encoder.layers")) { std::vector> qkv_name_map = { {"self_attn.q_proj.weight", "self_attn.in_proj.weight"}, {"self_attn.q_proj.bias", "self_attn.in_proj.bias"}, {"self_attn.k_proj.weight", "self_attn.in_proj.weight.1"}, {"self_attn.k_proj.bias", "self_attn.in_proj.bias.1"}, {"self_attn.v_proj.weight", "self_attn.in_proj.weight.2"}, {"self_attn.v_proj.bias", "self_attn.in_proj.bias.2"}, }; for (auto kv : qkv_name_map) { size_t pos = new_name.find(kv.first); if (pos != std::string::npos) { new_name.replace(pos, kv.first.size(), kv.second); } } } new_lora_tensors[new_name] = tensor; } lora_tensors = std::move(new_lora_tensors); } } ggml_tensor* get_lora_diff(const std::string& model_tensor_name, std::set& applied_lora_tensors) { ggml_tensor* updown = nullptr; int index = 0; while (true) { std::string key; if (index == 0) { key = model_tensor_name; } else { key = model_tensor_name + "." + std::to_string(index); } std::string lora_down_name = "lora." + key + ".lora_down"; std::string lora_up_name = "lora." + key + ".lora_up"; std::string lora_mid_name = "lora." + key + ".lora_mid"; std::string scale_name = "lora." + key + ".scale"; std::string alpha_name = "lora." + key + ".alpha"; ggml_tensor* lora_up = nullptr; ggml_tensor* lora_mid = nullptr; ggml_tensor* lora_down = nullptr; auto iter = lora_tensors.find(lora_up_name); if (iter != lora_tensors.end()) { lora_up = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(lora_mid_name); if (iter != lora_tensors.end()) { lora_mid = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(lora_down_name); if (iter != lora_tensors.end()) { lora_down = to_f32(compute_ctx, iter->second); } if (lora_up == nullptr || lora_down == nullptr) { break; } applied_lora_tensors.insert(lora_up_name); applied_lora_tensors.insert(lora_down_name); if (lora_mid) { applied_lora_tensors.insert(lora_mid_name); } float scale_value = 1.0f; int64_t rank = lora_down->ne[ggml_n_dims(lora_down) - 1]; iter = lora_tensors.find(scale_name); if (iter != lora_tensors.end()) { scale_value = ggml_ext_backend_tensor_get_f32(iter->second); applied_lora_tensors.insert(scale_name); } else { iter = lora_tensors.find(alpha_name); if (iter != lora_tensors.end()) { float alpha = ggml_ext_backend_tensor_get_f32(iter->second); scale_value = alpha / rank; // LOG_DEBUG("rank %s %ld %.2f %.2f", alpha_name.c_str(), rank, alpha, scale_value); applied_lora_tensors.insert(alpha_name); } } scale_value *= multiplier; auto curr_updown = ggml_ext_merge_lora(compute_ctx, lora_down, lora_up, lora_mid); curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); if (updown == nullptr) { updown = curr_updown; } else { updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); } index++; } // diff if (updown == nullptr) { std::string lora_diff_name = "lora." + model_tensor_name + ".diff"; if (lora_tensors.find(lora_diff_name) != lora_tensors.end()) { updown = to_f32(compute_ctx, lora_tensors[lora_diff_name]); applied_lora_tensors.insert(lora_diff_name); } } return updown; } ggml_tensor* get_loha_diff(const std::string& model_tensor_name, std::set& applied_lora_tensors) { ggml_tensor* updown = nullptr; int index = 0; while (true) { std::string key; if (index == 0) { key = model_tensor_name; } else { key = model_tensor_name + "." + std::to_string(index); } std::string hada_1_down_name = "lora." + key + ".hada_w1_b"; std::string hada_1_mid_name = "lora." + key + ".hada_t1"; std::string hada_1_up_name = "lora." + key + ".hada_w1_a"; std::string hada_2_down_name = "lora." + key + ".hada_w2_b"; std::string hada_2_mid_name = "lora." + key + ".hada_t2"; std::string hada_2_up_name = "lora." + key + ".hada_w2_a"; std::string alpha_name = "lora." + key + ".alpha"; ggml_tensor* hada_1_mid = nullptr; // tau for tucker decomposition ggml_tensor* hada_1_up = nullptr; ggml_tensor* hada_1_down = nullptr; ggml_tensor* hada_2_mid = nullptr; // tau for tucker decomposition ggml_tensor* hada_2_up = nullptr; ggml_tensor* hada_2_down = nullptr; auto iter = lora_tensors.find(hada_1_down_name); if (iter != lora_tensors.end()) { hada_1_down = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(hada_1_up_name); if (iter != lora_tensors.end()) { hada_1_up = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(hada_1_mid_name); if (iter != lora_tensors.end()) { hada_1_mid = to_f32(compute_ctx, iter->second); hada_1_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_1_up)); } iter = lora_tensors.find(hada_2_down_name); if (iter != lora_tensors.end()) { hada_2_down = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(hada_2_up_name); if (iter != lora_tensors.end()) { hada_2_up = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(hada_2_mid_name); if (iter != lora_tensors.end()) { hada_2_mid = to_f32(compute_ctx, iter->second); hada_2_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_2_up)); } if (hada_1_up == nullptr || hada_1_down == nullptr || hada_2_up == nullptr || hada_2_down == nullptr) { break; } applied_lora_tensors.insert(hada_1_down_name); applied_lora_tensors.insert(hada_1_up_name); applied_lora_tensors.insert(hada_2_down_name); applied_lora_tensors.insert(hada_2_up_name); applied_lora_tensors.insert(alpha_name); if (hada_1_mid) { applied_lora_tensors.insert(hada_1_mid_name); } if (hada_2_mid) { applied_lora_tensors.insert(hada_2_mid_name); } float scale_value = 1.0f; // calc_scale // TODO: .dora_scale? int64_t rank = hada_1_down->ne[ggml_n_dims(hada_1_down) - 1]; iter = lora_tensors.find(alpha_name); if (iter != lora_tensors.end()) { float alpha = ggml_ext_backend_tensor_get_f32(iter->second); scale_value = alpha / rank; applied_lora_tensors.insert(alpha_name); } scale_value *= multiplier; struct ggml_tensor* updown_1 = ggml_ext_merge_lora(compute_ctx, hada_1_down, hada_1_up, hada_1_mid); struct ggml_tensor* updown_2 = ggml_ext_merge_lora(compute_ctx, hada_2_down, hada_2_up, hada_2_mid); auto curr_updown = ggml_mul_inplace(compute_ctx, updown_1, updown_2); curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); if (updown == nullptr) { updown = curr_updown; } else { updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); } index++; } return updown; } ggml_tensor* get_lokr_diff(const std::string& model_tensor_name, std::set& applied_lora_tensors) { ggml_tensor* updown = nullptr; int index = 0; while (true) { std::string key; if (index == 0) { key = model_tensor_name; } else { key = model_tensor_name + "." + std::to_string(index); } std::string lokr_w1_name = "lora." + key + ".lokr_w1"; std::string lokr_w1_a_name = "lora." + key + ".lokr_w1_a"; std::string lokr_w1_b_name = "lora." + key + ".lokr_w1_b"; std::string lokr_w2_name = "lora." + key + ".lokr_w2"; std::string lokr_w2_a_name = "lora." + key + ".lokr_w2_a"; std::string lokr_w2_b_name = "lora." + key + ".lokr_w2_b"; std::string alpha_name = "lora." + key + ".alpha"; ggml_tensor* lokr_w1 = nullptr; ggml_tensor* lokr_w1_a = nullptr; ggml_tensor* lokr_w1_b = nullptr; ggml_tensor* lokr_w2 = nullptr; ggml_tensor* lokr_w2_a = nullptr; ggml_tensor* lokr_w2_b = nullptr; auto iter = lora_tensors.find(lokr_w1_name); if (iter != lora_tensors.end()) { lokr_w1 = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(lokr_w2_name); if (iter != lora_tensors.end()) { lokr_w2 = to_f32(compute_ctx, iter->second); } int64_t rank = 1; if (lokr_w1 == nullptr) { iter = lora_tensors.find(lokr_w1_a_name); if (iter != lora_tensors.end()) { lokr_w1_a = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(lokr_w1_b_name); if (iter != lora_tensors.end()) { lokr_w1_b = to_f32(compute_ctx, iter->second); } if (lokr_w1_a == nullptr || lokr_w1_b == nullptr) { break; } rank = lokr_w1_b->ne[ggml_n_dims(lokr_w1_b) - 1]; lokr_w1 = ggml_ext_merge_lora(compute_ctx, lokr_w1_b, lokr_w1_a); } if (lokr_w2 == nullptr) { iter = lora_tensors.find(lokr_w2_a_name); if (iter != lora_tensors.end()) { lokr_w2_a = to_f32(compute_ctx, iter->second); } iter = lora_tensors.find(lokr_w2_b_name); if (iter != lora_tensors.end()) { lokr_w2_b = to_f32(compute_ctx, iter->second); } if (lokr_w2_a == nullptr || lokr_w2_b == nullptr) { break; } rank = lokr_w2_b->ne[ggml_n_dims(lokr_w2_b) - 1]; lokr_w2 = ggml_ext_merge_lora(compute_ctx, lokr_w2_b, lokr_w2_a); } if (!lokr_w1_a) { applied_lora_tensors.insert(lokr_w1_name); } else { applied_lora_tensors.insert(lokr_w1_a_name); applied_lora_tensors.insert(lokr_w1_b_name); } if (!lokr_w2_a) { applied_lora_tensors.insert(lokr_w2_name); } else { applied_lora_tensors.insert(lokr_w2_a_name); applied_lora_tensors.insert(lokr_w2_b_name); } float scale_value = 1.0f; iter = lora_tensors.find(alpha_name); if (iter != lora_tensors.end()) { float alpha = ggml_ext_backend_tensor_get_f32(iter->second); scale_value = alpha / rank; applied_lora_tensors.insert(alpha_name); } if (rank == 1) { scale_value = 1.0f; } scale_value *= multiplier; auto curr_updown = ggml_ext_kronecker(compute_ctx, lokr_w1, lokr_w2); curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); if (updown == nullptr) { updown = curr_updown; } else { updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); } index++; } return updown; } struct ggml_cgraph* build_lora_graph(const std::map& model_tensors, SDVersion version) { size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10; struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false); zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1); set_backend_tensor_data(zero_index, zero_index_vec.data()); ggml_build_forward_expand(gf, zero_index); preprocess_lora_tensors(model_tensors); original_tensor_to_final_tensor.clear(); std::set applied_lora_tensors; for (auto it : model_tensors) { std::string model_tensor_name = it.first; ggml_tensor* model_tensor = it.second; // lora ggml_tensor* updown = get_lora_diff(model_tensor_name, applied_lora_tensors); // loha if (updown == nullptr) { updown = get_loha_diff(model_tensor_name, applied_lora_tensors); } // lokr if (updown == nullptr) { updown = get_lokr_diff(model_tensor_name, applied_lora_tensors); } if (updown == nullptr) { continue; } ggml_tensor* original_tensor = model_tensor; if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) { model_tensor = ggml_dup_tensor(compute_ctx, model_tensor); set_backend_tensor_data(model_tensor, original_tensor->data); } if (ggml_nelements(updown) < ggml_nelements(model_tensor)) { if (ggml_n_dims(updown) == 2 && ggml_n_dims(model_tensor) == 2 && updown->ne[0] == model_tensor->ne[0]) { LOG_WARN("pad for %s", model_tensor_name.c_str()); auto pad_tensor = ggml_ext_zeros(compute_ctx, updown->ne[0], model_tensor->ne[1] - updown->ne[1], 1, 1); updown = ggml_concat(compute_ctx, updown, pad_tensor, 1); } } GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(model_tensor)); updown = ggml_reshape(compute_ctx, updown, model_tensor); ggml_tensor* final_tensor; if (model_tensor->type != GGML_TYPE_F32 && model_tensor->type != GGML_TYPE_F16) { final_tensor = to_f32(compute_ctx, model_tensor); final_tensor = ggml_add_inplace(compute_ctx, final_tensor, updown); final_tensor = ggml_cpy(compute_ctx, final_tensor, model_tensor); } else { final_tensor = ggml_add_inplace(compute_ctx, model_tensor, updown); } ggml_build_forward_expand(gf, final_tensor); if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) { original_tensor_to_final_tensor[original_tensor] = final_tensor; } } size_t total_lora_tensors_count = 0; size_t applied_lora_tensors_count = 0; for (auto& kv : lora_tensors) { total_lora_tensors_count++; if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) { LOG_WARN("unused lora tensor |%s|", kv.first.c_str()); print_ggml_tensor(kv.second, true); // exit(0); } else { applied_lora_tensors_count++; } } /* Don't worry if this message shows up twice in the logs per LoRA, * this function is called once to calculate the required buffer size * and then again to actually generate a graph to be used */ if (applied_lora_tensors_count != total_lora_tensors_count) { LOG_WARN("Only (%lu / %lu) LoRA tensors will be applied", applied_lora_tensors_count, total_lora_tensors_count); } else { LOG_DEBUG("(%lu / %lu) LoRA tensors will be applied", applied_lora_tensors_count, total_lora_tensors_count); } return gf; } void apply(std::map model_tensors, SDVersion version, int n_threads) { auto get_graph = [&]() -> struct ggml_cgraph* { return build_lora_graph(model_tensors, version); }; GGMLRunner::compute(get_graph, n_threads, false); for (auto item : original_tensor_to_final_tensor) { ggml_tensor* original_tensor = item.first; ggml_tensor* final_tensor = item.second; ggml_backend_tensor_copy(final_tensor, original_tensor); } original_tensor_to_final_tensor.clear(); GGMLRunner::free_compute_buffer(); } }; #endif // __LORA_HPP__