#ifndef __GGML_EXTEND_HPP__ #define __GGML_EXTEND_HPP__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml-cpu.h" #include "ggml.h" #include "model.h" #ifdef SD_USE_CUDA #include "ggml-cuda.h" #endif #ifdef SD_USE_METAL #include "ggml-metal.h" #endif #ifdef SD_USE_VULKAN #include "ggml-vulkan.h" #endif #ifdef SD_USE_OPENCL #include "ggml-opencl.h" #endif #ifdef SD_USE_SYCL #include "ggml-sycl.h" #endif #include "rng.hpp" #include "util.h" #define EPS 1e-05f #ifndef __STATIC_INLINE__ #define __STATIC_INLINE__ static inline #endif #ifndef SD_UNUSED #define SD_UNUSED(x) (void)(x) #endif __STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void*) { switch (level) { case GGML_LOG_LEVEL_DEBUG: LOG_DEBUG(text); break; case GGML_LOG_LEVEL_INFO: LOG_INFO(text); break; case GGML_LOG_LEVEL_WARN: LOG_WARN(text); break; case GGML_LOG_LEVEL_ERROR: LOG_ERROR(text); break; default: LOG_DEBUG(text); } } static_assert(GGML_MAX_NAME >= 128, "GGML_MAX_NAME must be at least 128"); // n-mode tensor-matrix product // example: 2-mode product // A: [ne03, k, ne01, ne00] // B: k rows, m columns => [k, m] // result is [ne03, m, ne01, ne00] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_mul_n_mode(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int mode = 0) { // reshape A // swap 0th and nth axis a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0)); int ne1 = a->ne[1]; int ne2 = a->ne[2]; int ne3 = a->ne[3]; // make 2D a = ggml_cont(ctx, ggml_reshape_2d(ctx, a, a->ne[0], (ne3 * ne2 * ne1))); struct ggml_tensor* result = ggml_cont(ctx, ggml_transpose(ctx, ggml_mul_mat(ctx, a, b))); // reshape output (same shape as a after permutation except first dim) result = ggml_reshape_4d(ctx, result, result->ne[0], ne1, ne2, ne3); // swap back 0th and nth axis result = ggml_permute(ctx, result, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0); return result; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_merge_lora(ggml_context* ctx, ggml_tensor* lora_down, ggml_tensor* lora_up, ggml_tensor* lora_mid = nullptr) { struct ggml_tensor* updown; // flat lora tensors to multiply it int64_t lora_up_rows = lora_up->ne[ggml_n_dims(lora_up) - 1]; lora_up = ggml_reshape_2d(ctx, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows); auto lora_down_n_dims = ggml_n_dims(lora_down); // assume n_dims should always be a multiple of 2 (otherwise rank 1 doesn't work) lora_down_n_dims = (lora_down_n_dims + lora_down_n_dims % 2); int64_t lora_down_rows = lora_down->ne[lora_down_n_dims - 1]; lora_down = ggml_reshape_2d(ctx, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows); // ggml_mul_mat requires tensor b transposed lora_down = ggml_cont(ctx, ggml_transpose(ctx, lora_down)); if (lora_mid == nullptr) { updown = ggml_mul_mat(ctx, lora_up, lora_down); updown = ggml_cont(ctx, ggml_transpose(ctx, updown)); } else { // undoing tucker decomposition for conv layers. // lora_mid has shape (3, 3, Rank, Rank) // lora_down has shape (Rank, In, 1, 1) // lora_up has shape (Rank, Out, 1, 1) // conv layer shape is (3, 3, Out, In) updown = ggml_ext_mul_n_mode(ctx, ggml_ext_mul_n_mode(ctx, lora_mid, lora_down, 3), lora_up, 2); updown = ggml_cont(ctx, updown); } return updown; } // Kronecker product // [ne03,ne02,ne01,ne00] x [ne13,ne12,ne11,ne10] => [ne03*ne13,ne02*ne12,ne01*ne11,ne00*ne10] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_kronecker(ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b) { return ggml_mul(ctx, ggml_interpolate(ctx, a, a->ne[0] * b->ne[0], a->ne[1] * b->ne[1], a->ne[2] * b->ne[2], a->ne[3] * b->ne[3], GGML_SCALE_MODE_NEAREST), b); } __STATIC_INLINE__ void ggml_ext_im_set_randn_f32(struct ggml_tensor* tensor, std::shared_ptr rng) { uint32_t n = (uint32_t)ggml_nelements(tensor); std::vector random_numbers = rng->randn(n); for (uint32_t i = 0; i < n; i++) { ggml_set_f32_1d(tensor, i, random_numbers[i]); } } __STATIC_INLINE__ void ggml_ext_tensor_set_f32(struct ggml_tensor* tensor, float value, int i0, int i1 = 0, int i2 = 0, int i3 = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); *(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]) = value; } __STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) { if (tensor->buffer != nullptr) { float value; ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(float)); return value; } GGML_ASSERT(tensor->nb[0] == sizeof(float)); return *(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]); } __STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) { if (tensor->buffer != nullptr) { float value; ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(int)); return value; } GGML_ASSERT(tensor->nb[0] == sizeof(int)); return *(int*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]); } __STATIC_INLINE__ ggml_fp16_t ggml_ext_tensor_get_f16(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return *(ggml_fp16_t*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]); } __STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int ic, bool scale = true) { float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic); if (scale) { value /= 255.f; } return value; } __STATIC_INLINE__ float sd_image_get_f32(sd_image_f32_t image, int iw, int ih, int ic, bool scale = true) { float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic); if (scale) { value /= 255.f; } return value; } __STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false, const char* mark = "") { printf("%s (%s): shape(%zu, %zu, %zu, %zu)\n", mark, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); fflush(stdout); if (shape_only) { return; } int range = 3; for (int i3 = 0; i3 < tensor->ne[3]; i3++) { if (i3 >= range && i3 + range < tensor->ne[3]) { continue; } for (int i2 = 0; i2 < tensor->ne[2]; i2++) { if (i2 >= range && i2 + range < tensor->ne[2]) { continue; } for (int i1 = 0; i1 < tensor->ne[1]; i1++) { if (i1 >= range && i1 + range < tensor->ne[1]) { continue; } for (int i0 = 0; i0 < tensor->ne[0]; i0++) { if (i0 >= range && i0 + range < tensor->ne[0]) { continue; } if (tensor->type == GGML_TYPE_F32) { printf(" [%d, %d, %d, %d] = %f\n", i3, i2, i1, i0, ggml_ext_tensor_get_f32(tensor, i0, i1, i2, i3)); } else if (tensor->type == GGML_TYPE_F16) { printf(" [%d, %d, %d, %d] = %f\n", i3, i2, i1, i0, ggml_fp16_to_fp32(ggml_ext_tensor_get_f16(tensor, i0, i1, i2, i3))); } else if (tensor->type == GGML_TYPE_I32) { printf(" [%d, %d, %d, %d] = %i3\n", i3, i2, i1, i0, ggml_ext_tensor_get_i32(tensor, i0, i1, i2, i3)); } fflush(stdout); } } } } } __STATIC_INLINE__ void ggml_ext_tensor_iter( ggml_tensor* tensor, const std::function& fn) { int64_t n0 = tensor->ne[0]; int64_t n1 = tensor->ne[1]; int64_t n2 = tensor->ne[2]; int64_t n3 = tensor->ne[3]; for (int64_t i3 = 0; i3 < n3; i3++) { for (int64_t i2 = 0; i2 < n2; i2++) { for (int64_t i1 = 0; i1 < n1; i1++) { for (int64_t i0 = 0; i0 < n0; i0++) { fn(tensor, i0, i1, i2, i3); } } } } } __STATIC_INLINE__ void ggml_ext_tensor_iter( ggml_tensor* tensor, const std::function& fn) { int64_t n0 = tensor->ne[0]; int64_t n1 = tensor->ne[1]; int64_t n2 = tensor->ne[2]; int64_t n3 = tensor->ne[3]; for (int64_t i = 0; i < ggml_nelements(tensor); i++) { fn(tensor, i); } } __STATIC_INLINE__ void ggml_ext_tensor_diff( ggml_tensor* a, ggml_tensor* b, float gap = 0.1f) { GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); ggml_ext_tensor_iter(a, [&](ggml_tensor* a, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { float a_value = ggml_ext_tensor_get_f32(a, i0, i1, i2, i3); float b_value = ggml_ext_tensor_get_f32(b, i0, i1, i2, i3); if (abs(a_value - b_value) > gap) { LOG_WARN("[%ld, %ld, %ld, %ld] %f %f", i3, i2, i1, i0, a_value, b_value); } }); } __STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { LOG_ERROR("failed to open '%s'", file_path.c_str()); return nullptr; } int32_t n_dims; int32_t length; int32_t ttype; file.read(reinterpret_cast(&n_dims), sizeof(n_dims)); file.read(reinterpret_cast(&length), sizeof(length)); file.read(reinterpret_cast(&ttype), sizeof(ttype)); LOG_DEBUG("load_tensor_from_file %d %d %d", n_dims, length, ttype); if (file.eof()) { LOG_ERROR("incomplete file '%s'", file_path.c_str()); return nullptr; } int32_t nelements = 1; int32_t ne[4] = {1, 1, 1, 1}; for (int i = 0; i < n_dims; ++i) { file.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); file.read(&name[0], length); ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]); const size_t bpe = ggml_type_size(ggml_type(ttype)); file.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); return tensor; } // __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) { // std::string file_name_ = file_name + ".tensor"; // std::string name_ = name; // std::ofstream file("./" + file_name_, std::ios::binary); // file.write(reinterpret_cast(&tensor->n_dims), sizeof(tensor->n_dims)); // int len = (int)name_.size(); // file.write(reinterpret_cast(&len), sizeof(len)); // int ttype = (int)tensor->type; // file.write(reinterpret_cast(&ttype), sizeof(ttype)); // for (int i = 0; i < tensor->n_dims; ++i) { // int ne_ = (int) tensor->ne[i]; // file.write(reinterpret_cast(&ne_), sizeof(ne_)); // } // file.write(&name_[0], len); // char* data = nullptr; // file.write((char*)tensor->data, ggml_nbytes(tensor)); // file.close(); // } __STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) { if (dst->type == src->type) { dst->nb[0] = src->nb[0]; dst->nb[1] = src->nb[1]; dst->nb[2] = src->nb[2]; dst->nb[3] = src->nb[3]; memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst)); return; } struct ggml_init_params params; params.mem_size = 10 * 1024 * 1024; // for padding params.mem_buffer = nullptr; params.no_alloc = false; struct ggml_context* ctx = ggml_init(params); if (!ctx) { LOG_ERROR("ggml_init() failed"); return; } ggml_tensor* final = ggml_cpy(ctx, src, dst); struct ggml_cgraph* graph = ggml_new_graph(ctx); ggml_build_forward_expand(graph, final); ggml_graph_compute_with_ctx(ctx, graph, 1); ggml_free(ctx); } __STATIC_INLINE__ float sigmoid(float x) { return 1 / (1.0f + expf(-x)); } // SPECIAL OPERATIONS WITH TENSORS __STATIC_INLINE__ uint8_t* ggml_tensor_to_sd_image(struct ggml_tensor* input, uint8_t* image_data = nullptr) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); if (image_data == nullptr) { image_data = (uint8_t*)malloc(width * height * channels); } for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { float value = ggml_ext_tensor_get_f32(input, ix, iy, k); *(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f); } } } return image_data; } __STATIC_INLINE__ uint8_t* ggml_tensor_to_sd_image(struct ggml_tensor* input, int idx, bool video = false) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels; if (video) { channels = input->ne[3]; } else { channels = input->ne[2]; } GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32); uint8_t* image_data = (uint8_t*)malloc(width * height * channels); for (int ih = 0; ih < height; ih++) { for (int iw = 0; iw < width; iw++) { for (int ic = 0; ic < channels; ic++) { float value; if (video) { value = ggml_ext_tensor_get_f32(input, iw, ih, idx, ic); } else { value = ggml_ext_tensor_get_f32(input, iw, ih, ic, idx); } *(image_data + ih * width * channels + iw * channels + ic) = (uint8_t)(value * 255.0f); } } } return image_data; } __STATIC_INLINE__ void sd_image_to_ggml_tensor(sd_image_t image, ggml_tensor* tensor, bool scale = true) { GGML_ASSERT(image.width == tensor->ne[0]); GGML_ASSERT(image.height == tensor->ne[1]); GGML_ASSERT(image.channel == tensor->ne[2]); GGML_ASSERT(1 == tensor->ne[3]); GGML_ASSERT(tensor->type == GGML_TYPE_F32); ggml_ext_tensor_iter(tensor, [&](ggml_tensor* tensor, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { float value = sd_image_get_f32(image, i0, i1, i2, scale); ggml_ext_tensor_set_f32(tensor, value, i0, i1, i2, i3); }); } __STATIC_INLINE__ void ggml_ext_tensor_apply_mask(struct ggml_tensor* image_data, struct ggml_tensor* mask, struct ggml_tensor* output, float masked_value = 0.5f) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; float rescale_mx = mask->ne[0] / output->ne[0]; float rescale_my = mask->ne[1] / output->ne[1]; GGML_ASSERT(output->type == GGML_TYPE_F32); for (int ix = 0; ix < width; ix++) { for (int iy = 0; iy < height; iy++) { int mx = (int)(ix * rescale_mx); int my = (int)(iy * rescale_my); float m = ggml_ext_tensor_get_f32(mask, mx, my); m = round(m); // inpaint models need binary masks ggml_ext_tensor_set_f32(mask, m, mx, my); for (int k = 0; k < channels; k++) { float value = ggml_ext_tensor_get_f32(image_data, ix, iy, k); value = (1 - m) * (value - masked_value) + masked_value; ggml_ext_tensor_set_f32(output, value, ix, iy, k); } } } } __STATIC_INLINE__ void sd_image_f32_to_ggml_tensor(sd_image_f32_t image, ggml_tensor* tensor, bool scale = true) { GGML_ASSERT(image.width == tensor->ne[0]); GGML_ASSERT(image.height == tensor->ne[1]); GGML_ASSERT(image.channel == tensor->ne[2]); GGML_ASSERT(1 == tensor->ne[3]); GGML_ASSERT(tensor->type == GGML_TYPE_F32); ggml_ext_tensor_iter(tensor, [&](ggml_tensor* tensor, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { float value = sd_image_get_f32(image, i0, i1, i2, scale); ggml_ext_tensor_set_f32(tensor, value, i0, i1, i2, i3); }); } __STATIC_INLINE__ void ggml_ext_tensor_split_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y) { int64_t width = output->ne[0]; int64_t height = output->ne[1]; int64_t channels = output->ne[2]; int64_t ne3 = output->ne[3]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = 0; iy < height; iy++) { for (int ix = 0; ix < width; ix++) { for (int k = 0; k < channels; k++) { for (int l = 0; l < ne3; l++) { float value = ggml_ext_tensor_get_f32(input, ix + x, iy + y, k, l); ggml_ext_tensor_set_f32(output, value, ix, iy, k, l); } } } } } // unclamped -> expects x in the range [0-1] __STATIC_INLINE__ float smootherstep_f32(const float x) { GGML_ASSERT(x >= 0.f && x <= 1.f); return x * x * x * (x * (6.0f * x - 15.0f) + 10.0f); } __STATIC_INLINE__ void ggml_ext_tensor_merge_2d(struct ggml_tensor* input, struct ggml_tensor* output, int x, int y, int overlap_x, int overlap_y, int x_skip = 0, int y_skip = 0) { int64_t width = input->ne[0]; int64_t height = input->ne[1]; int64_t channels = input->ne[2]; int64_t ne3 = input->ne[3]; int64_t img_width = output->ne[0]; int64_t img_height = output->ne[1]; GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); for (int iy = y_skip; iy < height; iy++) { for (int ix = x_skip; ix < width; ix++) { for (int k = 0; k < channels; k++) { for (int l = 0; l < ne3; l++) { float new_value = ggml_ext_tensor_get_f32(input, ix, iy, k, l); if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area float old_value = ggml_ext_tensor_get_f32(output, x + ix, y + iy, k, l); const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1; const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1; const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1; const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1; const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f); const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f); ggml_ext_tensor_set_f32( output, old_value + new_value * smootherstep_f32(y_f) * smootherstep_f32(x_f), x + ix, y + iy, k, l); } else { ggml_ext_tensor_set_f32(output, new_value, x + ix, y + iy, k, l); } } } } } } __STATIC_INLINE__ float ggml_ext_tensor_mean(struct ggml_tensor* src) { float mean = 0.0f; int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { mean += data[i] / nelements * 1.0f; } return mean; } // a = a+b __STATIC_INLINE__ void ggml_ext_tensor_add_inplace(struct ggml_tensor* a, struct ggml_tensor* b) { GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); int64_t nelements = ggml_nelements(a); float* vec_a = (float*)a->data; float* vec_b = (float*)b->data; for (int i = 0; i < nelements; i++) { vec_a[i] = vec_a[i] + vec_b[i]; } } __STATIC_INLINE__ void ggml_ext_tensor_scale_inplace(struct ggml_tensor* src, float scale) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { data[i] = data[i] * scale; } } __STATIC_INLINE__ void ggml_ext_tensor_clamp_inplace(struct ggml_tensor* src, float min, float max) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val < min ? min : (val > max ? max : val); } } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_tensor_concat(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int dim) { int64_t ne[GGML_MAX_DIMS]; for (int d = 0; d < GGML_MAX_DIMS; ++d) { if (d == dim) { ne[d] = a->ne[d] + b->ne[d]; continue; } GGML_ASSERT(a->ne[d] == b->ne[d]); ne[d] = a->ne[d]; } struct ggml_tensor* result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); int64_t o[4] = {0, 0, 0, 0}; o[dim] = a->ne[dim]; float v; for (int i3 = 0; i3 < result->ne[3]; i3++) { for (int i2 = 0; i2 < result->ne[2]; i2++) { for (int i1 = 0; i1 < result->ne[1]; i1++) { for (int i0 = 0; i0 < result->ne[0]; i0++) { if (i0 < a->ne[0] && i1 < a->ne[1] && i2 < a->ne[2] && i3 < a->ne[3]) { v = ggml_ext_tensor_get_f32(a, i0, i1, i2, i3); } else { v = ggml_ext_tensor_get_f32(b, i0 - o[0], i1 - o[1], i2 - o[2], i3 - o[3]); } ggml_ext_tensor_set_f32(result, v, i0, i1, i2, i3); } } } } return result; } // convert values from [0, 1] to [-1, 1] __STATIC_INLINE__ void process_vae_input_tensor(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = val * 2.0f - 1.0f; } } // convert values from [-1, 1] to [0, 1] __STATIC_INLINE__ void process_vae_output_tensor(struct ggml_tensor* src) { int64_t nelements = ggml_nelements(src); float* data = (float*)src->data; for (int i = 0; i < nelements; i++) { float val = data[i]; data[i] = (val + 1.0f) * 0.5f; } } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_cont(struct ggml_context* ctx, struct ggml_tensor* x) { if (ggml_is_contiguous(x)) { return x; } return ggml_cont(ctx, x); } // torch like permute __STATIC_INLINE__ struct ggml_tensor* ggml_ext_torch_permute(struct ggml_context* ctx, struct ggml_tensor* x, int axis0, int axis1, int axis2, int axis3) { int torch_axes[4] = {axis0, axis1, axis2, axis3}; int ggml_axes[4] = {0}; for (int i = 0; i < 4; ++i) { int found = 0; for (int j = 0; j < 4; ++j) { if (torch_axes[j] == i) { ggml_axes[i] = j; found = 1; break; } } GGML_ASSERT(found && "Invalid permute input: must be a permutation of 0-3"); } return ggml_permute(ctx, x, ggml_axes[0], ggml_axes[1], ggml_axes[2], ggml_axes[3]); } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx, struct ggml_tensor* x, int64_t dim, int64_t start, int64_t end) { GGML_ASSERT(dim >= 0 && dim < 4); if (x->ne[dim] == 1) { return x; } while (start < 0) { start = x->ne[dim] + start; } while (end < 0) { end = x->ne[dim] + end; } GGML_ASSERT(end > start); GGML_ASSERT(start >= 0 && start < x->ne[dim]); GGML_ASSERT(end > start && end <= x->ne[dim]); int perm[4] = {0, 1, 2, 3}; for (int i = dim; i < 3; ++i) perm[i] = perm[i + 1]; perm[3] = dim; int inv_perm[4]; for (int i = 0; i < 4; ++i) inv_perm[perm[i]] = i; if (dim != 3) { x = ggml_ext_torch_permute(ctx, x, perm[0], perm[1], perm[2], perm[3]); x = ggml_cont(ctx, x); } x = ggml_view_4d( ctx, x, x->ne[0], x->ne[1], x->ne[2], end - start, x->nb[1], x->nb[2], x->nb[3], x->nb[3] * start); if (dim != 3) { x = ggml_ext_torch_permute(ctx, x, inv_perm[0], inv_perm[1], inv_perm[2], inv_perm[3]); x = ggml_cont(ctx, x); } return x; } // example: [N, 3*C, H, W] => ([N, C, H, W], [N, C, H, W], [N, C, H, W]) __STATIC_INLINE__ std::vector ggml_ext_chunk(struct ggml_context* ctx, struct ggml_tensor* x, int num, int64_t dim) { GGML_ASSERT(dim >= 0 && dim < 4); GGML_ASSERT(x->ne[dim] % num == 0); int perm[4] = {0, 1, 2, 3}; for (int i = dim; i < 3; ++i) perm[i] = perm[i + 1]; perm[3] = dim; int inv_perm[4]; for (int i = 0; i < 4; ++i) inv_perm[perm[i]] = i; if (dim != 3) { x = ggml_ext_torch_permute(ctx, x, perm[0], perm[1], perm[2], perm[3]); x = ggml_cont(ctx, x); } std::vector chunks; int64_t chunk_size = x->ne[3] / num; for (int i = 0; i < num; i++) { auto chunk = ggml_view_4d( ctx, x, x->ne[0], x->ne[1], x->ne[2], chunk_size, x->nb[1], x->nb[2], x->nb[3], x->nb[3] * i * chunk_size); if (dim != 3) { chunk = ggml_ext_torch_permute(ctx, chunk, inv_perm[0], inv_perm[1], inv_perm[2], inv_perm[3]); chunk = ggml_cont(ctx, chunk); } chunks.push_back(chunk); } return chunks; } __STATIC_INLINE__ ggml_tensor* ggml_ext_silu_act(ggml_context* ctx, ggml_tensor* x) { // x: [ne3, ne2, ne1, ne0] // return: [ne3, ne2, ne1, ne0/2] auto x_vec = ggml_ext_chunk(ctx, x, 2, 0); auto x1 = x_vec[0]; // [ne3, ne2, ne1, ne0/2] auto x2 = x_vec[1]; // [ne3, ne2, ne1, ne0/2] x1 = ggml_gelu_inplace(ctx, x1); x = ggml_mul(ctx, x1, x2); // [ne3, ne2, ne1, ne0/2] return x; } typedef std::function on_tile_process; __STATIC_INLINE__ void sd_tiling_calc_tiles(int& num_tiles_dim, float& tile_overlap_factor_dim, int small_dim, int tile_size, const float tile_overlap_factor) { int tile_overlap = (tile_size * tile_overlap_factor); int non_tile_overlap = tile_size - tile_overlap; num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap; int overshoot_dim = ((num_tiles_dim + 1) * non_tile_overlap + tile_overlap) % small_dim; if ((overshoot_dim != non_tile_overlap) && (overshoot_dim <= num_tiles_dim * (tile_size / 2 - tile_overlap))) { // if tiles don't fit perfectly using the desired overlap // and there is enough room to squeeze an extra tile without overlap becoming >0.5 num_tiles_dim++; } tile_overlap_factor_dim = (float)(tile_size * num_tiles_dim - small_dim) / (float)(tile_size * (num_tiles_dim - 1)); if (num_tiles_dim <= 2) { if (small_dim <= tile_size) { num_tiles_dim = 1; tile_overlap_factor_dim = 0; } else { num_tiles_dim = 2; tile_overlap_factor_dim = (2 * tile_size - small_dim) / (float)tile_size; } } } // Tiling __STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input, ggml_tensor* output, const int scale, const int p_tile_size_x, const int p_tile_size_y, const float tile_overlap_factor, on_tile_process on_processing) { output = ggml_set_f32(output, 0); int input_width = (int)input->ne[0]; int input_height = (int)input->ne[1]; int output_width = (int)output->ne[0]; int output_height = (int)output->ne[1]; GGML_ASSERT(((input_width / output_width) == (input_height / output_height)) && ((output_width / input_width) == (output_height / input_height))); GGML_ASSERT(((input_width / output_width) == scale) || ((output_width / input_width) == scale)); int small_width = output_width; int small_height = output_height; bool decode = output_width > input_width; if (decode) { small_width = input_width; small_height = input_height; } int num_tiles_x; float tile_overlap_factor_x; sd_tiling_calc_tiles(num_tiles_x, tile_overlap_factor_x, small_width, p_tile_size_x, tile_overlap_factor); int num_tiles_y; float tile_overlap_factor_y; sd_tiling_calc_tiles(num_tiles_y, tile_overlap_factor_y, small_height, p_tile_size_y, tile_overlap_factor); LOG_DEBUG("num tiles : %d, %d ", num_tiles_x, num_tiles_y); LOG_DEBUG("optimal overlap : %f, %f (targeting %f)", tile_overlap_factor_x, tile_overlap_factor_y, tile_overlap_factor); GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2 int tile_overlap_x = (int32_t)(p_tile_size_x * tile_overlap_factor_x); int non_tile_overlap_x = p_tile_size_x - tile_overlap_x; int tile_overlap_y = (int32_t)(p_tile_size_y * tile_overlap_factor_y); int non_tile_overlap_y = p_tile_size_y - tile_overlap_y; int tile_size_x = p_tile_size_x < small_width ? p_tile_size_x : small_width; int tile_size_y = p_tile_size_y < small_height ? p_tile_size_y : small_height; int input_tile_size_x = tile_size_x; int input_tile_size_y = tile_size_y; int output_tile_size_x = tile_size_x; int output_tile_size_y = tile_size_y; if (decode) { output_tile_size_x *= scale; output_tile_size_y *= scale; } else { input_tile_size_x *= scale; input_tile_size_y *= scale; } struct ggml_init_params params = {}; params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * input->ne[3] * sizeof(float); // input chunk params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * output->ne[3] * sizeof(float); // output chunk params.mem_size += 3 * ggml_tensor_overhead(); params.mem_buffer = nullptr; params.no_alloc = false; LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); // draft context struct ggml_context* tiles_ctx = ggml_init(params); if (!tiles_ctx) { LOG_ERROR("ggml_init() failed"); return; } // tiling ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], input->ne[3]); ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], output->ne[3]); int num_tiles = num_tiles_x * num_tiles_y; LOG_DEBUG("processing %i tiles", num_tiles); pretty_progress(0, num_tiles, 0.0f); int tile_count = 1; bool last_y = false, last_x = false; float last_time = 0.0f; for (int y = 0; y < small_height && !last_y; y += non_tile_overlap_y) { int dy = 0; if (y + tile_size_y >= small_height) { int _y = y; y = small_height - tile_size_y; dy = _y - y; if (decode) { dy *= scale; } last_y = true; } for (int x = 0; x < small_width && !last_x; x += non_tile_overlap_x) { int dx = 0; if (x + tile_size_x >= small_width) { int _x = x; x = small_width - tile_size_x; dx = _x - x; if (decode) { dx *= scale; } last_x = true; } int x_in = decode ? x : scale * x; int y_in = decode ? y : scale * y; int x_out = decode ? x * scale : x; int y_out = decode ? y * scale : y; int overlap_x_out = decode ? tile_overlap_x * scale : tile_overlap_x; int overlap_y_out = decode ? tile_overlap_y * scale : tile_overlap_y; int64_t t1 = ggml_time_ms(); ggml_ext_tensor_split_2d(input, input_tile, x_in, y_in); on_processing(input_tile, output_tile, false); ggml_ext_tensor_merge_2d(output_tile, output, x_out, y_out, overlap_x_out, overlap_y_out, dx, dy); int64_t t2 = ggml_time_ms(); last_time = (t2 - t1) / 1000.0f; pretty_progress(tile_count, num_tiles, last_time); tile_count++; } last_x = false; } if (tile_count < num_tiles) { pretty_progress(num_tiles, num_tiles, last_time); } ggml_free(tiles_ctx); } __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) { sd_tiling_non_square(input, output, scale, tile_size, tile_size, tile_overlap_factor, on_processing); } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_group_norm_32(struct ggml_context* ctx, struct ggml_tensor* a) { const float eps = 1e-6f; // default eps parameter return ggml_group_norm(ctx, a, 32, eps); } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, bool force_prec_f32 = false, float scale = 1.f) { if (scale != 1.f) { x = ggml_scale(ctx, x, scale); } if (x->ne[2] * x->ne[3] > 1024) { // workaround: avoid ggml cuda error int64_t ne2 = x->ne[2]; int64_t ne3 = x->ne[3]; x = ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2] * x->ne[3]); x = ggml_mul_mat(ctx, w, x); if (force_prec_f32) { ggml_mul_mat_set_prec(x, GGML_PREC_F32); } x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3); } else { x = ggml_mul_mat(ctx, w, x); if (force_prec_f32) { ggml_mul_mat_set_prec(x, GGML_PREC_F32); } } if (scale != 1.f) { x = ggml_scale(ctx, x, 1.f / scale); } if (b != nullptr) { x = ggml_add_inplace(ctx, x, b); } return x; } // w: [OC,IC, KH, KW] // x: [N, IC, IH, IW] // b: [OC,] // result: [N, OC, OH, OW] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s0 = 1, int s1 = 1, int p0 = 0, int p1 = 0, int d0 = 1, int d1 = 1, bool direct = false, float scale = 1.f) { if (scale != 1.f) { x = ggml_scale(ctx, x, scale); } if (w->ne[2] != x->ne[2] && ggml_n_dims(w) == 2) { w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], w->ne[1]); } if (direct) { x = ggml_conv_2d_direct(ctx, w, x, s0, s1, p0, p1, d0, d1); } else { x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1); } if (scale != 1.f) { x = ggml_scale(ctx, x, 1.f / scale); } if (b != nullptr) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); x = ggml_add_inplace(ctx, x, b); } return x; } // w: [OC,IC, KD, 1 * 1] // x: [N, IC, IH, IW] // b: [OC,] // result: [N*OC, OD, OH, OW] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_3d(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int64_t IC, int s0 = 1, int s1 = 1, int s2 = 1, int p0 = 0, int p1 = 0, int p2 = 0, int d0 = 1, int d1 = 1, int d2 = 1) { int64_t OC = w->ne[3] / IC; int64_t N = x->ne[3] / IC; x = ggml_conv_3d(ctx, w, x, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2); if (b != nullptr) { b = ggml_reshape_4d(ctx, b, 1, 1, 1, b->ne[0]); // [OC, 1, 1, 1] x = ggml_add_inplace(ctx, x, b); } return x; } // w: [OC,IC, KD, 1 * 1] // x: [N, IC, ID, IH*IW] // b: [OC,] // result: [N, OC, OD, OH*OW] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_3d_nx1x1(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int s2 = 1, int p2 = 1, int d2 = 1) { x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [N, OC, T, OH * OW] if (b != nullptr) { b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); x = ggml_add(ctx, x, b); } return x; // [N, OC, T, OH * OW] } // qkv: [N, L, 3*C] // return: ([N, L, C], [N, L, C], [N, L, C]) __STATIC_INLINE__ std::vector split_qkv(struct ggml_context* ctx, struct ggml_tensor* qkv) { qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); // [N, L, 3, C] qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); // [3, N, L, C] int64_t offset = qkv->nb[2] * qkv->ne[2]; auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); // [N, L, C] auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); // [N, L, C] auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); // [N, L, C] return {q, k, v}; } // qkv: [N, 3*C, H, W] // return: ([N, C, H, W], [N, C, H, W], [N, C, H, W]) __STATIC_INLINE__ std::vector split_image_qkv(struct ggml_context* ctx, struct ggml_tensor* qkv) { int64_t W = qkv->ne[0]; int64_t H = qkv->ne[1]; int64_t C = qkv->ne[2] / 3; int64_t N = qkv->ne[3]; int64_t nb1 = qkv->nb[1]; int64_t nb2 = qkv->nb[2]; qkv = ggml_reshape_4d(ctx, qkv, W * H, C, 3, N); // [N, 3, C, H*W] qkv = ggml_cont(ctx, ggml_ext_torch_permute(ctx, qkv, 0, 1, 3, 2)); // [3, N, C, H*W] int64_t offset = qkv->nb[2] * qkv->ne[2]; auto q = ggml_view_4d(ctx, qkv, W, H, C, N, nb1, nb2, qkv->nb[3], offset * 0); // [N, C, H, W] auto k = ggml_view_4d(ctx, qkv, W, H, C, N, nb1, nb2, qkv->nb[3], offset * 1); // [N, C, H, W] auto v = ggml_view_4d(ctx, qkv, W, H, C, N, nb1, nb2, qkv->nb[3], offset * 2); // [N, C, H, W] return {q, k, v}; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_full(struct ggml_context* ctx, float value, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { auto one = ggml_get_tensor(ctx, "ggml_runner_build_in_tensor:one"); auto t = ggml_scale(ctx, one, value); // [1,] t = ggml_repeat_4d(ctx, t, ne0, ne1, ne2, ne3); // [ne0, ne1, ne2, ne3] return t; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_zeros(struct ggml_context* ctx, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { return ggml_ext_full(ctx, 0.f, ne0, ne1, ne2, ne3); } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_ones(struct ggml_context* ctx, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { return ggml_ext_full(ctx, 1.f, ne0, ne1, ne2, ne3); } __STATIC_INLINE__ ggml_tensor* ggml_ext_cast_f32(ggml_context* ctx, ggml_tensor* a) { auto out = ggml_reshape_2d(ctx, a, 1, ggml_nelements(a)); ggml_tensor* one = ggml_ext_ones(ctx, 1, 1, 1, 1); // [1,] if (ggml_is_transposed(out)) { out = ggml_mul_mat(ctx, one, out); } else { out = ggml_mul_mat(ctx, out, one); } out = ggml_reshape(ctx, out, a); return out; } // q: [N * n_head, n_token, d_head] // k: [N * n_head, n_k, d_head] // v: [N * n_head, d_head, n_k] // return: [N * n_head, n_token, d_head] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention(struct ggml_context* ctx, struct ggml_tensor* q, struct ggml_tensor* k, struct ggml_tensor* v, bool mask = false) { #if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUDA) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL) struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head] #else float d_head = (float)q->ne[0]; struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k] kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head)); if (mask) { kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); } kq = ggml_soft_max_inplace(ctx, kq); struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head] #endif return kqv; } // q: [N, L_q, C(n_head*d_head)] or [N*n_head, L_q, d_head] // k: [N, L_k, n_kv_head*d_head] or [N*n_kv_head, L_k, d_head] // v: [N, L_k, n_kv_head*d_head] or [N, L_k, n_kv_head, d_head] // mask: [N, L_q, L_k] // return: [N, L_q, C] __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context* ctx, ggml_backend_t backend, struct ggml_tensor* q, struct ggml_tensor* k, struct ggml_tensor* v, int64_t n_head, struct ggml_tensor* mask = nullptr, bool diag_mask_inf = false, bool skip_reshape = false, bool flash_attn = false, float kv_scale = 1.0f) { // avoid overflow int64_t L_q; int64_t L_k; int64_t C; int64_t N; int64_t d_head; int64_t n_kv_head; if (!skip_reshape) { L_q = q->ne[1]; L_k = k->ne[1]; C = q->ne[0]; N = q->ne[2]; d_head = C / n_head; n_kv_head = k->ne[0] / d_head; q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); // [N, L_q, n_head, d_head] q = ggml_ext_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, L_q, d_head] q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); // [N * n_head, L_q, d_head] k = ggml_reshape_4d(ctx, k, d_head, n_kv_head, L_k, N); // [N, L_k, n_kv_head, d_head] k = ggml_ext_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_kv_head, L_k, d_head] k = ggml_reshape_3d(ctx, k, d_head, L_k, n_kv_head * N); // [N * n_kv_head, L_k, d_head] v = ggml_reshape_4d(ctx, v, d_head, n_kv_head, L_k, N); // [N, L_k, n_kv_head, d_head] } else { L_q = q->ne[1]; L_k = k->ne[1]; d_head = v->ne[0]; N = v->ne[3]; n_kv_head = k->ne[2] / N; C = d_head * n_head; } float scale = (1.0f / sqrt((float)d_head)); int kv_pad = 0; ggml_tensor* kqv = nullptr; auto build_kqv = [&](ggml_tensor* q_in, ggml_tensor* k_in, ggml_tensor* v_in, ggml_tensor* mask_in) -> ggml_tensor* { if (kv_pad != 0) { k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0); } if (kv_scale != 1.0f) { k_in = ggml_scale(ctx, k_in, kv_scale); } k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16); v_in = ggml_ext_cont(ctx, ggml_permute(ctx, v_in, 0, 2, 1, 3)); v_in = ggml_reshape_3d(ctx, v_in, d_head, L_k, n_kv_head * N); if (kv_pad != 0) { v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0); } if (kv_scale != 1.0f) { v_in = ggml_scale(ctx, v_in, kv_scale); } v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16); if (mask_in != nullptr) { mask_in = ggml_transpose(ctx, mask_in); } else { if (kv_pad > 0) { mask_in = ggml_ext_zeros(ctx, L_k, L_q, 1, 1); auto pad_tensor = ggml_ext_full(ctx, -INFINITY, kv_pad, L_q, 1, 1); mask_in = ggml_concat(ctx, mask_in, pad_tensor, 0); } } if (mask_in != nullptr) { int mask_pad = 0; if (mask_in->ne[1] % GGML_KQ_MASK_PAD != 0) { mask_pad = GGML_PAD(L_q, GGML_KQ_MASK_PAD) - mask_in->ne[1]; } if (mask_pad > 0) { mask_in = ggml_pad(ctx, mask_in, 0, mask_pad, 0, 0); } mask_in = ggml_cast(ctx, mask_in, GGML_TYPE_F16); } auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale / kv_scale, 0, 0); ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32); if (kv_scale != 1.0f) { out = ggml_scale(ctx, out, 1.0f / kv_scale); } return out; }; if (flash_attn) { // LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N); bool can_use_flash_attn = true; if (can_use_flash_attn && L_k % 256 != 0) { kv_pad = GGML_PAD(L_k, 256) - L_k; } if (mask != nullptr) { // TODO: figure out if we can bend t5 to work too can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1; } if (can_use_flash_attn) { kqv = build_kqv(q, k, v, mask); if (!ggml_backend_supports_op(backend, kqv)) { kqv = nullptr; } else { kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0); } } } if (kqv == nullptr) { // if (flash_attn) { // LOG_DEBUG("fallback to default attention, L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N); // } v = ggml_ext_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_kv_head, d_head, L_k] v = ggml_reshape_3d(ctx, v, L_k, d_head, n_kv_head * N); // [N * n_kv_head, d_head, L_k] auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k] kq = ggml_scale_inplace(ctx, kq, scale); if (mask) { kq = ggml_add_inplace(ctx, kq, mask); } if (diag_mask_inf) { kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); } kq = ggml_soft_max_inplace(ctx, kq); kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head] kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N); // [N, n_head, L_q, d_head] kqv = ggml_permute(ctx, kqv, 0, 2, 1, 3); // [N, L_q, n_head, d_head] } kqv = ggml_ext_cont(ctx, kqv); kqv = ggml_reshape_3d(ctx, kqv, d_head * n_head, L_q, N); // [N, L_q, C] return kqv; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_layer_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, float eps = EPS) { x = ggml_norm(ctx, x, eps); if (w != nullptr) { x = ggml_mul_inplace(ctx, x, w); if (b != nullptr) { x = ggml_add_inplace(ctx, x, b); } } return x; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_group_norm(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* w, struct ggml_tensor* b, int num_groups = 32) { if (ggml_n_dims(x) >= 3 && w != nullptr && b != nullptr) { w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1); b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1); } const float eps = 1e-6f; // default eps parameter x = ggml_group_norm(ctx, x, num_groups, eps); if (w != nullptr && b != nullptr) { x = ggml_mul_inplace(ctx, x, w); // b = ggml_repeat(ctx, b, x); x = ggml_add_inplace(ctx, x, b); } return x; } __STATIC_INLINE__ void ggml_ext_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) { #if defined(SD_USE_CUDA) || defined(SD_USE_SYCL) if (!ggml_backend_is_cpu(backend)) { ggml_backend_tensor_get_async(backend, tensor, data, offset, size); ggml_backend_synchronize(backend); } else { ggml_backend_tensor_get(tensor, data, offset, size); } #else ggml_backend_tensor_get(tensor, data, offset, size); #endif } __STATIC_INLINE__ float ggml_ext_backend_tensor_get_f32(ggml_tensor* tensor) { GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_I32); float value; if (tensor->type == GGML_TYPE_F32) { ggml_backend_tensor_get(tensor, &value, 0, sizeof(value)); } else if (tensor->type == GGML_TYPE_F16) { ggml_fp16_t f16_value; ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value)); value = ggml_fp16_to_fp32(f16_value); } else { // GGML_TYPE_I32 int int32_value; ggml_backend_tensor_get(tensor, &int32_value, 0, sizeof(int32_value)); value = (float)int32_value; } return value; } __STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx, const std::vector& vec) { struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size()); memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); return t; } __STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx, const std::vector& vec) { struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size()); memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t)); return t; } __STATIC_INLINE__ std::vector arange(float start, float end, float step = 1.f) { std::vector result; for (float value = start; value < end; value += step) { result.push_back(value); } return result; } // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151 __STATIC_INLINE__ std::vector timestep_embedding(std::vector timesteps, int dim, int max_period = 10000, bool flip_sin_to_cos = true, float scale = 1.f) { // timesteps: [N,] // embedding: [N, dim] size_t N = timesteps.size(); std::vector embedding(N * dim, 0.f); int half = dim / 2; std::vector freqs(half); for (int i = 0; i < half; ++i) { freqs[i] = (float)std::exp(-std::log(max_period) * i / half); } for (int i = 0; i < N; ++i) { for (int j = 0; j < half; ++j) { float arg = timesteps[i] * freqs[j] * scale; if (flip_sin_to_cos) { embedding[i * dim + j] = std::cos(arg); embedding[i * dim + j + half] = std::sin(arg); } else { embedding[i * dim + j] = std::sin(arg); embedding[i * dim + j + half] = std::cos(arg); } } } return embedding; } __STATIC_INLINE__ void set_timestep_embedding(std::vector timesteps, struct ggml_tensor* embedding, int dim, int max_period = 10000) { std::vector embedding_vec = timestep_embedding(timesteps, dim, max_period); memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); } __STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx, std::vector timesteps, int dim, int max_period = 10000) { // timesteps: [N,] // embedding: [N, dim] std::vector embedding_vec = timestep_embedding(timesteps, dim, max_period); struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, timesteps.size()); if (embedding->data != nullptr) { memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding)); } else { ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding)); } return embedding; } __STATIC_INLINE__ struct ggml_tensor* ggml_ext_timestep_embedding( struct ggml_context* ctx, struct ggml_tensor* timesteps, int dim, int max_period = 10000, float time_factor = 1.0f) { timesteps = ggml_scale(ctx, timesteps, time_factor); return ggml_timestep_embedding(ctx, timesteps, dim, max_period); } __STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) { size_t num = 0; for (ggml_tensor* t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { num++; } return num; } /* SDXL with LoRA requires more space */ #define MAX_PARAMS_TENSOR_NUM 32768 #define MAX_GRAPH_SIZE 327680 struct WeightAdapter { struct ForwardParams { enum class op_type_t { OP_LINEAR, OP_CONV2D, } op_type; struct { bool force_prec_f32 = false; float scale = 1.f; } linear; struct { int s0 = 1; int s1 = 1; int p0 = 0; int p1 = 0; int d0 = 1; int d1 = 1; bool direct = false; float scale = 1.f; } conv2d; }; virtual ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) = 0; virtual ggml_tensor* forward_with_lora(ggml_context* ctx, ggml_tensor* x, ggml_tensor* w, ggml_tensor* b, const std::string& prefix, ForwardParams forward_params) = 0; virtual size_t get_extra_graph_size() = 0; }; struct GGMLRunnerContext { ggml_backend_t backend = nullptr; ggml_context* ggml_ctx = nullptr; bool flash_attn_enabled = false; bool conv2d_direct_enabled = false; std::shared_ptr weight_adapter = nullptr; }; struct GGMLRunner { protected: typedef std::function get_graph_cb_t; ggml_backend_t params_backend = nullptr; ggml_backend_t runtime_backend = nullptr; struct ggml_context* params_ctx = nullptr; ggml_backend_buffer_t params_buffer = nullptr; struct ggml_context* offload_ctx = nullptr; ggml_backend_buffer_t runtime_params_buffer = nullptr; bool params_on_runtime_backend = false; struct ggml_context* cache_ctx = nullptr; ggml_backend_buffer_t cache_buffer = nullptr; struct ggml_context* compute_ctx = nullptr; struct ggml_gallocr* compute_allocr = nullptr; std::shared_ptr weight_adapter = nullptr; std::vector one_vec = {1.f}; ggml_tensor* one_tensor = nullptr; std::map backend_tensor_data_map; std::map cache_tensor_map; // name -> tensor const std::string final_result_name = "ggml_runner_final_result_tensor"; bool flash_attn_enabled = false; bool conv2d_direct_enabled = false; void alloc_params_ctx() { struct ggml_init_params params; params.mem_size = static_cast(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead()); params.mem_buffer = nullptr; params.no_alloc = true; params_ctx = ggml_init(params); GGML_ASSERT(params_ctx != nullptr); if (params_backend != runtime_backend) { offload_ctx = ggml_init(params); GGML_ASSERT(offload_ctx != nullptr); } } void free_params_ctx() { if (params_ctx != nullptr) { ggml_free(params_ctx); params_ctx = nullptr; } if (offload_ctx != nullptr) { ggml_free(offload_ctx); offload_ctx = nullptr; } } void alloc_cache_ctx() { struct ggml_init_params params; params.mem_size = static_cast(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead()); params.mem_buffer = nullptr; params.no_alloc = true; cache_ctx = ggml_init(params); GGML_ASSERT(cache_ctx != nullptr); } void free_cache_ctx() { if (cache_ctx != nullptr) { ggml_free(cache_ctx); cache_ctx = nullptr; } } void alloc_compute_ctx() { struct ggml_init_params params; params.mem_size = static_cast(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead()); params.mem_buffer = nullptr; params.no_alloc = true; compute_ctx = ggml_init(params); GGML_ASSERT(compute_ctx != nullptr); } void free_compute_ctx() { if (compute_ctx != nullptr) { ggml_free(compute_ctx); compute_ctx = nullptr; } } void prepare_build_in_tensor_before() { one_tensor = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_F32, 1); ggml_set_name(one_tensor, "ggml_runner_build_in_tensor:one"); set_backend_tensor_data(one_tensor, one_vec.data()); } void prepare_build_in_tensor_after(struct ggml_cgraph* gf) { ggml_build_forward_expand(gf, one_tensor); } struct ggml_cgraph* new_graph_custom(size_t graph_size) { if (weight_adapter) { graph_size += weight_adapter->get_extra_graph_size(); } return ggml_new_graph_custom(compute_ctx, graph_size, false); } struct ggml_cgraph* get_compute_graph(get_graph_cb_t get_graph) { prepare_build_in_tensor_before(); struct ggml_cgraph* gf = get_graph(); if (ggml_graph_n_nodes(gf) > 0) { auto result = ggml_graph_node(gf, -1); ggml_set_name(result, final_result_name.c_str()); } prepare_build_in_tensor_after(gf); return gf; } bool alloc_compute_buffer(get_graph_cb_t get_graph) { if (compute_allocr != nullptr) { return true; } reset_compute_ctx(); struct ggml_cgraph* gf = get_compute_graph(get_graph); backend_tensor_data_map.clear(); compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(runtime_backend)); if (!ggml_gallocr_reserve(compute_allocr, gf)) { // failed to allocate the compute buffer LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str()); free_compute_buffer(); return false; } // compute the required memory size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0); LOG_DEBUG("%s compute buffer size: %.2f MB(%s)", get_desc().c_str(), compute_buffer_size / 1024.0 / 1024.0, ggml_backend_is_cpu(runtime_backend) ? "RAM" : "VRAM"); return true; } void free_cache_buffer() { if (cache_buffer != nullptr) { ggml_backend_buffer_free(cache_buffer); cache_buffer = nullptr; } } void copy_cache_tensors_to_cache_buffer() { if (cache_tensor_map.size() == 0) { return; } free_cache_ctx_and_buffer(); alloc_cache_ctx(); GGML_ASSERT(cache_buffer == nullptr); std::map runtime_tensor_to_cache_tensor; for (auto kv : cache_tensor_map) { auto cache_tensor = ggml_dup_tensor(cache_ctx, kv.second); ggml_set_name(cache_tensor, kv.first.c_str()); runtime_tensor_to_cache_tensor[kv.second] = cache_tensor; } size_t num_tensors = ggml_tensor_num(cache_ctx); cache_buffer = ggml_backend_alloc_ctx_tensors(cache_ctx, runtime_backend); GGML_ASSERT(cache_buffer != nullptr); for (auto kv : runtime_tensor_to_cache_tensor) { ggml_backend_tensor_copy(kv.first, kv.second); } ggml_backend_synchronize(runtime_backend); cache_tensor_map.clear(); size_t cache_buffer_size = ggml_backend_buffer_get_size(cache_buffer); LOG_DEBUG("%s cache backend buffer size = % 6.2f MB(%s) (%i tensors)", get_desc().c_str(), cache_buffer_size / (1024.f * 1024.f), ggml_backend_is_cpu(runtime_backend) ? "RAM" : "VRAM", num_tensors); } void copy_data_to_backend_tensor() { for (auto& kv : backend_tensor_data_map) { auto tensor = kv.first; auto data = kv.second; ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor)); } backend_tensor_data_map.clear(); } bool offload_params_to_runtime_backend() { if (params_backend == runtime_backend) { return true; } if (params_on_runtime_backend) { return true; } GGML_ASSERT(runtime_params_buffer == nullptr); int64_t t0 = ggml_time_ms(); size_t num_tensors = ggml_tensor_num(offload_ctx); if (num_tensors == 0) { for (ggml_tensor* t = ggml_get_first_tensor(params_ctx); t != nullptr; t = ggml_get_next_tensor(params_ctx, t)) { GGML_ASSERT(t->view_src == nullptr); ggml_dup_tensor(offload_ctx, t); } } num_tensors = ggml_tensor_num(offload_ctx); GGML_ASSERT(num_tensors == ggml_tensor_num(params_ctx)); runtime_params_buffer = ggml_backend_alloc_ctx_tensors(offload_ctx, runtime_backend); if (runtime_params_buffer == nullptr) { LOG_ERROR("%s alloc runtime params backend buffer failed, num_tensors = %i", get_desc().c_str(), num_tensors); return false; } ggml_tensor* t = ggml_get_first_tensor(params_ctx); ggml_tensor* offload_t = ggml_get_first_tensor(offload_ctx); while (t != nullptr && offload_t != nullptr) { ggml_backend_tensor_copy(t, offload_t); std::swap(t->buffer, offload_t->buffer); std::swap(t->data, offload_t->data); std::swap(t->extra, offload_t->extra); t = ggml_get_next_tensor(params_ctx, t); offload_t = ggml_get_next_tensor(offload_ctx, offload_t); } int64_t t1 = ggml_time_ms(); size_t params_buffer_size = ggml_backend_buffer_get_size(runtime_params_buffer); LOG_INFO("%s offload params (%6.2f MB, %i tensors) to runtime backend (%s), taking %.2fs", get_desc().c_str(), params_buffer_size / (1024.f * 1024.f), num_tensors, ggml_backend_name(runtime_backend), (t1 - t0) * 1.0f / 1000); params_on_runtime_backend = true; return true; } void offload_params_to_params_backend() { if (!params_on_runtime_backend) { return; } ggml_tensor* t = ggml_get_first_tensor(params_ctx); ggml_tensor* offload_t = ggml_get_first_tensor(offload_ctx); while (t != nullptr && offload_t != nullptr) { t->buffer = offload_t->buffer; t->data = offload_t->data; t->extra = offload_t->extra; offload_t->buffer = nullptr; offload_t->data = nullptr; offload_t->extra = nullptr; t = ggml_get_next_tensor(params_ctx, t); offload_t = ggml_get_next_tensor(offload_ctx, offload_t); } if (runtime_params_buffer != nullptr) { ggml_backend_buffer_free(runtime_params_buffer); runtime_params_buffer = nullptr; } params_on_runtime_backend = false; } public: virtual std::string get_desc() = 0; GGMLRunner(ggml_backend_t backend, bool offload_params_to_cpu = false) : runtime_backend(backend) { alloc_params_ctx(); if (!ggml_backend_is_cpu(runtime_backend) && offload_params_to_cpu) { params_backend = ggml_backend_cpu_init(); } else { params_backend = runtime_backend; } } virtual ~GGMLRunner() { free_params_buffer(); free_compute_buffer(); free_params_ctx(); free_compute_ctx(); if (params_backend != runtime_backend) { ggml_backend_free(params_backend); } free_cache_ctx_and_buffer(); } virtual GGMLRunnerContext get_context() { GGMLRunnerContext runner_ctx; runner_ctx.ggml_ctx = compute_ctx; runner_ctx.backend = runtime_backend; runner_ctx.flash_attn_enabled = flash_attn_enabled; runner_ctx.conv2d_direct_enabled = conv2d_direct_enabled; runner_ctx.weight_adapter = weight_adapter; return runner_ctx; } void reset_compute_ctx() { free_compute_ctx(); alloc_compute_ctx(); } bool alloc_params_buffer() { size_t num_tensors = ggml_tensor_num(params_ctx); params_buffer = ggml_backend_alloc_ctx_tensors(params_ctx, params_backend); if (params_buffer == nullptr) { LOG_ERROR("%s alloc params backend buffer failed, num_tensors = %i", get_desc().c_str(), num_tensors); return false; } size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer); LOG_DEBUG("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)", get_desc().c_str(), params_buffer_size / (1024.f * 1024.f), ggml_backend_is_cpu(params_backend) ? "RAM" : "VRAM", num_tensors); return true; } void free_params_buffer() { if (params_buffer != nullptr) { ggml_backend_buffer_free(params_buffer); params_buffer = nullptr; } } size_t get_params_buffer_size() { if (params_buffer != nullptr) { return ggml_backend_buffer_get_size(params_buffer); } return 0; } void free_cache_ctx_and_buffer() { free_cache_buffer(); free_cache_ctx(); } void free_compute_buffer() { if (compute_allocr != nullptr) { ggml_gallocr_free(compute_allocr); compute_allocr = nullptr; } offload_params_to_params_backend(); } // do copy after alloc graph void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) { backend_tensor_data_map[tensor] = data; } struct ggml_tensor* to_backend(struct ggml_tensor* tensor) { GGML_ASSERT(compute_ctx != nullptr); if (tensor == nullptr) { return nullptr; } // it's performing a compute, check if backend isn't cpu if (!ggml_backend_is_cpu(runtime_backend) && (tensor->buffer == nullptr || ggml_backend_buffer_is_host(tensor->buffer))) { // pass input tensors to gpu memory auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor); set_backend_tensor_data(backend_tensor, tensor->data); return backend_tensor; } else { return tensor; } } void cache(const std::string name, struct ggml_tensor* tensor) { cache_tensor_map[name] = tensor; } struct ggml_tensor* get_cache_tensor_by_name(const std::string& name) { if (cache_ctx == nullptr) { return nullptr; } return ggml_get_tensor(cache_ctx, name.c_str()); } void compute(get_graph_cb_t get_graph, int n_threads, bool free_compute_buffer_immediately = true, struct ggml_tensor** output = nullptr, struct ggml_context* output_ctx = nullptr) { if (!offload_params_to_runtime_backend()) { LOG_ERROR("%s offload params to runtime backend failed", get_desc().c_str()); return; } alloc_compute_buffer(get_graph); reset_compute_ctx(); struct ggml_cgraph* gf = get_compute_graph(get_graph); GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf)); copy_data_to_backend_tensor(); if (ggml_backend_is_cpu(runtime_backend)) { ggml_backend_cpu_set_n_threads(runtime_backend, n_threads); } ggml_backend_graph_compute(runtime_backend, gf); #ifdef GGML_PERF ggml_graph_print(gf); #endif copy_cache_tensors_to_cache_buffer(); if (output != nullptr) { auto result = ggml_get_tensor(compute_ctx, final_result_name.c_str()); if (*output == nullptr && output_ctx != nullptr) { *output = ggml_dup_tensor(output_ctx, result); } if (*output != nullptr) { ggml_ext_backend_tensor_get_and_sync(runtime_backend, result, (*output)->data, 0, ggml_nbytes(*output)); } } if (free_compute_buffer_immediately) { free_compute_buffer(); } } void set_flash_attention_enabled(bool enabled) { flash_attn_enabled = enabled; } void set_conv2d_direct_enabled(bool enabled) { conv2d_direct_enabled = enabled; } void set_weight_adapter(const std::shared_ptr& adapter) { weight_adapter = adapter; } }; class GGMLBlock { protected: typedef std::unordered_map ParameterMap; typedef std::unordered_map> GGMLBlockMap; GGMLBlockMap blocks; ParameterMap params; ggml_type get_type(const std::string& name, const String2TensorStorage& tensor_storage_map, ggml_type default_type) { ggml_type wtype = default_type; auto iter = tensor_storage_map.find(name); if (iter != tensor_storage_map.end()) { const TensorStorage& tensor_storage = iter->second; if (tensor_storage.expected_type != GGML_TYPE_COUNT) { wtype = tensor_storage.expected_type; } else { wtype = tensor_storage.type; } } return wtype; } void init_blocks(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") { for (auto& pair : blocks) { auto& block = pair.second; block->init(ctx, tensor_storage_map, prefix + pair.first); } } virtual void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") {} public: void init(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") { if (prefix.size() > 0) { prefix = prefix + "."; } init_params(ctx, tensor_storage_map, prefix); init_blocks(ctx, tensor_storage_map, prefix); } size_t get_params_num() { size_t num_tensors = params.size(); for (auto& pair : blocks) { auto& block = pair.second; num_tensors += block->get_params_num(); } return num_tensors; }; size_t get_params_mem_size() { size_t mem_size = 0; for (auto& pair : blocks) { auto& block = pair.second; mem_size += block->get_params_mem_size(); } for (auto& pair : params) { mem_size += ggml_nbytes(pair.second); } return mem_size; } void get_param_tensors(std::map& tensors, std::string prefix = "") { if (prefix.size() > 0) { prefix = prefix + "."; } for (auto& pair : blocks) { auto& block = pair.second; block->get_param_tensors(tensors, prefix + pair.first); } for (auto& pair : params) { struct ggml_tensor* param = pair.second; tensors[prefix + pair.first] = pair.second; } } virtual std::string get_desc() { return "GGMLBlock"; } void get_all_blocks(std::vector& result) { result.push_back(this); for (auto& block_iter : blocks) { if (block_iter.second) { block_iter.second->get_all_blocks(result); } } } }; class UnaryBlock : public GGMLBlock { public: virtual struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) = 0; }; class Identity : public UnaryBlock { public: struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { return x; } }; class Linear : public UnaryBlock { protected: int64_t in_features; int64_t out_features; bool bias; bool force_f32; bool force_prec_f32; float scale; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { this->prefix = prefix; enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32); if (in_features % ggml_blck_size(wtype) != 0 || force_f32) { wtype = GGML_TYPE_F32; } params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_features); } } public: Linear(int64_t in_features, int64_t out_features, bool bias = true, bool force_f32 = false, bool force_prec_f32 = false, float scale = 1.f) : in_features(in_features), out_features(out_features), bias(bias), force_f32(force_f32), force_prec_f32(force_prec_f32), scale(scale) {} struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = nullptr; if (bias) { b = params["bias"]; } if (ctx->weight_adapter) { WeightAdapter::ForwardParams forward_params; forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_LINEAR; forward_params.linear.force_prec_f32 = force_prec_f32; forward_params.linear.scale = scale; return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params); } return ggml_ext_linear(ctx->ggml_ctx, x, w, b, force_prec_f32, scale); } }; __STATIC_INLINE__ bool support_get_rows(ggml_type wtype) { std::set allow_types = {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0}; if (allow_types.find(wtype) != allow_types.end()) { return true; } return false; } class Embedding : public UnaryBlock { protected: int64_t embedding_dim; int64_t num_embeddings; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32); if (!support_get_rows(wtype)) { wtype = GGML_TYPE_F32; } params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings); } public: Embedding(int64_t num_embeddings, int64_t embedding_dim) : embedding_dim(embedding_dim), num_embeddings(num_embeddings) { } struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* input_ids) { // input_ids: [N, n_token] auto weight = params["weight"]; // There are issues with ggml batch inference, so we are expanding it here first. // TODO: fix ggml batch inference int64_t n = input_ids->ne[1]; input_ids = ggml_reshape_1d(ctx->ggml_ctx, input_ids, input_ids->ne[0] * input_ids->ne[1]); input_ids = ggml_reshape_3d(ctx->ggml_ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]); auto embedding = ggml_get_rows(ctx->ggml_ctx, weight, input_ids); embedding = ggml_reshape_3d(ctx->ggml_ctx, embedding, embedding->ne[0], embedding->ne[1] / n, n); // [N, n_token, embedding_dim] return embedding; } }; class Conv2d : public UnaryBlock { protected: int64_t in_channels; int64_t out_channels; std::pair kernel_size; std::pair stride; std::pair padding; std::pair dilation; bool bias; float scale = 1.f; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { this->prefix = prefix; enum ggml_type wtype = GGML_TYPE_F16; params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); } } public: Conv2d(int64_t in_channels, int64_t out_channels, std::pair kernel_size, std::pair stride = {1, 1}, std::pair padding = {0, 0}, std::pair dilation = {1, 1}, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} void set_scale(float scale_value) { scale = scale_value; } std::string get_desc() { return "Conv2d"; } struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = nullptr; if (bias) { b = params["bias"]; } if (ctx->weight_adapter) { WeightAdapter::ForwardParams forward_params; forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_CONV2D; forward_params.conv2d.s0 = stride.second; forward_params.conv2d.s1 = stride.first; forward_params.conv2d.p0 = padding.second; forward_params.conv2d.p1 = padding.first; forward_params.conv2d.d0 = dilation.second; forward_params.conv2d.d1 = dilation.first; forward_params.conv2d.direct = ctx->conv2d_direct_enabled; forward_params.conv2d.scale = scale; return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params); } return ggml_ext_conv_2d(ctx->ggml_ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first, ctx->conv2d_direct_enabled, scale); } }; class Conv3dnx1x1 : public UnaryBlock { protected: int64_t in_channels; int64_t out_channels; int64_t kernel_size; int64_t stride; int64_t padding; int64_t dilation; bool bias; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { enum ggml_type wtype = GGML_TYPE_F16; params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d if (bias) { enum ggml_type wtype = GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels); } } public: Conv3dnx1x1(int64_t in_channels, int64_t out_channels, int64_t kernel_size, int64_t stride = 1, int64_t padding = 0, int64_t dilation = 1, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} // x: [N, IC, ID, IH*IW] // result: [N, OC, OD, OH*OW] struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = nullptr; if (bias) { b = params["bias"]; } return ggml_ext_conv_3d_nx1x1(ctx->ggml_ctx, x, w, b, stride, padding, dilation); } }; class Conv3d : public UnaryBlock { protected: int64_t in_channels; int64_t out_channels; std::tuple kernel_size; std::tuple stride; std::tuple padding; std::tuple dilation; bool bias; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { this->prefix = prefix; enum ggml_type wtype = GGML_TYPE_F16; params["weight"] = ggml_new_tensor_4d(ctx, wtype, std::get<2>(kernel_size), std::get<1>(kernel_size), std::get<0>(kernel_size), in_channels * out_channels); if (bias) { params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); } } public: Conv3d(int64_t in_channels, int64_t out_channels, std::tuple kernel_size, std::tuple stride = {1, 1, 1}, std::tuple padding = {0, 0, 0}, std::tuple dilation = {1, 1, 1}, bool bias = true) : in_channels(in_channels), out_channels(out_channels), kernel_size(kernel_size), stride(stride), padding(padding), dilation(dilation), bias(bias) {} struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; struct ggml_tensor* b = nullptr; if (ctx->weight_adapter) { w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight"); if (w->type != GGML_TYPE_F16) { w = ggml_cast(ctx->ggml_ctx, w, GGML_TYPE_F16); } } if (bias) { b = params["bias"]; if (ctx->weight_adapter) { b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias"); } } return ggml_ext_conv_3d(ctx->ggml_ctx, x, w, b, in_channels, std::get<2>(stride), std::get<1>(stride), std::get<0>(stride), std::get<2>(padding), std::get<1>(padding), std::get<0>(padding), std::get<2>(dilation), std::get<1>(dilation), std::get<0>(dilation)); } }; class LayerNorm : public UnaryBlock { protected: int64_t normalized_shape; float eps; bool elementwise_affine; bool bias; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { this->prefix = prefix; if (elementwise_affine) { enum ggml_type wtype = GGML_TYPE_F32; params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); if (bias) { enum ggml_type wtype = GGML_TYPE_F32; params["bias"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); } } } public: LayerNorm(int64_t normalized_shape, float eps = 1e-05f, bool elementwise_affine = true, bool bias = true) : normalized_shape(normalized_shape), eps(eps), elementwise_affine(elementwise_affine), bias(bias) {} struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = nullptr; struct ggml_tensor* b = nullptr; if (elementwise_affine) { w = params["weight"]; if (ctx->weight_adapter) { w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight"); } if (bias) { b = params["bias"]; if (ctx->weight_adapter) { b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias"); } } } return ggml_ext_layer_norm(ctx->ggml_ctx, x, w, b, eps); } }; class GroupNorm : public GGMLBlock { protected: int64_t num_groups; int64_t num_channels; float eps; bool affine; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { this->prefix = prefix; if (affine) { enum ggml_type wtype = GGML_TYPE_F32; enum ggml_type bias_wtype = GGML_TYPE_F32; params["weight"] = ggml_new_tensor_1d(ctx, wtype, num_channels); params["bias"] = ggml_new_tensor_1d(ctx, bias_wtype, num_channels); } } public: GroupNorm(int64_t num_groups, int64_t num_channels, float eps = 1e-05f, bool affine = true) : num_groups(num_groups), num_channels(num_channels), eps(eps), affine(affine) {} struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = nullptr; struct ggml_tensor* b = nullptr; if (affine) { w = params["weight"]; b = params["bias"]; if (ctx->weight_adapter) { w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight"); b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias"); } } return ggml_ext_group_norm(ctx->ggml_ctx, x, w, b, num_groups); } }; class GroupNorm32 : public GroupNorm { public: GroupNorm32(int64_t num_channels) : GroupNorm(32, num_channels, 1e-06f) {} }; class RMSNorm : public UnaryBlock { protected: int64_t hidden_size; float eps; std::string prefix; void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override { this->prefix = prefix; enum ggml_type wtype = GGML_TYPE_F32; params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size); } public: RMSNorm(int64_t hidden_size, float eps = 1e-06f) : hidden_size(hidden_size), eps(eps) {} struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* w = params["weight"]; if (ctx->weight_adapter) { w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight"); } x = ggml_rms_norm(ctx->ggml_ctx, x, eps); x = ggml_mul_inplace(ctx->ggml_ctx, x, w); return x; } }; class MultiheadAttention : public GGMLBlock { protected: int64_t embed_dim; int64_t n_head; bool proj_in; std::string q_proj_name; std::string k_proj_name; std::string v_proj_name; std::string in_proj_name; std::string out_proj_name; public: MultiheadAttention(int64_t embed_dim, int64_t n_head, bool qkv_proj_bias = true, bool out_proj_bias = true, bool proj_in = false, std::string q_proj_name = "q_proj", std::string k_proj_name = "k_proj", std::string v_proj_name = "v_proj", std::string in_proj_name = "in_proj", std::string out_proj_name = "out_proj") : embed_dim(embed_dim), n_head(n_head), proj_in(proj_in), q_proj_name(q_proj_name), k_proj_name(k_proj_name), v_proj_name(v_proj_name), in_proj_name(in_proj_name), out_proj_name(out_proj_name) { if (proj_in) { blocks[in_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim * 3, qkv_proj_bias)); } else { blocks[q_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); blocks[k_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); blocks[v_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, qkv_proj_bias)); } blocks[out_proj_name] = std::shared_ptr(new Linear(embed_dim, embed_dim, out_proj_bias)); } // x: [N, n_token, embed_dim] struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, bool mask = false) { auto out_proj = std::dynamic_pointer_cast(blocks[out_proj_name]); ggml_tensor* q; ggml_tensor* k; ggml_tensor* v; if (proj_in) { auto in_proj = std::dynamic_pointer_cast(blocks[in_proj_name]); auto qkv = in_proj->forward(ctx, x); auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv); q = qkv_vec[0]; k = qkv_vec[1]; v = qkv_vec[2]; } else { auto q_proj = std::dynamic_pointer_cast(blocks[q_proj_name]); auto k_proj = std::dynamic_pointer_cast(blocks[k_proj_name]); auto v_proj = std::dynamic_pointer_cast(blocks[v_proj_name]); q = q_proj->forward(ctx, x); k = k_proj->forward(ctx, x); v = v_proj->forward(ctx, x); } x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, mask); // [N, n_token, embed_dim] x = out_proj->forward(ctx, x); // [N, n_token, embed_dim] return x; } }; #endif // __GGML_EXTEND__HPP__