#include #include #include #include #include #include #include #include #include #include #include #include #include #include "gguf_reader.hpp" #include "model.h" #include "stable-diffusion.h" #include "util.h" #include "vocab.hpp" #include "vocab_mistral.hpp" #include "vocab_qwen.hpp" #include "vocab_umt5.hpp" #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml-cpu.h" #include "ggml.h" #include "name_conversion.h" #include "stable-diffusion.h" #ifdef SD_USE_METAL #include "ggml-metal.h" #endif #ifdef SD_USE_VULKAN #include "ggml-vulkan.h" #endif #ifdef SD_USE_OPENCL #include "ggml-opencl.h" #endif #define ST_HEADER_SIZE_LEN 8 uint64_t read_u64(uint8_t* buffer) { // little endian uint64_t value = 0; value |= static_cast(buffer[7]) << 56; value |= static_cast(buffer[6]) << 48; value |= static_cast(buffer[5]) << 40; value |= static_cast(buffer[4]) << 32; value |= static_cast(buffer[3]) << 24; value |= static_cast(buffer[2]) << 16; value |= static_cast(buffer[1]) << 8; value |= static_cast(buffer[0]); return value; } int32_t read_int(uint8_t* buffer) { // little endian int value = 0; value |= buffer[3] << 24; value |= buffer[2] << 16; value |= buffer[1] << 8; value |= buffer[0]; return value; } uint16_t read_short(uint8_t* buffer) { // little endian uint16_t value = 0; value |= buffer[1] << 8; value |= buffer[0]; return value; } /*================================================= Preprocess ==================================================*/ const char* unused_tensors[] = { "betas", "alphas_cumprod_prev", "sqrt_alphas_cumprod", "sqrt_one_minus_alphas_cumprod", "log_one_minus_alphas_cumprod", "sqrt_recip_alphas_cumprod", "sqrt_recipm1_alphas_cumprod", "posterior_variance", "posterior_log_variance_clipped", "posterior_mean_coef1", "posterior_mean_coef2", "cond_stage_model.transformer.text_model.embeddings.position_ids", "cond_stage_model.1.model.text_model.embeddings.position_ids", "cond_stage_model.transformer.vision_model.embeddings.position_ids", "cond_stage_model.model.logit_scale", "conditioner.embedders.0.transformer.text_model.embeddings.position_ids", "conditioner.embedders.0.model.logit_scale", "conditioner.embedders.1.model.logit_scale", "model.diffusion_model.time_embedding.cond_proj.weight", "unet.time_embedding.cond_proj.weight", "model_ema.decay", "model_ema.num_updates", "model_ema.diffusion_model", "embedding_manager", "denoiser.sigmas", "edm_vpred.sigma_max", "text_encoders.t5xxl.transformer.encoder.embed_tokens.weight", // only used during training "text_encoders.llm.output.weight", "text_encoders.llm.lm_head.", "first_stage_model.bn.", }; bool is_unused_tensor(std::string name) { for (size_t i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) { if (starts_with(name, unused_tensors[i])) { return true; } } return false; } float bf16_to_f32(uint16_t bfloat16) { uint32_t val_bits = (static_cast(bfloat16) << 16); return *reinterpret_cast(&val_bits); } uint16_t f8_e4m3_to_f16(uint8_t f8) { // do we need to support uz? const uint32_t exponent_bias = 7; if (f8 == 0xff) { return ggml_fp32_to_fp16(-NAN); } else if (f8 == 0x7f) { return ggml_fp32_to_fp16(NAN); } uint32_t sign = f8 & 0x80; uint32_t exponent = (f8 & 0x78) >> 3; uint32_t mantissa = f8 & 0x07; uint32_t result = sign << 24; if (exponent == 0) { if (mantissa > 0) { exponent = 0x7f - exponent_bias; // yes, 2 times if ((mantissa & 0x04) == 0) { mantissa &= 0x03; mantissa <<= 1; exponent -= 1; } if ((mantissa & 0x04) == 0) { mantissa &= 0x03; mantissa <<= 1; exponent -= 1; } result |= (mantissa & 0x03) << 21; result |= exponent << 23; } } else { result |= mantissa << 20; exponent += 0x7f - exponent_bias; result |= exponent << 23; } return ggml_fp32_to_fp16(*reinterpret_cast(&result)); } uint16_t f8_e5m2_to_f16(uint8_t fp8) { uint8_t sign = (fp8 >> 7) & 0x1; uint8_t exponent = (fp8 >> 2) & 0x1F; uint8_t mantissa = fp8 & 0x3; uint16_t fp16_sign = sign << 15; uint16_t fp16_exponent; uint16_t fp16_mantissa; if (exponent == 0 && mantissa == 0) { // zero return fp16_sign; } if (exponent == 0x1F) { // NAN and INF fp16_exponent = 0x1F; fp16_mantissa = mantissa ? (mantissa << 8) : 0; return fp16_sign | (fp16_exponent << 10) | fp16_mantissa; } if (exponent == 0) { // subnormal numbers fp16_mantissa = (mantissa << 8); return fp16_sign | fp16_mantissa; } // normal numbers int16_t true_exponent = (int16_t)exponent - 15 + 15; if (true_exponent <= 0) { fp16_exponent = 0; fp16_mantissa = (mantissa << 8); } else if (true_exponent >= 0x1F) { fp16_exponent = 0x1F; fp16_mantissa = 0; } else { fp16_exponent = (uint16_t)true_exponent; fp16_mantissa = mantissa << 8; } return fp16_sign | (fp16_exponent << 10) | fp16_mantissa; } void bf16_to_f32_vec(uint16_t* src, float* dst, int64_t n) { // support inplace op for (int64_t i = n - 1; i >= 0; i--) { dst[i] = bf16_to_f32(src[i]); } } void f8_e4m3_to_f16_vec(uint8_t* src, uint16_t* dst, int64_t n) { // support inplace op for (int64_t i = n - 1; i >= 0; i--) { dst[i] = f8_e4m3_to_f16(src[i]); } } void f8_e5m2_to_f16_vec(uint8_t* src, uint16_t* dst, int64_t n) { // support inplace op for (int64_t i = n - 1; i >= 0; i--) { dst[i] = f8_e5m2_to_f16(src[i]); } } void f64_to_f32_vec(double* src, float* dst, int64_t n) { // support inplace op for (int64_t i = 0; i < n; i++) { dst[i] = (float)src[i]; } } void i64_to_i32_vec(int64_t* src, int32_t* dst, int64_t n) { // support inplace op for (int64_t i = 0; i < n; i++) { dst[i] = (int32_t)src[i]; } } void convert_tensor(void* src, ggml_type src_type, void* dst, ggml_type dst_type, int nrows, int n_per_row) { int n = nrows * n_per_row; if (src_type == dst_type) { size_t nbytes = n * ggml_type_size(src_type) / ggml_blck_size(src_type); memcpy(((char*)dst), ((char*)src), nbytes); } else if (src_type == GGML_TYPE_F32) { if (dst_type == GGML_TYPE_F16) { ggml_fp32_to_fp16_row((float*)src, (ggml_fp16_t*)dst, n); } else { std::vector imatrix(n_per_row, 1.0f); // dummy importance matrix const float* im = imatrix.data(); ggml_quantize_chunk(dst_type, (float*)src, dst, 0, nrows, n_per_row, im); } } else if (dst_type == GGML_TYPE_F32) { if (src_type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t*)src, (float*)dst, n); } else { auto qtype = ggml_get_type_traits(src_type); if (qtype->to_float == nullptr) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(src_type))); } qtype->to_float(src, (float*)dst, n); } } else { // src_type == GGML_TYPE_F16 => dst_type is quantized // src_type is quantized => dst_type == GGML_TYPE_F16 or dst_type is quantized auto qtype = ggml_get_type_traits(src_type); if (qtype->to_float == nullptr) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(src_type))); } std::vector buf; buf.resize(sizeof(float) * n); char* src_data_f32 = buf.data(); qtype->to_float(src, (float*)src_data_f32, n); if (dst_type == GGML_TYPE_F16) { ggml_fp32_to_fp16_row((float*)src_data_f32, (ggml_fp16_t*)dst, n); } else { std::vector imatrix(n_per_row, 1.0f); // dummy importance matrix const float* im = imatrix.data(); ggml_quantize_chunk(dst_type, (float*)src_data_f32, dst, 0, nrows, n_per_row, im); } } } /*================================================= ModelLoader ==================================================*/ void ModelLoader::add_tensor_storage(const TensorStorage& tensor_storage) { tensor_storage_map[tensor_storage.name] = tensor_storage; } bool is_zip_file(const std::string& file_path) { struct zip_t* zip = zip_open(file_path.c_str(), 0, 'r'); if (zip == nullptr) { return false; } zip_close(zip); return true; } bool is_gguf_file(const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { return false; } char magic[4]; file.read(magic, sizeof(magic)); if (!file) { return false; } for (uint32_t i = 0; i < sizeof(magic); i++) { if (magic[i] != GGUF_MAGIC[i]) { return false; } } return true; } bool is_safetensors_file(const std::string& file_path) { std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { return false; } // get file size file.seekg(0, file.end); size_t file_size_ = file.tellg(); file.seekg(0, file.beg); // read header size if (file_size_ <= ST_HEADER_SIZE_LEN) { return false; } uint8_t header_size_buf[ST_HEADER_SIZE_LEN]; file.read((char*)header_size_buf, ST_HEADER_SIZE_LEN); if (!file) { return false; } size_t header_size_ = read_u64(header_size_buf); if (header_size_ >= file_size_ || header_size_ <= 2) { return false; } // read header std::vector header_buf; header_buf.resize(header_size_ + 1); header_buf[header_size_] = '\0'; file.read(header_buf.data(), header_size_); if (!file) { return false; } nlohmann::json header_ = nlohmann::json::parse(header_buf.data()); if (header_.is_discarded()) { return false; } return true; } bool ModelLoader::init_from_file(const std::string& file_path, const std::string& prefix) { if (is_directory(file_path)) { LOG_INFO("load %s using diffusers format", file_path.c_str()); return init_from_diffusers_file(file_path, prefix); } else if (is_gguf_file(file_path)) { LOG_INFO("load %s using gguf format", file_path.c_str()); return init_from_gguf_file(file_path, prefix); } else if (is_safetensors_file(file_path)) { LOG_INFO("load %s using safetensors format", file_path.c_str()); return init_from_safetensors_file(file_path, prefix); } else if (is_zip_file(file_path)) { LOG_INFO("load %s using checkpoint format", file_path.c_str()); return init_from_ckpt_file(file_path, prefix); } else { LOG_WARN("unknown format %s", file_path.c_str()); return false; } } void ModelLoader::convert_tensors_name() { SDVersion version = (version_ == VERSION_COUNT) ? get_sd_version() : version_; String2TensorStorage new_map; for (auto& [_, tensor_storage] : tensor_storage_map) { auto new_name = convert_tensor_name(tensor_storage.name, version); // LOG_DEBUG("%s -> %s", tensor_storage.name.c_str(), new_name.c_str()); tensor_storage.name = new_name; new_map[new_name] = std::move(tensor_storage); } tensor_storage_map.swap(new_map); } bool ModelLoader::init_from_file_and_convert_name(const std::string& file_path, const std::string& prefix, SDVersion version) { if (version_ == VERSION_COUNT && version != VERSION_COUNT) { version_ = version; } if (!init_from_file(file_path, prefix)) { return false; } convert_tensors_name(); return true; } /*================================================= GGUFModelLoader ==================================================*/ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::string& prefix) { LOG_DEBUG("init from '%s'", file_path.c_str()); file_paths_.push_back(file_path); size_t file_index = file_paths_.size() - 1; gguf_context* ctx_gguf_ = nullptr; ggml_context* ctx_meta_ = nullptr; ctx_gguf_ = gguf_init_from_file(file_path.c_str(), {true, &ctx_meta_}); if (!ctx_gguf_) { LOG_ERROR("failed to open '%s' with gguf_init_from_file. Try to open it with GGUFReader.", file_path.c_str()); GGUFReader gguf_reader; if (!gguf_reader.load(file_path)) { LOG_ERROR("failed to open '%s' with GGUFReader.", file_path.c_str()); return false; } size_t data_offset = gguf_reader.data_offset(); for (const auto& gguf_tensor_info : gguf_reader.tensors()) { std::string name = gguf_tensor_info.name; if (!starts_with(name, prefix)) { name = prefix + name; } TensorStorage tensor_storage( name, gguf_tensor_info.type, gguf_tensor_info.shape.data(), gguf_tensor_info.shape.size(), file_index, data_offset + gguf_tensor_info.offset); // LOG_DEBUG("%s %s", name.c_str(), tensor_storage.to_string().c_str()); add_tensor_storage(tensor_storage); } return true; } int n_tensors = gguf_get_n_tensors(ctx_gguf_); size_t total_size = 0; size_t data_offset = gguf_get_data_offset(ctx_gguf_); for (int i = 0; i < n_tensors; i++) { std::string name = gguf_get_tensor_name(ctx_gguf_, i); struct ggml_tensor* dummy = ggml_get_tensor(ctx_meta_, name.c_str()); size_t offset = data_offset + gguf_get_tensor_offset(ctx_gguf_, i); // LOG_DEBUG("%s", name.c_str()); if (!starts_with(name, prefix)) { name = prefix + name; } TensorStorage tensor_storage(name, dummy->type, dummy->ne, ggml_n_dims(dummy), file_index, offset); GGML_ASSERT(ggml_nbytes(dummy) == tensor_storage.nbytes()); add_tensor_storage(tensor_storage); } gguf_free(ctx_gguf_); ggml_free(ctx_meta_); return true; } /*================================================= SafeTensorsModelLoader ==================================================*/ ggml_type str_to_ggml_type(const std::string& dtype) { ggml_type ttype = GGML_TYPE_COUNT; if (dtype == "F16") { ttype = GGML_TYPE_F16; } else if (dtype == "BF16") { ttype = GGML_TYPE_F32; } else if (dtype == "F32") { ttype = GGML_TYPE_F32; } else if (dtype == "F64") { ttype = GGML_TYPE_F32; } else if (dtype == "F8_E4M3") { ttype = GGML_TYPE_F16; } else if (dtype == "F8_E5M2") { ttype = GGML_TYPE_F16; } else if (dtype == "I64") { ttype = GGML_TYPE_I32; } return ttype; } // https://huggingface.co/docs/safetensors/index bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const std::string& prefix) { LOG_DEBUG("init from '%s', prefix = '%s'", file_path.c_str(), prefix.c_str()); file_paths_.push_back(file_path); size_t file_index = file_paths_.size() - 1; std::ifstream file(file_path, std::ios::binary); if (!file.is_open()) { LOG_ERROR("failed to open '%s'", file_path.c_str()); file_paths_.pop_back(); return false; } // get file size file.seekg(0, file.end); size_t file_size_ = file.tellg(); file.seekg(0, file.beg); // read header size if (file_size_ <= ST_HEADER_SIZE_LEN) { LOG_ERROR("invalid safetensor file '%s'", file_path.c_str()); file_paths_.pop_back(); return false; } uint8_t header_size_buf[ST_HEADER_SIZE_LEN]; file.read((char*)header_size_buf, ST_HEADER_SIZE_LEN); if (!file) { LOG_ERROR("read safetensors header size failed: '%s'", file_path.c_str()); return false; } size_t header_size_ = read_u64(header_size_buf); if (header_size_ >= file_size_) { LOG_ERROR("invalid safetensor file '%s'", file_path.c_str()); file_paths_.pop_back(); return false; } // read header std::vector header_buf; header_buf.resize(header_size_ + 1); header_buf[header_size_] = '\0'; file.read(header_buf.data(), header_size_); if (!file) { LOG_ERROR("read safetensors header failed: '%s'", file_path.c_str()); file_paths_.pop_back(); return false; } nlohmann::json header_ = nlohmann::json::parse(header_buf.data()); for (auto& item : header_.items()) { std::string name = item.key(); nlohmann::json tensor_info = item.value(); // LOG_DEBUG("%s %s\n", name.c_str(), tensor_info.dump().c_str()); if (name == "__metadata__") { continue; } if (is_unused_tensor(name)) { continue; } std::string dtype = tensor_info["dtype"]; nlohmann::json shape = tensor_info["shape"]; if (dtype == "U8") { continue; } size_t begin = tensor_info["data_offsets"][0].get(); size_t end = tensor_info["data_offsets"][1].get(); ggml_type type = str_to_ggml_type(dtype); if (type == GGML_TYPE_COUNT) { LOG_ERROR("unsupported dtype '%s' (tensor '%s')", dtype.c_str(), name.c_str()); return false; } if (shape.size() > SD_MAX_DIMS) { LOG_ERROR("invalid tensor '%s'", name.c_str()); return false; } int n_dims = (int)shape.size(); int64_t ne[SD_MAX_DIMS] = {1, 1, 1, 1, 1}; for (int i = 0; i < n_dims; i++) { ne[i] = shape[i].get(); } if (n_dims == 5) { n_dims = 4; ne[0] = ne[0] * ne[1]; ne[1] = ne[2]; ne[2] = ne[3]; ne[3] = ne[4]; } // ggml_n_dims returns 1 for scalars if (n_dims == 0) { n_dims = 1; } if (!starts_with(name, prefix)) { name = prefix + name; } TensorStorage tensor_storage(name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin); tensor_storage.reverse_ne(); size_t tensor_data_size = end - begin; if (dtype == "BF16") { tensor_storage.is_bf16 = true; GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2); } else if (dtype == "F8_E4M3") { tensor_storage.is_f8_e4m3 = true; // f8 -> f16 GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2); } else if (dtype == "F8_E5M2") { tensor_storage.is_f8_e5m2 = true; // f8 -> f16 GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2); } else if (dtype == "F64") { tensor_storage.is_f64 = true; // f64 -> f32 GGML_ASSERT(tensor_storage.nbytes() * 2 == tensor_data_size); } else if (dtype == "I64") { tensor_storage.is_i64 = true; // i64 -> i32 GGML_ASSERT(tensor_storage.nbytes() * 2 == tensor_data_size); } else { GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size); } add_tensor_storage(tensor_storage); // LOG_DEBUG("%s %s", tensor_storage.to_string().c_str(), dtype.c_str()); } return true; } /*================================================= DiffusersModelLoader ==================================================*/ bool ModelLoader::init_from_diffusers_file(const std::string& file_path, const std::string& prefix) { std::string unet_path = path_join(file_path, "unet/diffusion_pytorch_model.safetensors"); std::string vae_path = path_join(file_path, "vae/diffusion_pytorch_model.safetensors"); std::string clip_path = path_join(file_path, "text_encoder/model.safetensors"); std::string clip_g_path = path_join(file_path, "text_encoder_2/model.safetensors"); if (!init_from_safetensors_file(unet_path, "unet.")) { return false; } if (!init_from_safetensors_file(vae_path, "vae.")) { LOG_WARN("Couldn't find working VAE in %s", file_path.c_str()); // return false; } if (!init_from_safetensors_file(clip_path, "te.")) { LOG_WARN("Couldn't find working text encoder in %s", file_path.c_str()); // return false; } if (!init_from_safetensors_file(clip_g_path, "te.1.")) { LOG_DEBUG("Couldn't find working second text encoder in %s", file_path.c_str()); } return true; } /*================================================= CkptModelLoader ==================================================*/ // $ python -m pickletools sd-v1-4/archive/data.pkl | head -n 100 // 0: \x80 PROTO 2 // 2: } EMPTY_DICT // 3: q BINPUT 0 // 5: ( MARK // 6: X BINUNICODE 'epoch' // 16: q BINPUT 1 // 18: K BININT1 6 // 20: X BINUNICODE 'global_step' // 36: q BINPUT 2 // 38: J BININT 470000 // 43: X BINUNICODE 'pytorch-lightning_version' // 73: q BINPUT 3 // 75: X BINUNICODE '1.4.2' // 85: q BINPUT 4 // 87: X BINUNICODE 'state_dict' // 102: q BINPUT 5 // 104: } EMPTY_DICT // 105: q BINPUT 6 // 107: ( MARK // 108: X BINUNICODE 'betas' // 118: q BINPUT 7 // 120: c GLOBAL 'torch._utils _rebuild_tensor_v2' // 153: q BINPUT 8 // 155: ( MARK // 156: ( MARK // 157: X BINUNICODE 'storage' // 169: q BINPUT 9 // 171: c GLOBAL 'torch FloatStorage' // 191: q BINPUT 10 // 193: X BINUNICODE '0' // 199: q BINPUT 11 // 201: X BINUNICODE 'cpu' // 209: q BINPUT 12 // 211: M BININT2 1000 // 214: t TUPLE (MARK at 156) // 215: q BINPUT 13 // 217: Q BINPERSID // 218: K BININT1 0 // 220: M BININT2 1000 // ............................... // 3201: q BINPUT 250 // 3203: R REDUCE // 3204: q BINPUT 251 // 3206: X BINUNICODE 'model.diffusion_model.input_blocks.1.1.proj_in.weight' // 3264: q BINPUT 252 // 3266: h BINGET 8 // 3268: ( MARK // 3269: ( MARK // 3270: h BINGET 9 // 3272: h BINGET 10 // 3274: X BINUNICODE '30' // 3281: q BINPUT 253 // 3283: h BINGET 12 // 3285: J BININT 102400 // 3290: t TUPLE (MARK at 3269) // 3291: q BINPUT 254 // 3293: Q BINPERSID // 3294: K BININT1 0 // 3296: ( MARK // 3297: M BININT2 320 // 3300: M BININT2 320 // 3303: K BININT1 1 // 3305: K BININT1 1 // 3307: t TUPLE (MARK at 3296) // 3308: q BINPUT 255 // 3310: ( MARK // 3311: M BININT2 320 // 3314: K BININT1 1 // 3316: K BININT1 1 // 3318: K BININT1 1 // 3320: t TUPLE (MARK at 3310) // 3321: r LONG_BINPUT 256 // 3326: \x89 NEWFALSE // 3327: h BINGET 16 // 3329: ) EMPTY_TUPLE // 3330: R REDUCE // 3331: r LONG_BINPUT 257 // 3336: t TUPLE (MARK at 3268) // 3337: r LONG_BINPUT 258 // 3342: R REDUCE // 3343: r LONG_BINPUT 259 // 3348: X BINUNICODE 'model.diffusion_model.input_blocks.1.1.proj_in.bias' // 3404: r LONG_BINPUT 260 // 3409: h BINGET 8 // 3411: ( MARK // 3412: ( MARK // 3413: h BINGET 9 // 3415: h BINGET 10 // 3417: X BINUNICODE '31' struct PickleTensorReader { enum ReadPhase { READ_NAME, READ_DATA, CHECK_SIZE, READ_DIMENS }; ReadPhase phase = READ_NAME; size_t entry_size = 0; int32_t nelements = 0; TensorStorage tensor_storage; static ggml_type global_type; // all pickle_tensors data type static bool read_global_type; bool read_int_value(uint32_t value) { if (phase == CHECK_SIZE) { if (entry_size == value * ggml_type_size(tensor_storage.type)) { nelements = value; phase = READ_DIMENS; return true; } else { phase = READ_NAME; } } else if (phase == READ_DIMENS) { if (tensor_storage.n_dims + 1 > SD_MAX_DIMS) { // too many dimens phase = READ_NAME; tensor_storage.n_dims = 0; } if (nelements % value == 0) { tensor_storage.ne[tensor_storage.n_dims] = value; tensor_storage.n_dims++; } } return false; } void read_global(const std::string& str) { if (str == "FloatStorage") { if (read_global_type) { global_type = GGML_TYPE_F32; read_global_type = false; } tensor_storage.type = GGML_TYPE_F32; } else if (str == "HalfStorage") { if (read_global_type) { global_type = GGML_TYPE_F16; read_global_type = false; } tensor_storage.type = GGML_TYPE_F16; } } void read_string(const std::string& str, struct zip_t* zip, std::string dir) { if (str == "storage") { read_global_type = true; } else if (str != "state_dict") { if (phase == READ_DATA) { std::string entry_name = dir + "data/" + std::string(str); size_t i, n = zip_entries_total(zip); for (i = 0; i < n; ++i) { zip_entry_openbyindex(zip, i); { std::string name = zip_entry_name(zip); if (name == entry_name) { tensor_storage.index_in_zip = (int)i; entry_size = zip_entry_size(zip); zip_entry_close(zip); break; } } zip_entry_close(zip); } phase = entry_size > 0 ? CHECK_SIZE : READ_NAME; } if (!read_global_type && phase == READ_NAME) { tensor_storage.name = str; phase = READ_DATA; tensor_storage.type = global_type; } } } }; ggml_type PickleTensorReader::global_type = GGML_TYPE_F32; // all pickle_tensors data type bool PickleTensorReader::read_global_type = false; int find_char(uint8_t* buffer, int len, char c) { for (int pos = 0; pos < len; pos++) { if (buffer[pos] == c) { return pos; } } return -1; } #define MAX_STRING_BUFFER 512 bool ModelLoader::parse_data_pkl(uint8_t* buffer, size_t buffer_size, zip_t* zip, std::string dir, size_t file_index, const std::string prefix) { uint8_t* buffer_end = buffer + buffer_size; if (buffer[0] == 0x80) { // proto if (buffer[1] != 2) { LOG_ERROR("Unsupported protocol\n"); return false; } buffer += 2; // 0x80 and version char string_buffer[MAX_STRING_BUFFER]; bool finish = false; PickleTensorReader reader; // read pickle binary file while (!finish && buffer < buffer_end) { uint8_t opcode = *buffer; buffer++; // https://github.com/python/cpython/blob/3.7/Lib/pickletools.py#L1048 // https://github.com/python/cpython/blob/main/Lib/pickle.py#L105 switch (opcode) { case '}': // EMPTY_DICT = b'}' # push empty dict break; case ']': // EMPTY_LIST = b']' # push empty list break; // skip unused sections case 'h': // BINGET = b'h' # " " " " " " ; " " 1-byte arg case 'q': // BINPUT = b'q' # " " " " " ; " " 1-byte arg case 'Q': // BINPERSID = b'Q' # " " " ; " " " " stack buffer++; break; case 'r': // LONG_BINPUT = b'r' # " " " " " ; " " 4-byte arg buffer += 4; break; case 0x95: // FRAME = b'\x95' # indicate the beginning of a new frame buffer += 8; break; case 0x94: // MEMOIZE = b'\x94' # store top of the stack in memo break; case '(': // MARK = b'(' # push special markobject on stack break; case 'K': // BININT1 = b'K' # push 1-byte unsigned int { uint8_t value = *buffer; if (reader.read_int_value(value)) { buffer++; } buffer++; } break; case 'M': // BININT2 = b'M' # push 2-byte unsigned int { uint16_t value = read_short(buffer); if (reader.read_int_value(value)) { buffer++; } buffer += 2; } break; case 'J': // BININT = b'J' # push four-byte signed int { const int32_t value = read_int(buffer); if (reader.read_int_value(value)) { buffer++; // skip tuple after read num_elements } buffer += 4; } break; case 'X': // BINUNICODE = b'X' # " " " ; counted UTF-8 string argument { const int32_t len = read_int(buffer); buffer += 4; memset(string_buffer, 0, MAX_STRING_BUFFER); if (len > MAX_STRING_BUFFER) { LOG_WARN("tensor name very large"); } memcpy(string_buffer, buffer, len < MAX_STRING_BUFFER ? len : (MAX_STRING_BUFFER - 1)); buffer += len; reader.read_string(string_buffer, zip, dir); } break; case 0x8C: // SHORT_BINUNICODE = b'\x8c' # push short string; UTF-8 length < 256 bytes { const int8_t len = *buffer; buffer++; memset(string_buffer, 0, MAX_STRING_BUFFER); memcpy(string_buffer, buffer, len); buffer += len; // printf("String: '%s'\n", string_buffer); } break; case 'c': // GLOBAL = b'c' # push self.find_class(modname, name); 2 string args { int len = find_char(buffer, MAX_STRING_BUFFER, '\n'); buffer += len + 1; len = find_char(buffer, MAX_STRING_BUFFER, '\n'); memset(string_buffer, 0, MAX_STRING_BUFFER); memcpy(string_buffer, buffer, len); buffer += len + 1; reader.read_global(string_buffer); } break; case 0x86: // TUPLE2 = b'\x86' # build 2-tuple from two topmost stack items case 0x85: // TUPLE1 = b'\x85' # build 1-tuple from stack top case 't': // TUPLE = b't' # build tuple from topmost stack items if (reader.phase == PickleTensorReader::READ_DIMENS) { reader.tensor_storage.reverse_ne(); reader.tensor_storage.file_index = file_index; // if(strcmp(prefix.c_str(), "scarlett") == 0) // printf(" ZIP got tensor %s \n ", reader.tensor_storage.name.c_str()); std::string name = reader.tensor_storage.name; if (!starts_with(name, prefix)) { name = prefix + name; } reader.tensor_storage.name = name; add_tensor_storage(reader.tensor_storage); // LOG_DEBUG("%s", reader.tensor_storage.name.c_str()); // reset reader = PickleTensorReader(); } break; case '.': // STOP = b'.' # every pickle ends with STOP finish = true; break; default: break; } } } return true; } bool ModelLoader::init_from_ckpt_file(const std::string& file_path, const std::string& prefix) { LOG_DEBUG("init from '%s'", file_path.c_str()); file_paths_.push_back(file_path); size_t file_index = file_paths_.size() - 1; struct zip_t* zip = zip_open(file_path.c_str(), 0, 'r'); if (zip == nullptr) { LOG_ERROR("failed to open '%s'", file_path.c_str()); return false; } int n = (int)zip_entries_total(zip); for (int i = 0; i < n; ++i) { zip_entry_openbyindex(zip, i); { std::string name = zip_entry_name(zip); size_t pos = name.find("data.pkl"); if (pos != std::string::npos) { std::string dir = name.substr(0, pos); printf("ZIP %d, name = %s, dir = %s \n", i, name.c_str(), dir.c_str()); void* pkl_data = nullptr; size_t pkl_size; zip_entry_read(zip, &pkl_data, &pkl_size); // LOG_DEBUG("%lld", pkl_size); parse_data_pkl((uint8_t*)pkl_data, pkl_size, zip, dir, file_index, prefix); free(pkl_data); } } zip_entry_close(zip); } zip_close(zip); return true; } SDVersion ModelLoader::get_sd_version() { TensorStorage token_embedding_weight, input_block_weight; bool has_multiple_encoders = false; bool is_unet = false; bool is_xl = false; bool is_flux = false; bool is_wan = false; int64_t patch_embedding_channels = 0; bool has_img_emb = false; bool has_middle_block_1 = false; for (auto& [name, tensor_storage] : tensor_storage_map) { if (!(is_xl)) { if (tensor_storage.name.find("model.diffusion_model.double_blocks.") != std::string::npos) { is_flux = true; } if (tensor_storage.name.find("model.diffusion_model.nerf_final_layer_conv.") != std::string::npos) { return VERSION_CHROMA_RADIANCE; } if (tensor_storage.name.find("model.diffusion_model.joint_blocks.") != std::string::npos) { return VERSION_SD3; } if (tensor_storage.name.find("model.diffusion_model.transformer_blocks.0.img_mod.1.weight") != std::string::npos) { return VERSION_QWEN_IMAGE; } if (tensor_storage.name.find("model.diffusion_model.double_stream_modulation_img.lin.weight") != std::string::npos) { return VERSION_FLUX2; } if (tensor_storage.name.find("model.diffusion_model.cap_embedder.0.weight") != std::string::npos) { return VERSION_Z_IMAGE; } if (tensor_storage.name.find("model.diffusion_model.blocks.0.cross_attn.norm_k.weight") != std::string::npos) { is_wan = true; } if (tensor_storage.name.find("model.diffusion_model.patch_embedding.weight") != std::string::npos) { patch_embedding_channels = tensor_storage.ne[3]; } if (tensor_storage.name.find("model.diffusion_model.img_emb") != std::string::npos) { has_img_emb = true; } if (tensor_storage.name.find("model.diffusion_model.input_blocks.") != std::string::npos || tensor_storage.name.find("unet.down_blocks.") != std::string::npos) { is_unet = true; if (has_multiple_encoders) { is_xl = true; } } if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos || tensor_storage.name.find("cond_stage_model.1") != std::string::npos || tensor_storage.name.find("te.1") != std::string::npos) { has_multiple_encoders = true; if (is_unet) { is_xl = true; } } if (tensor_storage.name.find("model.diffusion_model.input_blocks.8.0.time_mixer.mix_factor") != std::string::npos) { return VERSION_SVD; } } if (tensor_storage.name.find("model.diffusion_model.middle_block.1.") != std::string::npos || tensor_storage.name.find("unet.mid_block.resnets.1.") != std::string::npos) { has_middle_block_1 = true; } if (tensor_storage.name == "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight" || tensor_storage.name == "cond_stage_model.model.token_embedding.weight" || tensor_storage.name == "text_model.embeddings.token_embedding.weight" || tensor_storage.name == "te.text_model.embeddings.token_embedding.weight" || tensor_storage.name == "conditioner.embedders.0.model.token_embedding.weight" || tensor_storage.name == "conditioner.embedders.0.transformer.text_model.embeddings.token_embedding.weight") { token_embedding_weight = tensor_storage; // break; } if (tensor_storage.name == "model.diffusion_model.input_blocks.0.0.weight" || tensor_storage.name == "model.diffusion_model.img_in.weight" || tensor_storage.name == "unet.conv_in.weight") { input_block_weight = tensor_storage; } } if (is_wan) { LOG_DEBUG("patch_embedding_channels %d", patch_embedding_channels); if (patch_embedding_channels == 184320 && !has_img_emb) { return VERSION_WAN2_2_I2V; } if (patch_embedding_channels == 147456 && !has_img_emb) { return VERSION_WAN2_2_TI2V; } return VERSION_WAN2; } bool is_inpaint = input_block_weight.ne[2] == 9; bool is_ip2p = input_block_weight.ne[2] == 8; if (is_xl) { if (is_inpaint) { return VERSION_SDXL_INPAINT; } if (is_ip2p) { return VERSION_SDXL_PIX2PIX; } if (!has_middle_block_1) { return VERSION_SDXL_SSD1B; } return VERSION_SDXL; } if (is_flux) { if (input_block_weight.ne[0] == 384) { return VERSION_FLUX_FILL; } if (input_block_weight.ne[0] == 128) { return VERSION_FLUX_CONTROLS; } if (input_block_weight.ne[0] == 196) { return VERSION_FLEX_2; } return VERSION_FLUX; } if (token_embedding_weight.ne[0] == 768) { if (is_inpaint) { return VERSION_SD1_INPAINT; } if (is_ip2p) { return VERSION_SD1_PIX2PIX; } if (!has_middle_block_1) { return VERSION_SD1_TINY_UNET; } return VERSION_SD1; } else if (token_embedding_weight.ne[0] == 1024) { if (is_inpaint) { return VERSION_SD2_INPAINT; } if (!has_middle_block_1) { return VERSION_SD2_TINY_UNET; } return VERSION_SD2; } return VERSION_COUNT; } std::map ModelLoader::get_wtype_stat() { std::map wtype_stat; for (auto& [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } auto iter = wtype_stat.find(tensor_storage.type); if (iter != wtype_stat.end()) { iter->second++; } else { wtype_stat[tensor_storage.type] = 1; } } return wtype_stat; } std::map ModelLoader::get_conditioner_wtype_stat() { std::map wtype_stat; for (auto& [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } if ((tensor_storage.name.find("text_encoders") == std::string::npos && tensor_storage.name.find("cond_stage_model") == std::string::npos && tensor_storage.name.find("te.text_model.") == std::string::npos && tensor_storage.name.find("conditioner") == std::string::npos)) { continue; } auto iter = wtype_stat.find(tensor_storage.type); if (iter != wtype_stat.end()) { iter->second++; } else { wtype_stat[tensor_storage.type] = 1; } } return wtype_stat; } std::map ModelLoader::get_diffusion_model_wtype_stat() { std::map wtype_stat; for (auto& [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } if (tensor_storage.name.find("model.diffusion_model.") == std::string::npos && tensor_storage.name.find("unet.") == std::string::npos) { continue; } auto iter = wtype_stat.find(tensor_storage.type); if (iter != wtype_stat.end()) { iter->second++; } else { wtype_stat[tensor_storage.type] = 1; } } return wtype_stat; } std::map ModelLoader::get_vae_wtype_stat() { std::map wtype_stat; for (auto& [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } if (tensor_storage.name.find("vae.") == std::string::npos && tensor_storage.name.find("first_stage_model") == std::string::npos) { continue; } auto iter = wtype_stat.find(tensor_storage.type); if (iter != wtype_stat.end()) { iter->second++; } else { wtype_stat[tensor_storage.type] = 1; } } return wtype_stat; } static std::vector> parse_tensor_type_rules(const std::string& tensor_type_rules) { std::vector> result; for (const auto& item : split_string(tensor_type_rules, ',')) { if (item.size() == 0) continue; std::string::size_type pos = item.find('='); if (pos == std::string::npos) { LOG_WARN("ignoring invalid quant override \"%s\"", item.c_str()); continue; } std::string tensor_pattern = item.substr(0, pos); std::string type_name = item.substr(pos + 1); ggml_type tensor_type = GGML_TYPE_COUNT; if (type_name == "f32") { tensor_type = GGML_TYPE_F32; } else { for (size_t i = 0; i < GGML_TYPE_COUNT; i++) { auto trait = ggml_get_type_traits((ggml_type)i); if (trait->to_float && trait->type_size && type_name == trait->type_name) { tensor_type = (ggml_type)i; } } } if (tensor_type != GGML_TYPE_COUNT) { result.emplace_back(tensor_pattern, tensor_type); } else { LOG_WARN("ignoring invalid quant override \"%s\"", item.c_str()); } } return result; } void ModelLoader::set_wtype_override(ggml_type wtype, std::string tensor_type_rules) { auto map_rules = parse_tensor_type_rules(tensor_type_rules); for (auto& [name, tensor_storage] : tensor_storage_map) { ggml_type dst_type = wtype; for (const auto& tensor_type_rule : map_rules) { std::regex pattern(tensor_type_rule.first); if (std::regex_search(name, pattern)) { dst_type = tensor_type_rule.second; break; } } if (dst_type == GGML_TYPE_COUNT) { continue; } if (!tensor_should_be_converted(tensor_storage, dst_type)) { continue; } tensor_storage.expected_type = dst_type; } } std::string ModelLoader::load_merges() { std::string merges_utf8_str(reinterpret_cast(merges_utf8_c_str), sizeof(merges_utf8_c_str)); return merges_utf8_str; } std::string ModelLoader::load_qwen2_merges() { std::string merges_utf8_str(reinterpret_cast(qwen2_merges_utf8_c_str), sizeof(qwen2_merges_utf8_c_str)); return merges_utf8_str; } std::string ModelLoader::load_mistral_merges() { std::string merges_utf8_str(reinterpret_cast(mistral_merges_utf8_c_str), sizeof(mistral_merges_utf8_c_str)); return merges_utf8_str; } std::string ModelLoader::load_mistral_vocab_json() { std::string json_str(reinterpret_cast(mistral_vocab_json_utf8_c_str), sizeof(mistral_vocab_json_utf8_c_str)); return json_str; } std::string ModelLoader::load_t5_tokenizer_json() { std::string json_str(reinterpret_cast(t5_tokenizer_json_str), sizeof(t5_tokenizer_json_str)); return json_str; } std::string ModelLoader::load_umt5_tokenizer_json() { std::string json_str(reinterpret_cast(umt5_tokenizer_json_str), sizeof(umt5_tokenizer_json_str)); return json_str; } bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads_p) { int64_t process_time_ms = 0; std::atomic read_time_ms(0); std::atomic memcpy_time_ms(0); std::atomic copy_to_backend_time_ms(0); std::atomic convert_time_ms(0); int num_threads_to_use = n_threads_p > 0 ? n_threads_p : get_num_physical_cores(); LOG_DEBUG("using %d threads for model loading", num_threads_to_use); int64_t start_time = ggml_time_ms(); std::vector processed_tensor_storages; for (const auto& [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } processed_tensor_storages.push_back(tensor_storage); } process_time_ms = ggml_time_ms() - start_time; bool success = true; size_t total_tensors_processed = 0; const size_t total_tensors_to_process = processed_tensor_storages.size(); const int64_t t_start = ggml_time_ms(); int last_n_threads = 1; for (size_t file_index = 0; file_index < file_paths_.size(); file_index++) { std::string file_path = file_paths_[file_index]; LOG_DEBUG("loading tensors from %s", file_path.c_str()); std::vector file_tensors; for (const auto& ts : processed_tensor_storages) { if (ts.file_index == file_index) { file_tensors.push_back(&ts); } } if (file_tensors.empty()) { continue; } bool is_zip = false; for (auto const& ts : file_tensors) { if (ts->index_in_zip >= 0) { is_zip = true; break; } } int n_threads = is_zip ? 1 : std::min(num_threads_to_use, (int)file_tensors.size()); if (n_threads < 1) { n_threads = 1; } last_n_threads = n_threads; std::atomic tensor_idx(0); std::atomic failed(false); std::vector workers; for (int i = 0; i < n_threads; ++i) { workers.emplace_back([&, file_path, is_zip]() { std::ifstream file; struct zip_t* zip = nullptr; if (is_zip) { zip = zip_open(file_path.c_str(), 0, 'r'); if (zip == nullptr) { LOG_ERROR("failed to open zip '%s'", file_path.c_str()); failed = true; return; } } else { file.open(file_path, std::ios::binary); if (!file.is_open()) { LOG_ERROR("failed to open '%s'", file_path.c_str()); failed = true; return; } } std::vector read_buffer; std::vector convert_buffer; while (true) { int64_t t0, t1; size_t idx = tensor_idx.fetch_add(1); if (idx >= file_tensors.size() || failed) { break; } const TensorStorage& tensor_storage = *file_tensors[idx]; ggml_tensor* dst_tensor = nullptr; t0 = ggml_time_ms(); if (!on_new_tensor_cb(tensor_storage, &dst_tensor)) { LOG_WARN("process tensor failed: '%s'", tensor_storage.name.c_str()); failed = true; break; } if (dst_tensor == nullptr) { t1 = ggml_time_ms(); read_time_ms.fetch_add(t1 - t0); continue; } size_t nbytes_to_read = tensor_storage.nbytes_to_read(); auto read_data = [&](char* buf, size_t n) { if (zip != nullptr) { zip_entry_openbyindex(zip, tensor_storage.index_in_zip); size_t entry_size = zip_entry_size(zip); if (entry_size != n) { int64_t t_memcpy_start; read_buffer.resize(entry_size); zip_entry_noallocread(zip, (void*)read_buffer.data(), entry_size); t_memcpy_start = ggml_time_ms(); memcpy((void*)buf, (void*)(read_buffer.data() + tensor_storage.offset), n); memcpy_time_ms.fetch_add(ggml_time_ms() - t_memcpy_start); } else { zip_entry_noallocread(zip, (void*)buf, n); } zip_entry_close(zip); } else { file.seekg(tensor_storage.offset); file.read(buf, n); if (!file) { LOG_ERROR("read tensor data failed: '%s'", file_path.c_str()); failed = true; } } }; char* read_buf = nullptr; char* target_buf = nullptr; char* convert_buf = nullptr; if (dst_tensor->buffer == nullptr || ggml_backend_buffer_is_host(dst_tensor->buffer)) { if (tensor_storage.type == dst_tensor->type) { GGML_ASSERT(ggml_nbytes(dst_tensor) == tensor_storage.nbytes()); if (tensor_storage.is_f64 || tensor_storage.is_i64) { read_buffer.resize(tensor_storage.nbytes_to_read()); read_buf = (char*)read_buffer.data(); } else { read_buf = (char*)dst_tensor->data; } target_buf = (char*)dst_tensor->data; } else { read_buffer.resize(std::max(tensor_storage.nbytes(), tensor_storage.nbytes_to_read())); read_buf = (char*)read_buffer.data(); target_buf = read_buf; convert_buf = (char*)dst_tensor->data; } } else { read_buffer.resize(std::max(tensor_storage.nbytes(), tensor_storage.nbytes_to_read())); read_buf = (char*)read_buffer.data(); target_buf = read_buf; if (tensor_storage.type != dst_tensor->type) { convert_buffer.resize(ggml_nbytes(dst_tensor)); convert_buf = (char*)convert_buffer.data(); } } t0 = ggml_time_ms(); read_data(read_buf, nbytes_to_read); t1 = ggml_time_ms(); read_time_ms.fetch_add(t1 - t0); t0 = ggml_time_ms(); if (tensor_storage.is_bf16) { bf16_to_f32_vec((uint16_t*)read_buf, (float*)target_buf, tensor_storage.nelements()); } else if (tensor_storage.is_f8_e4m3) { f8_e4m3_to_f16_vec((uint8_t*)read_buf, (uint16_t*)target_buf, tensor_storage.nelements()); } else if (tensor_storage.is_f8_e5m2) { f8_e5m2_to_f16_vec((uint8_t*)read_buf, (uint16_t*)target_buf, tensor_storage.nelements()); } else if (tensor_storage.is_f64) { f64_to_f32_vec((double*)read_buf, (float*)target_buf, tensor_storage.nelements()); } else if (tensor_storage.is_i64) { i64_to_i32_vec((int64_t*)read_buf, (int32_t*)target_buf, tensor_storage.nelements()); } if (tensor_storage.type != dst_tensor->type) { convert_tensor((void*)target_buf, tensor_storage.type, convert_buf, dst_tensor->type, (int)tensor_storage.nelements() / (int)tensor_storage.ne[0], (int)tensor_storage.ne[0]); } else { convert_buf = read_buf; } t1 = ggml_time_ms(); convert_time_ms.fetch_add(t1 - t0); if (dst_tensor->buffer != nullptr && !ggml_backend_buffer_is_host(dst_tensor->buffer)) { t0 = ggml_time_ms(); ggml_backend_tensor_set(dst_tensor, convert_buf, 0, ggml_nbytes(dst_tensor)); t1 = ggml_time_ms(); copy_to_backend_time_ms.fetch_add(t1 - t0); } } if (zip != nullptr) { zip_close(zip); } }); } while (true) { size_t current_idx = tensor_idx.load(); if (current_idx >= file_tensors.size() || failed) { break; } size_t curr_num = total_tensors_processed + current_idx; pretty_progress(curr_num, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (curr_num + 1e-6f)); std::this_thread::sleep_for(std::chrono::milliseconds(200)); } for (auto& w : workers) { w.join(); } if (failed) { success = false; break; } total_tensors_processed += file_tensors.size(); pretty_progress(total_tensors_processed, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (total_tensors_processed + 1e-6f)); if (total_tensors_processed < total_tensors_to_process) { printf("\n"); } } int64_t end_time = ggml_time_ms(); LOG_INFO("loading tensors completed, taking %.2fs (process: %.2fs, read: %.2fs, memcpy: %.2fs, convert: %.2fs, copy_to_backend: %.2fs)", (end_time - start_time) / 1000.f, process_time_ms / 1000.f, (read_time_ms.load() / (float)last_n_threads) / 1000.f, (memcpy_time_ms.load() / (float)last_n_threads) / 1000.f, (convert_time_ms.load() / (float)last_n_threads) / 1000.f, (copy_to_backend_time_ms.load() / (float)last_n_threads) / 1000.f); return success; } bool ModelLoader::load_tensors(std::map& tensors, std::set ignore_tensors, int n_threads) { std::set tensor_names_in_file; std::mutex tensor_names_mutex; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; // LOG_DEBUG("%s", tensor_storage.to_string().c_str()); { std::lock_guard lock(tensor_names_mutex); tensor_names_in_file.insert(name); } struct ggml_tensor* real; if (tensors.find(name) != tensors.end()) { real = tensors[name]; } else { for (auto& ignore_tensor : ignore_tensors) { if (starts_with(name, ignore_tensor)) { return true; } } LOG_INFO("unknown tensor '%s' in model file", tensor_storage.to_string().c_str()); return true; } if ( real->ne[0] != tensor_storage.ne[0] || real->ne[1] != tensor_storage.ne[1] || real->ne[2] != tensor_storage.ne[2] || real->ne[3] != tensor_storage.ne[3]) { LOG_ERROR( "tensor '%s' has wrong shape in model file: " "got [%d, %d, %d, %d], expected [%d, %d, %d, %d]", name.c_str(), (int)tensor_storage.ne[0], (int)tensor_storage.ne[1], (int)tensor_storage.ne[2], (int)tensor_storage.ne[3], (int)real->ne[0], (int)real->ne[1], (int)real->ne[2], (int)real->ne[3]); return false; } *dst_tensor = real; return true; }; bool success = load_tensors(on_new_tensor_cb, n_threads); if (!success) { LOG_ERROR("load tensors from file failed"); return false; } bool some_tensor_not_init = false; for (auto pair : tensors) { if (pair.first.find("cond_stage_model.transformer.text_model.encoder.layers.23") != std::string::npos) { continue; } if (pair.first.find("alphas_cumprod") != std::string::npos) { continue; } if (tensor_names_in_file.find(pair.first) == tensor_names_in_file.end()) { LOG_ERROR("tensor '%s' not in model file", pair.first.c_str()); some_tensor_not_init = true; } } if (some_tensor_not_init) { return false; } return true; } bool ModelLoader::tensor_should_be_converted(const TensorStorage& tensor_storage, ggml_type type) { const std::string& name = tensor_storage.name; if (type != GGML_TYPE_COUNT) { if (ggml_is_quantized(type) && tensor_storage.ne[0] % ggml_blck_size(type) != 0) { // Pass, do not convert } else if (ends_with(name, ".bias")) { // Pass, do not convert } else if (ends_with(name, ".scale")) { // Pass, do not convert } else if (contains(name, "img_in.") || contains(name, "txt_in.") || contains(name, "time_in.") || contains(name, "vector_in.") || contains(name, "guidance_in.") || contains(name, "final_layer.")) { // Pass, do not convert. For FLUX } else if (contains(name, "x_embedder.") || contains(name, "t_embedder.") || contains(name, "y_embedder.") || contains(name, "pos_embed") || contains(name, "context_embedder.")) { // Pass, do not convert. For MMDiT } else if (contains(name, "time_embed.") || contains(name, "label_emb.")) { // Pass, do not convert. For Unet } else if (contains(name, "embedding")) { // Pass, do not convert embedding } else { return true; } } return false; } bool ModelLoader::save_to_gguf_file(const std::string& file_path, ggml_type type, const std::string& tensor_type_rules_str) { auto backend = ggml_backend_cpu_init(); size_t mem_size = 1 * 1024 * 1024; // for padding mem_size += tensor_storage_map.size() * ggml_tensor_overhead(); mem_size += get_params_mem_size(backend, type); LOG_INFO("model tensors mem size: %.2fMB", mem_size / 1024.f / 1024.f); ggml_context* ggml_ctx = ggml_init({mem_size, nullptr, false}); gguf_context* gguf_ctx = gguf_init_empty(); auto tensor_type_rules = parse_tensor_type_rules(tensor_type_rules_str); std::mutex tensor_mutex; auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { const std::string& name = tensor_storage.name; ggml_type tensor_type = tensor_storage.type; ggml_type dst_type = type; for (const auto& tensor_type_rule : tensor_type_rules) { std::regex pattern(tensor_type_rule.first); if (std::regex_search(name, pattern)) { dst_type = tensor_type_rule.second; break; } } if (tensor_should_be_converted(tensor_storage, dst_type)) { tensor_type = dst_type; } std::lock_guard lock(tensor_mutex); ggml_tensor* tensor = ggml_new_tensor(ggml_ctx, tensor_type, tensor_storage.n_dims, tensor_storage.ne); if (tensor == nullptr) { LOG_ERROR("ggml_new_tensor failed"); return false; } ggml_set_name(tensor, name.c_str()); // LOG_DEBUG("%s %d %s %d[%d %d %d %d] %d[%d %d %d %d]", name.c_str(), // ggml_nbytes(tensor), ggml_type_name(tensor_type), // tensor_storage.n_dims, // tensor_storage.ne[0], tensor_storage.ne[1], tensor_storage.ne[2], tensor_storage.ne[3], // tensor->n_dims, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); *dst_tensor = tensor; gguf_add_tensor(gguf_ctx, tensor); return true; }; bool success = load_tensors(on_new_tensor_cb); ggml_backend_free(backend); LOG_INFO("load tensors done"); LOG_INFO("trying to save tensors to %s", file_path.c_str()); if (success) { gguf_write_to_file(gguf_ctx, file_path.c_str(), false); } ggml_free(ggml_ctx); gguf_free(gguf_ctx); return success; } int64_t ModelLoader::get_params_mem_size(ggml_backend_t backend, ggml_type type) { size_t alignment = 128; if (backend != nullptr) { alignment = ggml_backend_get_alignment(backend); } int64_t mem_size = 0; std::vector processed_tensor_storages; for (auto [name, tensor_storage] : tensor_storage_map) { if (is_unused_tensor(tensor_storage.name)) { continue; } if (tensor_should_be_converted(tensor_storage, type)) { tensor_storage.type = type; } mem_size += tensor_storage.nbytes() + alignment; } return mem_size; } bool convert(const char* input_path, const char* vae_path, const char* output_path, sd_type_t output_type, const char* tensor_type_rules) { ModelLoader model_loader; if (!model_loader.init_from_file(input_path)) { LOG_ERROR("init model loader from file failed: '%s'", input_path); return false; } if (vae_path != nullptr && strlen(vae_path) > 0) { if (!model_loader.init_from_file(vae_path, "vae.")) { LOG_ERROR("init model loader from file failed: '%s'", vae_path); return false; } } model_loader.convert_tensors_name(); bool success = model_loader.save_to_gguf_file(output_path, (ggml_type)output_type, tensor_type_rules); return success; }