Compare commits

..

No commits in common. "master" and "master-2c5f3fc" have entirely different histories.

178 changed files with 6222 additions and 3871891 deletions

View File

@ -3,6 +3,7 @@ UseTab: Never
IndentWidth: 4
TabWidth: 4
AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false
ColumnLimit: 0
AccessModifierOffset: -4
NamespaceIndentation: All

View File

@ -1,10 +0,0 @@
Checks: >
modernize-make-shared,
modernize-use-nullptr,
modernize-use-override,
modernize-pass-by-value,
modernize-return-braced-init-list,
modernize-deprecated-headers,
HeaderFilterRegex: '^$'
WarningsAsErrors: ''
FormatStyle: none

View File

@ -1,5 +1,4 @@
build*/
docs/
test/
.cache/

View File

@ -1,73 +0,0 @@
name: 🐞 Bug Report
description: Report a bug or unexpected behavior
title: "[Bug] "
labels: ["bug"]
body:
- type: markdown
attributes:
value: |
Please use this template and include as many details as possible to help us reproduce and fix the issue.
- type: textarea
id: commit
attributes:
label: Git commit
description: Which commit are you trying to compile?
placeholder: |
$git rev-parse HEAD
40a6a8710ec15b1b5db6b5a098409f6bc8f654a4
validations:
required: true
- type: input
id: os
attributes:
label: Operating System & Version
placeholder: e.g. “Ubuntu 22.04”, “Windows 11 23H2”, “macOS 14.3”
validations:
required: true
- type: dropdown
id: backends
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [CPU, CUDA, HIP, Metal, Musa, SYCL, Vulkan, OpenCL]
multiple: true
validations:
required: true
- type: input
id: cmd_arguments
attributes:
label: Command-line arguments used
placeholder: The full command line you ran (with all flags)
validations:
required: true
- type: textarea
id: steps_to_reproduce
attributes:
label: Steps to reproduce
placeholder: A step-by-step list of what you did
validations:
required: true
- type: textarea
id: expected_behavior
attributes:
label: What you expected to happen
placeholder: Describe the expected behavior or result
validations:
required: true
- type: textarea
id: actual_behavior
attributes:
label: What actually happened
placeholder: Describe what you saw instead (errors, logs, crash, etc.)
validations:
required: true
- type: textarea
id: logs_and_errors
attributes:
label: Logs / error messages / stack trace
placeholder: Paste complete logs or error output
- type: textarea
id: additional_info
attributes:
label: Additional context / environment details
placeholder: e.g. CPU model, GPU, RAM, model file versions, quantization type, etc.

View File

@ -1,33 +0,0 @@
name: 💡 Feature Request
description: Suggest a new feature or improvement
title: "[Feature] "
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
Thank you for suggesting an improvement! Please fill in the fields below.
- type: input
id: summary
attributes:
label: Feature Summary
placeholder: A one-line summary of the feature youd like
validations:
required: true
- type: textarea
id: description
attributes:
label: Detailed Description
placeholder: What problem does this solve? How do you expect it to work?
validations:
required: true
- type: textarea
id: alternatives
attributes:
label: Alternatives you considered
placeholder: Any alternative designs or workarounds you tried
- type: textarea
id: additional_context
attributes:
label: Additional context
placeholder: Any extra information (use cases, related functionalities, constraints)

View File

@ -4,44 +4,21 @@ on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: "Create new release"
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
- ci
paths:
[
".github/workflows/**",
"**/CMakeLists.txt",
"**/Makefile",
"**/*.h",
"**/*.hpp",
"**/*.c",
"**/*.cpp",
"**/*.cu",
]
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
pull_request:
types: [opened, synchronize, reopened]
paths:
[
"**/CMakeLists.txt",
"**/Makefile",
"**/*.h",
"**/*.hpp",
"**/*.c",
"**/*.cpp",
"**/*.cu",
]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ubuntu-latest-cmake:
runs-on: ubuntu-latest
@ -53,6 +30,7 @@ jobs:
with:
submodules: recursive
- name: Dependencies
id: depends
run: |
@ -64,154 +42,14 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON
cmake ..
cmake --build . --config Release
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Fetch system info
id: system-info
run: |
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
echo "OS_NAME=`lsb_release -s -i`" >> "$GITHUB_OUTPUT"
echo "OS_VERSION=`lsb_release -s -r`" >> "$GITHUB_OUTPUT"
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp ggml/LICENSE ./build/bin/ggml.txt
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
ubuntu-latest-cmake-vulkan:
runs-on: ubuntu-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
with:
submodules: recursive
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libvulkan-dev glslc
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DSD_BUILD_SHARED_LIBS=ON -DSD_VULKAN=ON
cmake --build . --config Release
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Fetch system info
id: system-info
run: |
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
echo "OS_NAME=`lsb_release -s -i`" >> "$GITHUB_OUTPUT"
echo "OS_VERSION=`lsb_release -s -r`" >> "$GITHUB_OUTPUT"
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp ggml/LICENSE ./build/bin/ggml.txt
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
build-and-push-docker-images:
name: Build and push container images
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
id-token: write
attestations: write
artifact-metadata: write
strategy:
matrix:
variant: [musa, sycl, vulkan]
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}
steps:
- name: Checkout
uses: actions/checkout@v6
with:
submodules: recursive
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to the container registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@v1.3.1
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
- name: Build and push Docker image
id: build-push
uses: docker/build-push-action@v6
with:
platforms: linux/amd64
push: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
file: Dockerfile.${{ matrix.variant }}
tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:${{ env.BRANCH_NAME }}-${{ matrix.variant }}
labels: ${{ steps.meta.outputs.labels }}
annotations: ${{ steps.meta.outputs.annotations }}
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest --verbose --timeout 900
macOS-latest-cmake:
runs-on: macos-latest
@ -225,8 +63,9 @@ jobs:
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew install zip
brew update
- name: Build
id: cmake_build
@ -234,59 +73,30 @@ jobs:
sysctl -a
mkdir build
cd build
cmake .. -DGGML_AVX2=ON -DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" -DSD_BUILD_SHARED_LIBS=ON
cmake ..
cmake --build . --config Release
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Fetch system info
id: system-info
run: |
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
echo "OS_NAME=`sw_vers -productName`" >> "$GITHUB_OUTPUT"
echo "OS_VERSION=`sw_vers -productVersion`" >> "$GITHUB_OUTPUT"
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp ggml/LICENSE ./build/bin/ggml.txt
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest --verbose --timeout 900
windows-latest-cmake:
runs-on: windows-2022
env:
VULKAN_VERSION: 1.4.328.1
runs-on: windows-latest
strategy:
matrix:
include:
- build: "noavx"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx2"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX=ON -DGGML_AVX2=OFF -DSD_BUILD_SHARED_LIBS=ON"
- build: "avx512"
defines: "-DGGML_NATIVE=OFF -DGGML_AVX512=ON -DGGML_AVX=ON -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
- build: "cuda12"
defines: "-DSD_CUDA=ON -DSD_BUILD_SHARED_LIBS=ON -DCMAKE_CUDA_ARCHITECTURES='61;70;75;80;86;89;90;100;120' -DCMAKE_CUDA_FLAGS='-Xcudafe \"--diag_suppress=177\" -Xcudafe \"--diag_suppress=550\"'"
- build: "vulkan"
defines: "-DSD_VULKAN=ON -DSD_BUILD_SHARED_LIBS=ON"
- build: 'noavx'
defines: '-DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF'
- build: 'avx2'
defines: '-DGGML_AVX2=ON'
- build: 'avx'
defines: '-DGGML_AVX2=OFF'
- build: 'avx512'
defines: '-DGGML_AVX512=ON'
steps:
- name: Clone
id: checkout
@ -294,35 +104,13 @@ jobs:
with:
submodules: recursive
- name: Install cuda-toolkit
id: cuda-toolkit
if: ${{ matrix.build == 'cuda12' }}
uses: Jimver/cuda-toolkit@v0.2.22
with:
cuda: "12.8.1"
method: "network"
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'vulkan' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
- name: Activate MSVC environment
id: msvc_dev_cmd
uses: ilammy/msvc-dev-cmd@v1
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DCMAKE_CXX_FLAGS='/bigobj' -G Ninja -DCMAKE_C_COMPILER=cl.exe -DCMAKE_CXX_COMPILER=cl.exe -DCMAKE_BUILD_TYPE=Release ${{ matrix.defines }}
cmake --build .
cmake .. ${{ matrix.defines }}
cmake --build . --config Release
- name: Check AVX512F support
id: check_avx512f
@ -337,6 +125,12 @@ jobs:
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
#- name: Test
#id: cmake_test
#run: |
#cd build
#ctest -C Release --verbose --timeout 900
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@ -346,145 +140,17 @@ jobs:
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
$filePath = ".\build\bin\Release\*"
if (Test-Path $filePath) {
echo "Exists at path $filePath"
Copy-Item ggml/LICENSE .\build\bin\Release\ggml.txt
Copy-Item LICENSE .\build\bin\Release\stable-diffusion.cpp.txt
} elseif (Test-Path ".\build\bin\stable-diffusion.dll") {
$filePath = ".\build\bin\*"
echo "Exists at path $filePath"
Copy-Item ggml/LICENSE .\build\bin\ggml.txt
Copy-Item LICENSE .\build\bin\stable-diffusion.cpp.txt
} else {
ls .\build\bin
throw "Can't find stable-diffusion.dll"
}
7z a sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip $filePath
- name: Copy and pack Cuda runtime
id: pack_cuda_runtime
if: ${{ matrix.build == 'cuda12' && (github.event_name == 'push' && github.ref == 'refs/heads/master' || github.event.inputs.create_release == 'true') }}
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
$dst='.\build\bin\cudart\'
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-sd-bin-win-cu12-x64.zip $dst\*
- name: Upload Cuda runtime
if: ${{ matrix.build == 'cuda12' && (github.event_name == 'push' && github.ref == 'refs/heads/master' || github.event.inputs.create_release == 'true') }}
uses: actions/upload-artifact@v4
with:
name: sd-cudart-sd-bin-win-cu12-x64.zip
path: |
cudart-sd-bin-win-cu12-x64.zip
7z a sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-hip:
runs-on: windows-2022
env:
HIPSDK_INSTALLER_VERSION: "25.Q3"
GPU_TARGETS: "gfx1151;gfx1200;gfx1201;gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
steps:
- uses: actions/checkout@v3
with:
submodules: recursive
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-${{ env.HIPSDK_INSTALLER_VERSION }}-x64
evict-old-files: 1d
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
run: |
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
# Set HIP_PATH environment variable for later steps
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)" >> $env:GITHUB_ENV
- name: Build
run: |
mkdir build
cd build
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake .. `
-G "Unix Makefiles" `
-DSD_HIPBLAS=ON `
-DSD_BUILD_SHARED_LIBS=ON `
-DGGML_NATIVE=OFF `
-DCMAKE_C_COMPILER=clang `
-DCMAKE_CXX_COMPILER=clang++ `
-DCMAKE_BUILD_TYPE=Release `
-DGPU_TARGETS="${{ env.GPU_TARGETS }}"
cmake --build . --config Release --parallel ${env:NUMBER_OF_PROCESSORS}
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Pack artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
md "build\bin\rocblas\library\"
md "build\bin\hipblaslt\library"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\hipblaslt.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblaslt\library\*" "build\bin\hipblaslt\library\"
7z a sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-rocm-x64.zip .\build\bin\*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-rocm-x64.zip
path: |
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-rocm-x64.zip
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@ -492,30 +158,13 @@ jobs:
needs:
- ubuntu-latest-cmake
- ubuntu-latest-cmake-vulkan
- build-and-push-docker-images
- macOS-latest-cmake
- windows-latest-cmake
- windows-latest-cmake-hip
steps:
- name: Clone
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Download artifacts
id: download-artifact
uses: actions/download-artifact@v4
with:
path: ./artifact
pattern: sd-*
merge-multiple: true
- name: Get commit count
id: commit_count
run: |
echo "count=$(git rev-list --count HEAD)" >> $GITHUB_OUTPUT
uses: actions/download-artifact@v3
- name: Get commit hash
id: commit
@ -523,16 +172,14 @@ jobs:
- name: Create release
id: create_release
if: ${{ github.event_name == 'workflow_dispatch' || github.ref_name == 'master' }}
uses: anzz1/action-create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ format('{0}-{1}-{2}', env.BRANCH_NAME, steps.commit_count.outputs.count, steps.commit.outputs.short) }}
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
- name: Upload release
id: upload_release
if: ${{ github.event_name == 'workflow_dispatch' || github.ref_name == 'master' }}
uses: actions/github-script@v3
with:
github-token: ${{secrets.GITHUB_TOKEN}}

5
.gitignore vendored
View File

@ -1,15 +1,14 @@
build*/
cmake-build-*/
test/
.vscode/
.idea/
.cache/
*.swp
.vscode/
*.bat
*.bin
*.exe
*.gguf
output*.png
models*
!taesd-model.gguf
*.log
preview.png

2
.gitmodules vendored
View File

@ -1,3 +1,3 @@
[submodule "ggml"]
path = ggml
url = https://github.com/ggml-org/ggml.git
url = https://github.com/leejet/ggml.git

View File

@ -8,11 +8,6 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
if (MSVC)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
add_compile_definitions(_SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING)
endif()
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
@ -29,168 +24,59 @@ endif()
# general
#option(SD_BUILD_TESTS "sd: build tests" ${SD_STANDALONE})
option(SD_BUILD_EXAMPLES "sd: build examples" ${SD_STANDALONE})
option(SD_CUDA "sd: cuda backend" OFF)
option(SD_HIPBLAS "sd: rocm backend" OFF)
option(SD_CUBLAS "sd: cuda backend" OFF)
option(SD_METAL "sd: metal backend" OFF)
option(SD_VULKAN "sd: vulkan backend" OFF)
option(SD_OPENCL "sd: opencl backend" OFF)
option(SD_SYCL "sd: sycl backend" OFF)
option(SD_MUSA "sd: musa backend" OFF)
option(SD_FLASH_ATTN "sd: use flash attention for x4 less memory usage" OFF)
option(SD_FAST_SOFTMAX "sd: x1.5 faster softmax, indeterministic (sometimes, same seed don't generate same image), cuda only" OFF)
option(SD_BUILD_SHARED_LIBS "sd: build shared libs" OFF)
option(SD_BUILD_SHARED_GGML_LIB "sd: build ggml as a separate shared lib" OFF)
option(SD_USE_SYSTEM_GGML "sd: use system-installed GGML library" OFF)
option(BUILD_SHARED_LIBS "sd: build shared libs" OFF)
#option(SD_BUILD_SERVER "sd: build server example" ON)
if(SD_CUDA)
message("-- Use CUDA as backend stable-diffusion")
set(GGML_CUDA ON)
add_definitions(-DSD_USE_CUDA)
if(SD_CUBLAS)
message("Use CUBLAS as backend stable-diffusion")
set(GGML_CUBLAS ON)
add_definitions(-DSD_USE_CUBLAS)
if(SD_FAST_SOFTMAX)
set(GGML_CUDA_FAST_SOFTMAX ON)
endif()
endif()
if(SD_METAL)
message("-- Use Metal as backend stable-diffusion")
message("Use Metal as backend stable-diffusion")
set(GGML_METAL ON)
add_definitions(-DSD_USE_METAL)
endif()
if (SD_VULKAN)
message("-- Use Vulkan as backend stable-diffusion")
set(GGML_VULKAN ON)
add_definitions(-DSD_USE_VULKAN)
endif ()
if (SD_OPENCL)
message("-- Use OpenCL as backend stable-diffusion")
set(GGML_OPENCL ON)
add_definitions(-DSD_USE_OPENCL)
endif ()
if (SD_HIPBLAS)
message("-- Use HIPBLAS as backend stable-diffusion")
set(GGML_HIP ON)
add_definitions(-DSD_USE_CUDA)
if(SD_FAST_SOFTMAX)
set(GGML_CUDA_FAST_SOFTMAX ON)
endif()
endif ()
if(SD_MUSA)
message("-- Use MUSA as backend stable-diffusion")
set(GGML_MUSA ON)
add_definitions(-DSD_USE_CUDA)
if(SD_FAST_SOFTMAX)
set(GGML_CUDA_FAST_SOFTMAX ON)
endif()
if(SD_FLASH_ATTN)
message("Use Flash Attention for memory optimization")
add_definitions(-DSD_USE_FLASH_ATTENTION)
endif()
set(SD_LIB stable-diffusion)
file(GLOB SD_LIB_SOURCES
"*.h"
"*.cpp"
"*.hpp"
)
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
if(GIT_EXE)
execute_process(COMMAND ${GIT_EXE} describe --tags --abbrev=7 --dirty=+
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE SDCPP_BUILD_VERSION
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_QUIET
)
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE SDCPP_BUILD_COMMIT
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_QUIET
)
endif()
if(NOT SDCPP_BUILD_VERSION)
set(SDCPP_BUILD_VERSION unknown)
endif()
message(STATUS "stable-diffusion.cpp version ${SDCPP_BUILD_VERSION}")
if(NOT SDCPP_BUILD_COMMIT)
set(SDCPP_BUILD_COMMIT unknown)
endif()
message(STATUS "stable-diffusion.cpp commit ${SDCPP_BUILD_COMMIT}")
set_property(
SOURCE ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp
APPEND PROPERTY COMPILE_DEFINITIONS
SDCPP_BUILD_COMMIT=${SDCPP_BUILD_COMMIT} SDCPP_BUILD_VERSION=${SDCPP_BUILD_VERSION}
)
if(SD_BUILD_SHARED_LIBS)
message("-- Build shared library")
message(${SD_LIB_SOURCES})
if(NOT SD_BUILD_SHARED_GGML_LIB)
set(BUILD_SHARED_LIBS OFF)
endif()
add_library(${SD_LIB} SHARED ${SD_LIB_SOURCES})
if(BUILD_SHARED_LIBS)
message("Build shared library")
add_definitions(-DSD_BUILD_SHARED_LIB)
target_compile_definitions(${SD_LIB} PRIVATE -DSD_BUILD_DLL)
add_definitions(-DSD_BUILD_DLL)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
else()
message("-- Build static library")
if(NOT SD_BUILD_SHARED_GGML_LIB)
set(BUILD_SHARED_LIBS OFF)
endif()
add_library(${SD_LIB} STATIC ${SD_LIB_SOURCES})
message("Build static library")
endif()
if(SD_SYCL)
message("-- Use SYCL as backend stable-diffusion")
set(GGML_SYCL ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
add_definitions(-DSD_USE_SYCL)
# disable fast-math on host, see:
# https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/fp-model-fp.html
if (WIN32)
set(SYCL_COMPILE_OPTIONS /fp:precise)
else()
set(SYCL_COMPILE_OPTIONS -fp-model=precise)
endif()
message("-- Turn off fast-math for host in SYCL backend")
target_compile_options(${SD_LIB} PRIVATE ${SYCL_COMPILE_OPTIONS})
endif()
set(CMAKE_POLICY_DEFAULT_CMP0077 NEW)
if (NOT SD_USE_SYSTEM_GGML)
# see https://github.com/ggerganov/ggml/pull/682
add_definitions(-DGGML_MAX_NAME=128)
endif()
# deps
# Only add ggml if it hasn't been added yet
if (NOT TARGET ggml)
if (SD_USE_SYSTEM_GGML)
find_package(ggml REQUIRED)
if (NOT ggml_FOUND)
message(FATAL_ERROR "System-installed GGML library not found.")
endif()
add_library(ggml ALIAS ggml::ggml)
else()
add_subdirectory(ggml)
endif()
endif()
add_subdirectory(ggml)
add_subdirectory(thirdparty)
set(SD_LIB stable-diffusion)
add_library(${SD_LIB} stable-diffusion.h stable-diffusion.cpp model.h model.cpp util.h util.cpp upscaler.cpp
ggml_extend.hpp clip.hpp common.hpp unet.hpp tae.hpp esrgan.hpp lora.hpp denoiser.hpp rng.hpp rng_philox.hpp)
target_link_libraries(${SD_LIB} PUBLIC ggml zip)
target_include_directories(${SD_LIB} PUBLIC . thirdparty)
target_compile_features(${SD_LIB} PUBLIC c_std_11 cxx_std_17)
target_compile_features(${SD_LIB} PUBLIC cxx_std_11)
if (SD_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
set(SD_PUBLIC_HEADERS stable-diffusion.h)
set_target_properties(${SD_LIB} PROPERTIES PUBLIC_HEADER "${SD_PUBLIC_HEADERS}")
install(TARGETS ${SD_LIB} LIBRARY PUBLIC_HEADER)

View File

@ -1,23 +1,17 @@
ARG UBUNTU_VERSION=24.04
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && apt-get install -y --no-install-recommends build-essential git cmake
RUN apt-get update && apt-get install -y build-essential git cmake
WORKDIR /sd.cpp
COPY . .
RUN cmake . -B ./build
RUN cmake --build ./build --config Release --parallel
RUN mkdir build && cd build && cmake .. && cmake --build . --config Release
FROM ubuntu:$UBUNTU_VERSION AS runtime
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN apt-get update && \
apt-get install --yes --no-install-recommends libgomp1 && \
apt-get clean
COPY --from=build /sd.cpp/build/bin/sd /sd
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
ENTRYPOINT [ "/sd-cli" ]
ENTRYPOINT [ "/sd" ]

View File

@ -1,24 +0,0 @@
ARG MUSA_VERSION=rc4.2.0
ARG UBUNTU_VERSION=22.04
FROM mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64 as build
RUN apt-get update && apt-get install -y ccache cmake git
WORKDIR /sd.cpp
COPY . .
RUN mkdir build && cd build && \
cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_FLAGS="${CMAKE_C_FLAGS} -fopenmp -I/usr/lib/llvm-14/lib/clang/14.0.0/include -L/usr/lib/llvm-14/lib" \
-DCMAKE_CXX_FLAGS="${CMAKE_CXX_FLAGS} -fopenmp -I/usr/lib/llvm-14/lib/clang/14.0.0/include -L/usr/lib/llvm-14/lib" \
-DSD_MUSA=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build . --config Release
FROM mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64 as runtime
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
ENTRYPOINT [ "/sd-cli" ]

View File

@ -1,20 +0,0 @@
ARG SYCL_VERSION=2025.1.0-0
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS build
RUN apt-get update && apt-get install -y cmake
WORKDIR /sd.cpp
COPY . .
RUN mkdir build && cd build && \
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build . --config Release -j$(nproc)
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS runtime
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
ENTRYPOINT [ "/sd-cli" ]

View File

@ -1,23 +0,0 @@
ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && apt-get install -y --no-install-recommends build-essential git cmake libvulkan-dev glslc
WORKDIR /sd.cpp
COPY . .
RUN cmake . -B ./build -DSD_VULKAN=ON
RUN cmake --build ./build --config Release --parallel
FROM ubuntu:$UBUNTU_VERSION AS runtime
RUN apt-get update && \
apt-get install --yes --no-install-recommends libgomp1 libvulkan1 mesa-vulkan-drivers && \
apt-get clean
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
ENTRYPOINT [ "/sd-cli" ]

399
README.md
View File

@ -1,88 +1,35 @@
<p align="center">
<img src="./assets/logo.png" width="360x">
<img src="./assets/a%20lovely%20cat.png" width="256x">
</p>
# stable-diffusion.cpp
<div align="center">
<a href="https://trendshift.io/repositories/9714" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9714" alt="leejet%2Fstable-diffusion.cpp | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
Diffusion model(SD,Flux,Wan,...) inference in pure C/C++
***Note that this project is under active development. \
API and command-line option may change frequently.***
## 🔥Important News
* **2026/01/18** 🚀 stable-diffusion.cpp now supports **FLUX.2-klein**
👉 Details: [PR #1193](https://github.com/leejet/stable-diffusion.cpp/pull/1193)
* **2025/12/01** 🚀 stable-diffusion.cpp now supports **Z-Image**
👉 Details: [PR #1020](https://github.com/leejet/stable-diffusion.cpp/pull/1020)
* **2025/11/30** 🚀 stable-diffusion.cpp now supports **FLUX.2-dev**
👉 Details: [PR #1016](https://github.com/leejet/stable-diffusion.cpp/pull/1016)
* **2025/10/13** 🚀 stable-diffusion.cpp now supports **Qwen-Image-Edit / Qwen-Image-Edit 2509**
👉 Details: [PR #877](https://github.com/leejet/stable-diffusion.cpp/pull/877)
* **2025/10/12** 🚀 stable-diffusion.cpp now supports **Qwen-Image**
👉 Details: [PR #851](https://github.com/leejet/stable-diffusion.cpp/pull/851)
* **2025/09/14** 🚀 stable-diffusion.cpp now supports **Wan2.1 Vace**
👉 Details: [PR #819](https://github.com/leejet/stable-diffusion.cpp/pull/819)
* **2025/09/06** 🚀 stable-diffusion.cpp now supports **Wan2.1 / Wan2.2**
👉 Details: [PR #778](https://github.com/leejet/stable-diffusion.cpp/pull/778)
Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in pure C/C++
## Features
- Plain C/C++ implementation based on [ggml](https://github.com/ggml-org/ggml), working in the same way as [llama.cpp](https://github.com/ggml-org/llama.cpp)
- Plain C/C++ implementation based on [ggml](https://github.com/ggerganov/ggml), working in the same way as [llama.cpp](https://github.com/ggerganov/llama.cpp)
- Super lightweight and without external dependencies
- Supported models
- Image Models
- SD1.x, SD2.x, [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo)
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
- [Some SD1.x and SDXL distilled models](./docs/distilled_sd.md)
- [SD3/SD3.5](./docs/sd3.md)
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
- [Chroma](./docs/chroma.md)
- [Chroma1-Radiance](./docs/chroma_radiance.md)
- [Qwen Image](./docs/qwen_image.md)
- [Z-Image](./docs/z_image.md)
- [Ovis-Image](./docs/ovis_image.md)
- Image Edit Models
- [FLUX.1-Kontext-dev](./docs/kontext.md)
- [Qwen Image Edit series](./docs/qwen_image_edit.md)
- Video Models
- [Wan2.1/Wan2.2](./docs/wan.md)
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker) support.
- Control Net support with SD 1.5
- LoRA support, same as [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#lora)
- Latent Consistency Models support (LCM/LCM-LoRA)
- Faster and memory efficient latent decoding with [TAESD](https://github.com/madebyollin/taesd)
- Upscale images generated with [ESRGAN](https://github.com/xinntao/Real-ESRGAN)
- Supported backends
- CPU (AVX, AVX2 and AVX512 support for x86 architectures)
- CUDA
- Vulkan
- Metal
- OpenCL
- SYCL
- Supported weight formats
- Pytorch checkpoint (`.ckpt` or `.pth`)
- Safetensors (`.safetensors`)
- GGUF (`.gguf`)
- Supported platforms
- Linux
- Mac OS
- Windows
- Android (via Termux, [Local Diffusion](https://github.com/rmatif/Local-Diffusion))
- Flash Attention for memory usage optimization
- SD1.x, SD2.x and SDXL support
- !!!The VAE in SDXL encounters NaN issues under FP16, but unfortunately, the ggml_conv_2d only operates under FP16. Hence, a parameter is needed to specify the VAE that has fixed the FP16 NaN issue. You can find it here: [SDXL VAE FP16 Fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors).
- [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) and [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) support
- 16-bit, 32-bit float support
- 4-bit, 5-bit and 8-bit integer quantization support
- Accelerated memory-efficient CPU inference
- Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image, enabling Flash Attention just requires ~1.8GB.
- AVX, AVX2 and AVX512 support for x86 architectures
- Full CUDA and Metal backend for GPU acceleration.
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs models
- No need to convert to `.ggml` or `.gguf` anymore!
- Flash Attention for memory usage optimization (only cpu for now)
- Original `txt2img` and `img2img` mode
- Negative prompt
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) style tokenizer (not all the features, only token weighting for now)
- LoRA support, same as [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#lora)
- Latent Consistency Models support (LCM/LCM-LoRA)
- Faster and memory efficient latent decoding with [TAESD](https://github.com/madebyollin/taesd)
- Upscale images generated with [ESRGAN](https://github.com/xinntao/Real-ESRGAN)
- VAE tiling processing for reduce memory usage
- Sampling method
- `Euler A`
@ -93,84 +40,256 @@ API and command-line option may change frequently.***
- [`DPM++ 2M v2`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457)
- `DPM++ 2S a`
- [`LCM`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13952)
- Cross-platform reproducibility
- `--rng cuda`, default, consistent with the `stable-diffusion-webui GPU RNG`
- `--rng cpu`, consistent with the `comfyui RNG`
- Cross-platform reproducibility (`--rng cuda`, consistent with the `stable-diffusion-webui GPU RNG`)
- Embedds generation parameters into png output as webui-compatible text string
- Supported platforms
- Linux
- Mac OS
- Windows
- Android (via Termux)
## Quick Start
### TODO
### Get the sd executable
- [ ] More sampling methods
- [ ] Make inference faster
- The current implementation of ggml_conv_2d is slow and has high memory usage
- Implement Winograd Convolution 2D for 3x3 kernel filtering
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
- [ ] Implement Textual Inversion (embeddings)
- [ ] Implement Inpainting support
- [ ] k-quants support
- Download pre-built binaries from the [releases page](https://github.com/leejet/stable-diffusion.cpp/releases)
- Or build from source by following the [build guide](./docs/build.md)
## Usage
### Download model weights
### Get the Code
- download weights(.ckpt or .safetensors or .gguf). For example
- Stable Diffusion v1.5 from https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```sh
curl -L -O https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors
```
### Generate an image with just one command
```sh
./bin/sd-cli -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
```
git clone --recursive https://github.com/leejet/stable-diffusion.cpp
cd stable-diffusion.cpp
```
***For detailed command-line arguments, check out [cli doc](./examples/cli/README.md).***
- If you have already cloned the repository, you can use the following command to update the repository to the latest code.
## Performance
```
cd stable-diffusion.cpp
git pull origin master
git submodule init
git submodule update
```
If you want to improve performance or reduce VRAM/RAM usage, please refer to [performance guide](./docs/performance.md).
### Download weights
## More Guides
- download original weights(.ckpt or .safetensors). For example
- Stable Diffusion v1.4 from https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
- Stable Diffusion v1.5 from https://huggingface.co/runwayml/stable-diffusion-v1-5
- Stable Diffuison v2.1 from https://huggingface.co/stabilityai/stable-diffusion-2-1
- [SD1.x/SD2.x/SDXL](./docs/sd.md)
- [SD3/SD3.5](./docs/sd3.md)
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
- [FLUX.1-Kontext-dev](./docs/kontext.md)
- [Chroma](./docs/chroma.md)
- [🔥Qwen Image](./docs/qwen_image.md)
- [🔥Qwen Image Edit series](./docs/qwen_image_edit.md)
- [🔥Wan2.1/Wan2.2](./docs/wan.md)
- [🔥Z-Image](./docs/z_image.md)
- [Ovis-Image](./docs/ovis_image.md)
- [LoRA](./docs/lora.md)
- [LCM/LCM-LoRA](./docs/lcm.md)
- [Using PhotoMaker to personalize image generation](./docs/photo_maker.md)
- [Using ESRGAN to upscale results](./docs/esrgan.md)
- [Using TAESD to faster decoding](./docs/taesd.md)
- [Docker](./docs/docker.md)
- [Quantization and GGUF](./docs/quantization_and_gguf.md)
- [Inference acceleration via caching](./docs/caching.md)
```shell
curl -L -O https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt
# curl -L -O https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors
# curl -L -O https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-nonema-pruned.safetensors
```
## Bindings
### Build
These projects wrap `stable-diffusion.cpp` for easier use in other languages/frameworks.
#### Build from scratch
* Golang (non-cgo): [seasonjs/stable-diffusion](https://github.com/seasonjs/stable-diffusion)
* Golang (cgo): [Binozo/GoStableDiffusion](https://github.com/Binozo/GoStableDiffusion)
* C#: [DarthAffe/StableDiffusion.NET](https://github.com/DarthAffe/StableDiffusion.NET)
* Python: [william-murray1204/stable-diffusion-cpp-python](https://github.com/william-murray1204/stable-diffusion-cpp-python)
* Rust: [newfla/diffusion-rs](https://github.com/newfla/diffusion-rs)
* Flutter/Dart: [rmatif/Local-Diffusion](https://github.com/rmatif/Local-Diffusion)
```shell
mkdir build
cd build
cmake ..
cmake --build . --config Release
```
## UIs
##### Using OpenBLAS
These projects use `stable-diffusion.cpp` as a backend for their image generation.
```
cmake .. -DGGML_OPENBLAS=ON
cmake --build . --config Release
```
- [Jellybox](https://jellybox.com)
- [Stable Diffusion GUI](https://github.com/fszontagh/sd.cpp.gui.wx)
- [Stable Diffusion CLI-GUI](https://github.com/piallai/stable-diffusion.cpp)
- [Local Diffusion](https://github.com/rmatif/Local-Diffusion)
- [sd.cpp-webui](https://github.com/daniandtheweb/sd.cpp-webui)
- [LocalAI](https://github.com/mudler/LocalAI)
- [Neural-Pixel](https://github.com/Luiz-Alcantara/Neural-Pixel)
- [KoboldCpp](https://github.com/LostRuins/koboldcpp)
##### Using CUBLAS
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). Recommended to have at least 4 GB of VRAM.
```
cmake .. -DSD_CUBLAS=ON
cmake --build . --config Release
```
##### Using Metal
Using Metal makes the computation run on the GPU. Currently, there are some issues with Metal when performing operations on very large matrices, making it highly inefficient at the moment. Performance improvements are expected in the near future.
```
cmake .. -DSD_METAL=ON
cmake --build . --config Release
```
### Using Flash Attention
Enabling flash attention reduces memory usage by at least 400 MB. At the moment, it is not supported when CUBLAS is enabled because the kernel implementation is missing.
```
cmake .. -DSD_FLASH_ATTN=ON
cmake --build . --config Release
```
### Run
```
usage: ./bin/sd [arguments]
arguments:
-h, --help show this help message and exit
-M, --mode [txt2img or img2img] generation mode (default: txt2img)
-t, --threads N number of threads to use during computation (default: -1).
If threads <= 0, then threads will be set to the number of CPU physical cores
-m, --model [MODEL] path to model
--vae [VAE] path to vae
--taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)
--upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now.
--type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0)
If not specified, the default is the type of the weight file.
--lora-model-dir [DIR] lora model directory
-i, --init-img [IMAGE] path to the input image, required by img2img
-o, --output OUTPUT path to write result image to (default: ./output.png)
-p, --prompt [PROMPT] the prompt to render
-n, --negative-prompt PROMPT the negative prompt (default: "")
--cfg-scale SCALE unconditional guidance scale: (default: 7.0)
--strength STRENGTH strength for noising/unnoising (default: 0.75)
1.0 corresponds to full destruction of information in init image
-H, --height H image height, in pixel space (default: 512)
-W, --width W image width, in pixel space (default: 512)
--sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, lcm}
sampling method (default: "euler_a")
--steps STEPS number of sample steps (default: 20)
--rng {std_default, cuda} RNG (default: cuda)
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
-b, --batch-count COUNT number of images to generate.
--schedule {discrete, karras} Denoiser sigma schedule (default: discrete)
--clip-skip N number of layers to skip of clip model (default: 0)
--vae-tiling process vae in tiles to reduce memory usage
-v, --verbose print extra info
```
#### Quantization
You can specify the model weight type using the `--type` parameter. The weights are automatically converted when loading the model.
- `f16` for 16-bit floating-point
- `f32` for 32-bit floating-point
- `q8_0` for 8-bit integer quantization
- `q5_0` or `q5_1` for 5-bit integer quantization
- `q4_0` or `q4_1` for 4-bit integer quantization
#### txt2img example
```sh
./bin/sd -m ../models/sd-v1-4.ckpt -p "a lovely cat"
# ./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
# ./bin/sd -m ../models/sd_xl_base_1.0.safetensors --vae ../models/sdxl_vae-fp16-fix.safetensors -H 1024 -W 1024 -p "a lovely cat" -v
```
Using formats of different precisions will yield results of varying quality.
| f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 |
| ---- |---- |---- |---- |---- |---- |---- |
| ![](./assets/f32.png) |![](./assets/f16.png) |![](./assets/q8_0.png) |![](./assets/q5_0.png) |![](./assets/q5_1.png) |![](./assets/q4_0.png) |![](./assets/q4_1.png) |
#### img2img example
- `./output.png` is the image generated from the above txt2img pipeline
```
./bin/sd --mode img2img -m ../models/sd-v1-4.ckpt -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4
```
<p align="center">
<img src="./assets/img2img_output.png" width="256x">
</p>
#### with LoRA
- You can specify the directory where the lora weights are stored via `--lora-model-dir`. If not specified, the default is the current working directory.
- LoRA is specified via prompt, just like [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#lora).
Here's a simple example:
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:marblesh:1>" --lora-model-dir ../models
```
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model
#### LCM/LCM-LoRA
- Download LCM-LoRA form https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
- Specify LCM-LoRA by adding `<lora:lcm-lora-sdv1-5:1>` to prompt
- It's advisable to set `--cfg-scale` to `1.0` instead of the default `7.0`. For `--steps`, a range of `2-8` steps is recommended. For `--sampling-method`, `lcm`/`euler_a` is recommended.
Here's a simple example:
```
./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat<lora:lcm-lora-sdv1-5:1>" --steps 4 --lora-model-dir ../models -v --cfg-scale 1
```
| without LCM-LoRA (--cfg-scale 7) | with LCM-LoRA (--cfg-scale 1) |
| ---- |---- |
| ![](./assets/without_lcm.png) |![](./assets/with_lcm.png) |
## Using TAESD to faster decoding
You can use TAESD to accelerate the decoding of latent images by following these steps:
- Download the model [weights](https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors).
Or curl
```bash
curl -L -O https://huggingface.co/madebyollin/taesd/blob/main/diffusion_pytorch_model.safetensors
```
- Specify the model path using the `--taesd PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors
```
## Using ESRGAN to upscale results
You can use ESRGAN to upscale the generated images. At the moment, only the [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) model is supported. Support for more models of this architecture will be added soon.
- Specify the model path using the `--upscale-model PATH` parameter. example:
```bash
sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --upscale-model ../models/RealESRGAN_x4plus_anime_6B.pth
```
### Docker
#### Building using Docker
```shell
docker build -t sd .
```
#### Run
```shell
docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
# For example
# docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```
## Memory Requirements
| precision | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 |
| ---- | ---- |---- |---- |---- |---- |---- |---- |
| **Memory** (txt2img - 512 x 512) | ~2.8G | ~2.3G | ~2.1G | ~2.0G | ~2.0G | ~2.0G | ~2.0G |
| **Memory** (txt2img - 512 x 512) *with Flash Attention* | ~2.4G | ~1.9G | ~1.6G | ~1.5G | ~1.5G | ~1.5G | ~1.5G |
## Contributors
@ -178,22 +297,12 @@ Thank you to all the people who have already contributed to stable-diffusion.cpp
[![Contributors](https://contrib.rocks/image?repo=leejet/stable-diffusion.cpp)](https://github.com/leejet/stable-diffusion.cpp/graphs/contributors)
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=leejet/stable-diffusion.cpp&type=Date)](https://star-history.com/#leejet/stable-diffusion.cpp&Date)
## References
- [ggml](https://github.com/ggml-org/ggml)
- [diffusers](https://github.com/huggingface/diffusers)
- [ggml](https://github.com/ggerganov/ggml)
- [stable-diffusion](https://github.com/CompVis/stable-diffusion)
- [sd3-ref](https://github.com/Stability-AI/sd3-ref)
- [stable-diffusion-stability-ai](https://github.com/Stability-AI/stablediffusion)
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
- [ComfyUI](https://github.com/comfyanonymous/ComfyUI)
- [k-diffusion](https://github.com/crowsonkb/k-diffusion)
- [latent-consistency-model](https://github.com/luosiallen/latent-consistency-model)
- [generative-models](https://github.com/Stability-AI/generative-models/)
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker)
- [Wan2.1](https://github.com/Wan-Video/Wan2.1)
- [Wan2.2](https://github.com/Wan-Video/Wan2.2)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 477 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 539 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 416 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 490 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 464 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 468 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 566 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 475 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 481 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 496 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 556 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 510 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 455 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 511 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 491 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 464 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 552 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 401 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 311 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 457 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 415 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 450 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 594 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 870 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

View File

@ -1,975 +0,0 @@
#ifndef __CACHE_DIT_HPP__
#define __CACHE_DIT_HPP__
#include <algorithm>
#include <cmath>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include "ggml_extend.hpp"
struct DBCacheConfig {
bool enabled = false;
int Fn_compute_blocks = 8;
int Bn_compute_blocks = 0;
float residual_diff_threshold = 0.08f;
int max_warmup_steps = 8;
int max_cached_steps = -1;
int max_continuous_cached_steps = -1;
float max_accumulated_residual_diff = -1.0f;
std::vector<int> steps_computation_mask;
bool scm_policy_dynamic = true;
};
struct TaylorSeerConfig {
bool enabled = false;
int n_derivatives = 1;
int max_warmup_steps = 2;
int skip_interval_steps = 1;
};
struct CacheDitConfig {
DBCacheConfig dbcache;
TaylorSeerConfig taylorseer;
int double_Fn_blocks = -1;
int double_Bn_blocks = -1;
int single_Fn_blocks = -1;
int single_Bn_blocks = -1;
};
struct TaylorSeerState {
int n_derivatives = 1;
int current_step = -1;
int last_computed_step = -1;
std::vector<std::vector<float>> dY_prev;
std::vector<std::vector<float>> dY_current;
void init(int n_deriv, size_t hidden_size) {
n_derivatives = n_deriv;
int order = n_derivatives + 1;
dY_prev.resize(order);
dY_current.resize(order);
for (int i = 0; i < order; i++) {
dY_prev[i].clear();
dY_current[i].clear();
}
current_step = -1;
last_computed_step = -1;
}
void reset() {
for (auto& v : dY_prev)
v.clear();
for (auto& v : dY_current)
v.clear();
current_step = -1;
last_computed_step = -1;
}
bool can_approximate() const {
return last_computed_step >= n_derivatives && !dY_prev.empty() && !dY_prev[0].empty();
}
void update_derivatives(const float* Y, size_t size, int step) {
int order = n_derivatives + 1;
dY_prev = dY_current;
dY_current[0].resize(size);
for (size_t i = 0; i < size; i++) {
dY_current[0][i] = Y[i];
}
int window = step - last_computed_step;
if (window <= 0)
window = 1;
for (int d = 0; d < n_derivatives; d++) {
if (!dY_prev[d].empty() && dY_prev[d].size() == size) {
dY_current[d + 1].resize(size);
for (size_t i = 0; i < size; i++) {
dY_current[d + 1][i] = (dY_current[d][i] - dY_prev[d][i]) / static_cast<float>(window);
}
} else {
dY_current[d + 1].clear();
}
}
current_step = step;
last_computed_step = step;
}
void approximate(float* output, size_t size, int target_step) const {
if (!can_approximate() || dY_prev[0].size() != size) {
return;
}
int elapsed = target_step - last_computed_step;
if (elapsed <= 0)
elapsed = 1;
std::fill(output, output + size, 0.0f);
float factorial = 1.0f;
int order = static_cast<int>(dY_prev.size());
for (int o = 0; o < order; o++) {
if (dY_prev[o].empty() || dY_prev[o].size() != size)
continue;
if (o > 0)
factorial *= static_cast<float>(o);
float coeff = ::powf(static_cast<float>(elapsed), static_cast<float>(o)) / factorial;
for (size_t i = 0; i < size; i++) {
output[i] += coeff * dY_prev[o][i];
}
}
}
};
struct BlockCacheEntry {
std::vector<float> residual_img;
std::vector<float> residual_txt;
std::vector<float> residual;
std::vector<float> prev_img;
std::vector<float> prev_txt;
std::vector<float> prev_output;
bool has_prev = false;
};
struct CacheDitState {
CacheDitConfig config;
bool initialized = false;
int total_double_blocks = 0;
int total_single_blocks = 0;
size_t hidden_size = 0;
int current_step = -1;
int total_steps = 0;
int warmup_remaining = 0;
std::vector<int> cached_steps;
int continuous_cached_steps = 0;
float accumulated_residual_diff = 0.0f;
std::vector<BlockCacheEntry> double_block_cache;
std::vector<BlockCacheEntry> single_block_cache;
std::vector<float> Fn_residual_img;
std::vector<float> Fn_residual_txt;
std::vector<float> prev_Fn_residual_img;
std::vector<float> prev_Fn_residual_txt;
bool has_prev_Fn_residual = false;
std::vector<float> Bn_buffer_img;
std::vector<float> Bn_buffer_txt;
std::vector<float> Bn_buffer;
bool has_Bn_buffer = false;
TaylorSeerState taylor_state;
bool can_cache_this_step = false;
bool is_caching_this_step = false;
int total_blocks_computed = 0;
int total_blocks_cached = 0;
void init(const CacheDitConfig& cfg, int num_double_blocks, int num_single_blocks, size_t h_size) {
config = cfg;
total_double_blocks = num_double_blocks;
total_single_blocks = num_single_blocks;
hidden_size = h_size;
initialized = cfg.dbcache.enabled || cfg.taylorseer.enabled;
if (!initialized)
return;
warmup_remaining = cfg.dbcache.max_warmup_steps;
double_block_cache.resize(total_double_blocks);
single_block_cache.resize(total_single_blocks);
if (cfg.taylorseer.enabled) {
taylor_state.init(cfg.taylorseer.n_derivatives, h_size);
}
reset_runtime();
}
void reset_runtime() {
current_step = -1;
total_steps = 0;
warmup_remaining = config.dbcache.max_warmup_steps;
cached_steps.clear();
continuous_cached_steps = 0;
accumulated_residual_diff = 0.0f;
for (auto& entry : double_block_cache) {
entry.residual_img.clear();
entry.residual_txt.clear();
entry.prev_img.clear();
entry.prev_txt.clear();
entry.has_prev = false;
}
for (auto& entry : single_block_cache) {
entry.residual.clear();
entry.prev_output.clear();
entry.has_prev = false;
}
Fn_residual_img.clear();
Fn_residual_txt.clear();
prev_Fn_residual_img.clear();
prev_Fn_residual_txt.clear();
has_prev_Fn_residual = false;
Bn_buffer_img.clear();
Bn_buffer_txt.clear();
Bn_buffer.clear();
has_Bn_buffer = false;
taylor_state.reset();
can_cache_this_step = false;
is_caching_this_step = false;
total_blocks_computed = 0;
total_blocks_cached = 0;
}
bool enabled() const {
return initialized && (config.dbcache.enabled || config.taylorseer.enabled);
}
void begin_step(int step_index, float sigma = 0.0f) {
if (!enabled())
return;
if (step_index == current_step)
return;
current_step = step_index;
total_steps++;
bool in_warmup = warmup_remaining > 0;
if (in_warmup) {
warmup_remaining--;
}
bool scm_allows_cache = true;
if (!config.dbcache.steps_computation_mask.empty()) {
if (step_index < static_cast<int>(config.dbcache.steps_computation_mask.size())) {
scm_allows_cache = (config.dbcache.steps_computation_mask[step_index] == 0);
if (!config.dbcache.scm_policy_dynamic && scm_allows_cache) {
can_cache_this_step = true;
is_caching_this_step = false;
return;
}
}
}
bool max_cached_ok = (config.dbcache.max_cached_steps < 0) ||
(static_cast<int>(cached_steps.size()) < config.dbcache.max_cached_steps);
bool max_cont_ok = (config.dbcache.max_continuous_cached_steps < 0) ||
(continuous_cached_steps < config.dbcache.max_continuous_cached_steps);
bool accum_ok = (config.dbcache.max_accumulated_residual_diff < 0.0f) ||
(accumulated_residual_diff < config.dbcache.max_accumulated_residual_diff);
can_cache_this_step = !in_warmup && scm_allows_cache && max_cached_ok && max_cont_ok && accum_ok && has_prev_Fn_residual;
is_caching_this_step = false;
}
void end_step(bool was_cached) {
if (was_cached) {
cached_steps.push_back(current_step);
continuous_cached_steps++;
} else {
continuous_cached_steps = 0;
}
}
static float calculate_residual_diff(const float* prev, const float* curr, size_t size) {
if (size == 0)
return 0.0f;
float sum_diff = 0.0f;
float sum_abs = 0.0f;
for (size_t i = 0; i < size; i++) {
sum_diff += std::fabs(prev[i] - curr[i]);
sum_abs += std::fabs(prev[i]);
}
return sum_diff / (sum_abs + 1e-6f);
}
static float calculate_residual_diff(const std::vector<float>& prev, const std::vector<float>& curr) {
if (prev.size() != curr.size() || prev.empty())
return 1.0f;
return calculate_residual_diff(prev.data(), curr.data(), prev.size());
}
int get_double_Fn_blocks() const {
return (config.double_Fn_blocks >= 0) ? config.double_Fn_blocks : config.dbcache.Fn_compute_blocks;
}
int get_double_Bn_blocks() const {
return (config.double_Bn_blocks >= 0) ? config.double_Bn_blocks : config.dbcache.Bn_compute_blocks;
}
int get_single_Fn_blocks() const {
return (config.single_Fn_blocks >= 0) ? config.single_Fn_blocks : config.dbcache.Fn_compute_blocks;
}
int get_single_Bn_blocks() const {
return (config.single_Bn_blocks >= 0) ? config.single_Bn_blocks : config.dbcache.Bn_compute_blocks;
}
bool is_Fn_double_block(int block_idx) const {
return block_idx < get_double_Fn_blocks();
}
bool is_Bn_double_block(int block_idx) const {
int Bn = get_double_Bn_blocks();
return Bn > 0 && block_idx >= (total_double_blocks - Bn);
}
bool is_Mn_double_block(int block_idx) const {
return !is_Fn_double_block(block_idx) && !is_Bn_double_block(block_idx);
}
bool is_Fn_single_block(int block_idx) const {
return block_idx < get_single_Fn_blocks();
}
bool is_Bn_single_block(int block_idx) const {
int Bn = get_single_Bn_blocks();
return Bn > 0 && block_idx >= (total_single_blocks - Bn);
}
bool is_Mn_single_block(int block_idx) const {
return !is_Fn_single_block(block_idx) && !is_Bn_single_block(block_idx);
}
void store_Fn_residual(const float* img, const float* txt, size_t img_size, size_t txt_size, const float* input_img, const float* input_txt) {
Fn_residual_img.resize(img_size);
Fn_residual_txt.resize(txt_size);
for (size_t i = 0; i < img_size; i++) {
Fn_residual_img[i] = img[i] - input_img[i];
}
for (size_t i = 0; i < txt_size; i++) {
Fn_residual_txt[i] = txt[i] - input_txt[i];
}
}
bool check_cache_decision() {
if (!can_cache_this_step) {
is_caching_this_step = false;
return false;
}
if (!has_prev_Fn_residual || prev_Fn_residual_img.empty()) {
is_caching_this_step = false;
return false;
}
float diff_img = calculate_residual_diff(prev_Fn_residual_img, Fn_residual_img);
float diff_txt = calculate_residual_diff(prev_Fn_residual_txt, Fn_residual_txt);
float diff = (diff_img + diff_txt) / 2.0f;
if (diff < config.dbcache.residual_diff_threshold) {
is_caching_this_step = true;
accumulated_residual_diff += diff;
return true;
}
is_caching_this_step = false;
return false;
}
void update_prev_Fn_residual() {
prev_Fn_residual_img = Fn_residual_img;
prev_Fn_residual_txt = Fn_residual_txt;
has_prev_Fn_residual = !prev_Fn_residual_img.empty();
}
void store_double_block_residual(int block_idx, const float* img, const float* txt, size_t img_size, size_t txt_size, const float* prev_img, const float* prev_txt) {
if (block_idx < 0 || block_idx >= static_cast<int>(double_block_cache.size()))
return;
BlockCacheEntry& entry = double_block_cache[block_idx];
entry.residual_img.resize(img_size);
entry.residual_txt.resize(txt_size);
for (size_t i = 0; i < img_size; i++) {
entry.residual_img[i] = img[i] - prev_img[i];
}
for (size_t i = 0; i < txt_size; i++) {
entry.residual_txt[i] = txt[i] - prev_txt[i];
}
entry.prev_img.resize(img_size);
entry.prev_txt.resize(txt_size);
for (size_t i = 0; i < img_size; i++) {
entry.prev_img[i] = img[i];
}
for (size_t i = 0; i < txt_size; i++) {
entry.prev_txt[i] = txt[i];
}
entry.has_prev = true;
}
void apply_double_block_cache(int block_idx, float* img, float* txt, size_t img_size, size_t txt_size) {
if (block_idx < 0 || block_idx >= static_cast<int>(double_block_cache.size()))
return;
const BlockCacheEntry& entry = double_block_cache[block_idx];
if (entry.residual_img.size() != img_size || entry.residual_txt.size() != txt_size)
return;
for (size_t i = 0; i < img_size; i++) {
img[i] += entry.residual_img[i];
}
for (size_t i = 0; i < txt_size; i++) {
txt[i] += entry.residual_txt[i];
}
total_blocks_cached++;
}
void store_single_block_residual(int block_idx, const float* output, size_t size, const float* input) {
if (block_idx < 0 || block_idx >= static_cast<int>(single_block_cache.size()))
return;
BlockCacheEntry& entry = single_block_cache[block_idx];
entry.residual.resize(size);
for (size_t i = 0; i < size; i++) {
entry.residual[i] = output[i] - input[i];
}
entry.prev_output.resize(size);
for (size_t i = 0; i < size; i++) {
entry.prev_output[i] = output[i];
}
entry.has_prev = true;
}
void apply_single_block_cache(int block_idx, float* output, size_t size) {
if (block_idx < 0 || block_idx >= static_cast<int>(single_block_cache.size()))
return;
const BlockCacheEntry& entry = single_block_cache[block_idx];
if (entry.residual.size() != size)
return;
for (size_t i = 0; i < size; i++) {
output[i] += entry.residual[i];
}
total_blocks_cached++;
}
void store_Bn_buffer(const float* img, const float* txt, size_t img_size, size_t txt_size, const float* Bn_start_img, const float* Bn_start_txt) {
Bn_buffer_img.resize(img_size);
Bn_buffer_txt.resize(txt_size);
for (size_t i = 0; i < img_size; i++) {
Bn_buffer_img[i] = img[i] - Bn_start_img[i];
}
for (size_t i = 0; i < txt_size; i++) {
Bn_buffer_txt[i] = txt[i] - Bn_start_txt[i];
}
has_Bn_buffer = true;
}
void apply_Bn_buffer(float* img, float* txt, size_t img_size, size_t txt_size) {
if (!has_Bn_buffer)
return;
if (Bn_buffer_img.size() != img_size || Bn_buffer_txt.size() != txt_size)
return;
for (size_t i = 0; i < img_size; i++) {
img[i] += Bn_buffer_img[i];
}
for (size_t i = 0; i < txt_size; i++) {
txt[i] += Bn_buffer_txt[i];
}
}
void taylor_update(const float* hidden_state, size_t size) {
if (!config.taylorseer.enabled)
return;
taylor_state.update_derivatives(hidden_state, size, current_step);
}
bool taylor_can_approximate() const {
return config.taylorseer.enabled && taylor_state.can_approximate();
}
void taylor_approximate(float* output, size_t size) {
if (!config.taylorseer.enabled)
return;
taylor_state.approximate(output, size, current_step);
}
bool should_use_taylor_this_step() const {
if (!config.taylorseer.enabled)
return false;
if (current_step < config.taylorseer.max_warmup_steps)
return false;
int interval = config.taylorseer.skip_interval_steps;
if (interval <= 0)
interval = 1;
return (current_step % (interval + 1)) != 0;
}
void log_metrics() const {
if (!enabled())
return;
int total_blocks = total_blocks_computed + total_blocks_cached;
float cache_ratio = (total_blocks > 0) ? (static_cast<float>(total_blocks_cached) / total_blocks * 100.0f) : 0.0f;
float step_cache_ratio = (total_steps > 0) ? (static_cast<float>(cached_steps.size()) / total_steps * 100.0f) : 0.0f;
LOG_INFO("CacheDIT: steps_cached=%zu/%d (%.1f%%), blocks_cached=%d/%d (%.1f%%), accum_diff=%.4f",
cached_steps.size(), total_steps, step_cache_ratio,
total_blocks_cached, total_blocks, cache_ratio,
accumulated_residual_diff);
}
std::string get_summary() const {
char buf[256];
snprintf(buf, sizeof(buf),
"CacheDIT[thresh=%.2f]: cached %zu/%d steps, %d/%d blocks",
config.dbcache.residual_diff_threshold,
cached_steps.size(), total_steps,
total_blocks_cached, total_blocks_computed + total_blocks_cached);
return std::string(buf);
}
};
inline std::vector<int> parse_scm_mask(const std::string& mask_str) {
std::vector<int> mask;
if (mask_str.empty())
return mask;
size_t pos = 0;
size_t start = 0;
while ((pos = mask_str.find(',', start)) != std::string::npos) {
std::string token = mask_str.substr(start, pos - start);
mask.push_back(std::stoi(token));
start = pos + 1;
}
if (start < mask_str.length()) {
mask.push_back(std::stoi(mask_str.substr(start)));
}
return mask;
}
inline std::vector<int> generate_scm_mask(
const std::vector<int>& compute_bins,
const std::vector<int>& cache_bins,
int total_steps) {
std::vector<int> mask;
size_t c_idx = 0, cache_idx = 0;
while (static_cast<int>(mask.size()) < total_steps) {
if (c_idx < compute_bins.size()) {
for (int i = 0; i < compute_bins[c_idx] && static_cast<int>(mask.size()) < total_steps; i++) {
mask.push_back(1);
}
c_idx++;
}
if (cache_idx < cache_bins.size()) {
for (int i = 0; i < cache_bins[cache_idx] && static_cast<int>(mask.size()) < total_steps; i++) {
mask.push_back(0);
}
cache_idx++;
}
if (c_idx >= compute_bins.size() && cache_idx >= cache_bins.size())
break;
}
if (!mask.empty()) {
mask.back() = 1;
}
return mask;
}
inline std::vector<int> get_scm_preset(const std::string& preset, int total_steps) {
struct Preset {
std::vector<int> compute_bins;
std::vector<int> cache_bins;
};
Preset slow = {{8, 3, 3, 2, 1, 1}, {1, 2, 2, 2, 3}};
Preset medium = {{6, 2, 2, 2, 2, 1}, {1, 3, 3, 3, 3}};
Preset fast = {{6, 1, 1, 1, 1, 1}, {1, 3, 4, 5, 4}};
Preset ultra = {{4, 1, 1, 1, 1}, {2, 5, 6, 7}};
Preset* p = nullptr;
if (preset == "slow" || preset == "s" || preset == "S")
p = &slow;
else if (preset == "medium" || preset == "m" || preset == "M")
p = &medium;
else if (preset == "fast" || preset == "f" || preset == "F")
p = &fast;
else if (preset == "ultra" || preset == "u" || preset == "U")
p = &ultra;
else
return {};
if (total_steps != 28 && total_steps > 0) {
float scale = static_cast<float>(total_steps) / 28.0f;
std::vector<int> scaled_compute, scaled_cache;
for (int v : p->compute_bins) {
scaled_compute.push_back(std::max(1, static_cast<int>(v * scale + 0.5f)));
}
for (int v : p->cache_bins) {
scaled_cache.push_back(std::max(1, static_cast<int>(v * scale + 0.5f)));
}
return generate_scm_mask(scaled_compute, scaled_cache, total_steps);
}
return generate_scm_mask(p->compute_bins, p->cache_bins, total_steps);
}
inline float get_preset_threshold(const std::string& preset) {
if (preset == "slow" || preset == "s" || preset == "S")
return 0.20f;
if (preset == "medium" || preset == "m" || preset == "M")
return 0.25f;
if (preset == "fast" || preset == "f" || preset == "F")
return 0.30f;
if (preset == "ultra" || preset == "u" || preset == "U")
return 0.34f;
return 0.08f;
}
inline int get_preset_warmup(const std::string& preset) {
if (preset == "slow" || preset == "s" || preset == "S")
return 8;
if (preset == "medium" || preset == "m" || preset == "M")
return 6;
if (preset == "fast" || preset == "f" || preset == "F")
return 6;
if (preset == "ultra" || preset == "u" || preset == "U")
return 4;
return 8;
}
inline int get_preset_Fn(const std::string& preset) {
if (preset == "slow" || preset == "s" || preset == "S")
return 8;
if (preset == "medium" || preset == "m" || preset == "M")
return 8;
if (preset == "fast" || preset == "f" || preset == "F")
return 6;
if (preset == "ultra" || preset == "u" || preset == "U")
return 4;
return 8;
}
inline int get_preset_Bn(const std::string& preset) {
(void)preset;
return 0;
}
inline void parse_dbcache_options(const std::string& opts, DBCacheConfig& cfg) {
if (opts.empty())
return;
int Fn = 8, Bn = 0, warmup = 8, max_cached = -1, max_cont = -1;
float thresh = 0.08f;
sscanf(opts.c_str(), "%d,%d,%f,%d,%d,%d",
&Fn, &Bn, &thresh, &warmup, &max_cached, &max_cont);
cfg.Fn_compute_blocks = Fn;
cfg.Bn_compute_blocks = Bn;
cfg.residual_diff_threshold = thresh;
cfg.max_warmup_steps = warmup;
cfg.max_cached_steps = max_cached;
cfg.max_continuous_cached_steps = max_cont;
}
inline void parse_taylorseer_options(const std::string& opts, TaylorSeerConfig& cfg) {
if (opts.empty())
return;
int n_deriv = 1, warmup = 2, interval = 1;
sscanf(opts.c_str(), "%d,%d,%d", &n_deriv, &warmup, &interval);
cfg.n_derivatives = n_deriv;
cfg.max_warmup_steps = warmup;
cfg.skip_interval_steps = interval;
}
struct CacheDitConditionState {
DBCacheConfig config;
TaylorSeerConfig taylor_config;
bool initialized = false;
int current_step_index = -1;
bool step_active = false;
bool skip_current_step = false;
bool initial_step = true;
int warmup_remaining = 0;
std::vector<int> cached_steps;
int continuous_cached_steps = 0;
float accumulated_residual_diff = 0.0f;
int total_steps_skipped = 0;
const void* anchor_condition = nullptr;
struct CacheEntry {
std::vector<float> diff;
std::vector<float> prev_input;
std::vector<float> prev_output;
bool has_prev = false;
};
std::unordered_map<const void*, CacheEntry> cache_diffs;
TaylorSeerState taylor_state;
float start_sigma = std::numeric_limits<float>::max();
float end_sigma = 0.0f;
void reset_runtime() {
current_step_index = -1;
step_active = false;
skip_current_step = false;
initial_step = true;
warmup_remaining = config.max_warmup_steps;
cached_steps.clear();
continuous_cached_steps = 0;
accumulated_residual_diff = 0.0f;
total_steps_skipped = 0;
anchor_condition = nullptr;
cache_diffs.clear();
taylor_state.reset();
}
void init(const DBCacheConfig& dbcfg, const TaylorSeerConfig& tcfg) {
config = dbcfg;
taylor_config = tcfg;
initialized = dbcfg.enabled || tcfg.enabled;
reset_runtime();
if (taylor_config.enabled) {
taylor_state.init(taylor_config.n_derivatives, 0);
}
}
void set_sigmas(const std::vector<float>& sigmas) {
if (!initialized || sigmas.size() < 2)
return;
float start_percent = 0.15f;
float end_percent = 0.95f;
size_t n_steps = sigmas.size() - 1;
size_t start_step = static_cast<size_t>(start_percent * n_steps);
size_t end_step = static_cast<size_t>(end_percent * n_steps);
if (start_step >= n_steps)
start_step = n_steps - 1;
if (end_step >= n_steps)
end_step = n_steps - 1;
start_sigma = sigmas[start_step];
end_sigma = sigmas[end_step];
if (start_sigma < end_sigma) {
std::swap(start_sigma, end_sigma);
}
}
bool enabled() const {
return initialized && (config.enabled || taylor_config.enabled);
}
void begin_step(int step_index, float sigma) {
if (!enabled())
return;
if (step_index == current_step_index)
return;
current_step_index = step_index;
skip_current_step = false;
step_active = false;
if (sigma > start_sigma)
return;
if (!(sigma > end_sigma))
return;
step_active = true;
if (warmup_remaining > 0) {
warmup_remaining--;
return;
}
if (!config.steps_computation_mask.empty()) {
if (step_index < static_cast<int>(config.steps_computation_mask.size())) {
if (config.steps_computation_mask[step_index] == 1) {
return;
}
}
}
if (config.max_cached_steps >= 0 &&
static_cast<int>(cached_steps.size()) >= config.max_cached_steps) {
return;
}
if (config.max_continuous_cached_steps >= 0 &&
continuous_cached_steps >= config.max_continuous_cached_steps) {
return;
}
}
bool step_is_active() const {
return enabled() && step_active;
}
bool is_step_skipped() const {
return enabled() && step_active && skip_current_step;
}
bool has_cache(const void* cond) const {
auto it = cache_diffs.find(cond);
return it != cache_diffs.end() && !it->second.diff.empty();
}
void update_cache(const void* cond, const float* input, const float* output, size_t size) {
CacheEntry& entry = cache_diffs[cond];
entry.diff.resize(size);
for (size_t i = 0; i < size; i++) {
entry.diff[i] = output[i] - input[i];
}
entry.prev_input.resize(size);
entry.prev_output.resize(size);
for (size_t i = 0; i < size; i++) {
entry.prev_input[i] = input[i];
entry.prev_output[i] = output[i];
}
entry.has_prev = true;
}
void apply_cache(const void* cond, const float* input, float* output, size_t size) {
auto it = cache_diffs.find(cond);
if (it == cache_diffs.end() || it->second.diff.empty())
return;
if (it->second.diff.size() != size)
return;
for (size_t i = 0; i < size; i++) {
output[i] = input[i] + it->second.diff[i];
}
}
bool before_condition(const void* cond, struct ggml_tensor* input, struct ggml_tensor* output, float sigma, int step_index) {
if (!enabled() || step_index < 0)
return false;
if (step_index != current_step_index) {
begin_step(step_index, sigma);
}
if (!step_active)
return false;
if (initial_step) {
anchor_condition = cond;
initial_step = false;
}
bool is_anchor = (cond == anchor_condition);
if (skip_current_step) {
if (has_cache(cond)) {
apply_cache(cond, (float*)input->data, (float*)output->data,
static_cast<size_t>(ggml_nelements(output)));
return true;
}
return false;
}
if (!is_anchor)
return false;
auto it = cache_diffs.find(cond);
if (it == cache_diffs.end() || !it->second.has_prev)
return false;
size_t ne = static_cast<size_t>(ggml_nelements(input));
if (it->second.prev_input.size() != ne)
return false;
float* input_data = (float*)input->data;
float diff = CacheDitState::calculate_residual_diff(
it->second.prev_input.data(), input_data, ne);
float effective_threshold = config.residual_diff_threshold;
if (config.Fn_compute_blocks > 0) {
float fn_confidence = 1.0f + 0.02f * (config.Fn_compute_blocks - 8);
fn_confidence = std::max(0.5f, std::min(2.0f, fn_confidence));
effective_threshold *= fn_confidence;
}
if (config.Bn_compute_blocks > 0) {
float bn_quality = 1.0f - 0.03f * config.Bn_compute_blocks;
bn_quality = std::max(0.5f, std::min(1.0f, bn_quality));
effective_threshold *= bn_quality;
}
if (diff < effective_threshold) {
skip_current_step = true;
total_steps_skipped++;
cached_steps.push_back(current_step_index);
continuous_cached_steps++;
accumulated_residual_diff += diff;
apply_cache(cond, input_data, (float*)output->data, ne);
return true;
}
continuous_cached_steps = 0;
return false;
}
void after_condition(const void* cond, struct ggml_tensor* input, struct ggml_tensor* output) {
if (!step_is_active())
return;
size_t ne = static_cast<size_t>(ggml_nelements(output));
update_cache(cond, (float*)input->data, (float*)output->data, ne);
if (cond == anchor_condition && taylor_config.enabled) {
taylor_state.update_derivatives((float*)output->data, ne, current_step_index);
}
}
void log_metrics() const {
if (!enabled())
return;
LOG_INFO("CacheDIT: steps_skipped=%d/%d (%.1f%%), accum_residual_diff=%.4f",
total_steps_skipped,
current_step_index + 1,
(current_step_index > 0) ? (100.0f * total_steps_skipped / (current_step_index + 1)) : 0.0f,
accumulated_residual_diff);
}
};
#endif

1332
clip.hpp

File diff suppressed because it is too large Load Diff

View File

@ -3,589 +3,82 @@
#include "ggml_extend.hpp"
class DownSampleBlock : public GGMLBlock {
protected:
int channels;
int out_channels;
bool vae_downsample;
public:
DownSampleBlock(int channels,
int out_channels,
bool vae_downsample = false)
: channels(channels),
out_channels(out_channels),
vae_downsample(vae_downsample) {
if (vae_downsample) {
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {2, 2}, {0, 0}));
} else {
blocks["op"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {2, 2}, {1, 1}));
}
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
if (vae_downsample) {
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
x = ggml_ext_pad(ctx->ggml_ctx, x, 1, 1, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
x = conv->forward(ctx, x);
} else {
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["op"]);
x = conv->forward(ctx, x);
}
return x; // [N, out_channels, h/2, w/2]
}
};
class UpSampleBlock : public GGMLBlock {
protected:
struct DownSample {
// hparams
int channels;
int out_channels;
public:
UpSampleBlock(int channels,
int out_channels)
: channels(channels),
out_channels(out_channels) {
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
// conv2d params
struct ggml_tensor* op_w; // [out_channels, channels, 3, 3]
struct ggml_tensor* op_b; // [out_channels,]
bool vae_downsample = false;
size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w
mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b
return static_cast<size_t>(mem_size);
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
void init_params(struct ggml_context* ctx, ggml_type wtype) {
op_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels);
op_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
}
void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
if (vae_downsample) {
tensors[prefix + "conv.weight"] = op_w;
tensors[prefix + "conv.bias"] = op_b;
} else {
tensors[prefix + "op.weight"] = op_w;
tensors[prefix + "op.bias"] = op_b;
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
x = ggml_upscale(ctx->ggml_ctx, x, 2, GGML_SCALE_MODE_NEAREST); // [N, channels, h*2, w*2]
x = conv->forward(ctx, x); // [N, out_channels, h*2, w*2]
return x;
}
};
class ResBlock : public GGMLBlock {
protected:
// network hparams
int64_t channels; // model_channels * (1, 1, 1, 2, 2, 4, 4, 4)
int64_t emb_channels; // time_embed_dim
int64_t out_channels; // mult * model_channels
std::pair<int, int> kernel_size;
int dims;
bool skip_t_emb;
bool exchange_temb_dims;
std::shared_ptr<GGMLBlock> conv_nd(int dims,
int64_t in_channels,
int64_t out_channels,
std::pair<int, int> kernel_size,
std::pair<int, int> padding) {
GGML_ASSERT(dims == 2 || dims == 3);
if (dims == 3) {
return std::shared_ptr<GGMLBlock>(new Conv3d(in_channels, out_channels, {kernel_size.first, 1, 1}, {1, 1, 1}, {padding.first, 0, 0}));
struct ggml_tensor* c = NULL;
if (vae_downsample) {
c = ggml_pad(ctx, x, 1, 1, 0, 0);
c = ggml_nn_conv_2d(ctx, c, op_w, op_b, 2, 2, 0, 0);
} else {
return std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, out_channels, kernel_size, {1, 1}, padding));
c = ggml_nn_conv_2d(ctx, x, op_w, op_b, 2, 2, 1, 1);
}
}
public:
ResBlock(int64_t channels,
int64_t emb_channels,
int64_t out_channels,
std::pair<int, int> kernel_size = {3, 3},
int dims = 2,
bool exchange_temb_dims = false,
bool skip_t_emb = false)
: channels(channels),
emb_channels(emb_channels),
out_channels(out_channels),
kernel_size(kernel_size),
dims(dims),
skip_t_emb(skip_t_emb),
exchange_temb_dims(exchange_temb_dims) {
std::pair<int, int> padding = {kernel_size.first / 2, kernel_size.second / 2};
blocks["in_layers.0"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(channels));
// in_layer_1 is nn.SILU()
blocks["in_layers.2"] = conv_nd(dims, channels, out_channels, kernel_size, padding);
if (!skip_t_emb) {
// emb_layer_0 is nn.SILU()
blocks["emb_layers.1"] = std::shared_ptr<GGMLBlock>(new Linear(emb_channels, out_channels));
}
blocks["out_layers.0"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(out_channels));
// out_layer_1 is nn.SILU()
// out_layer_2 is nn.Dropout(), skip for inference
blocks["out_layers.3"] = conv_nd(dims, out_channels, out_channels, kernel_size, padding);
if (out_channels != channels) {
blocks["skip_connection"] = conv_nd(dims, channels, out_channels, {1, 1}, {0, 0});
}
}
virtual struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, struct ggml_tensor* emb = nullptr) {
// For dims==3, we reduce dimension from 5d to 4d by merging h and w, in order not to change ggml
// [N, c, t, h, w] => [N, c, t, h * w]
// x: [N, channels, h, w] if dims == 2 else [N, channels, t, h, w]
// emb: [N, emb_channels] if dims == 2 else [N, t, emb_channels]
auto in_layers_0 = std::dynamic_pointer_cast<GroupNorm32>(blocks["in_layers.0"]);
auto in_layers_2 = std::dynamic_pointer_cast<UnaryBlock>(blocks["in_layers.2"]);
auto out_layers_0 = std::dynamic_pointer_cast<GroupNorm32>(blocks["out_layers.0"]);
auto out_layers_3 = std::dynamic_pointer_cast<UnaryBlock>(blocks["out_layers.3"]);
if (emb == nullptr) {
GGML_ASSERT(skip_t_emb);
}
// in_layers
auto h = in_layers_0->forward(ctx, x);
h = ggml_silu_inplace(ctx->ggml_ctx, h);
h = in_layers_2->forward(ctx, h); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
// emb_layers
if (!skip_t_emb) {
auto emb_layer_1 = std::dynamic_pointer_cast<Linear>(blocks["emb_layers.1"]);
auto emb_out = ggml_silu(ctx->ggml_ctx, emb);
emb_out = emb_layer_1->forward(ctx, emb_out); // [N, out_channels] if dims == 2 else [N, t, out_channels]
if (dims == 2) {
emb_out = ggml_reshape_4d(ctx->ggml_ctx, emb_out, 1, 1, emb_out->ne[0], emb_out->ne[1]); // [N, out_channels, 1, 1]
} else {
emb_out = ggml_reshape_4d(ctx->ggml_ctx, emb_out, 1, emb_out->ne[0], emb_out->ne[1], emb_out->ne[2]); // [N, t, out_channels, 1]
if (exchange_temb_dims) {
// emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
emb_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, emb_out, 0, 2, 1, 3)); // [N, out_channels, t, 1]
}
}
h = ggml_add(ctx->ggml_ctx, h, emb_out); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
}
// out_layers
h = out_layers_0->forward(ctx, h);
h = ggml_silu_inplace(ctx->ggml_ctx, h);
// dropout, skip for inference
h = out_layers_3->forward(ctx, h);
// skip connection
if (out_channels != channels) {
auto skip_connection = std::dynamic_pointer_cast<UnaryBlock>(blocks["skip_connection"]);
x = skip_connection->forward(ctx, x); // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
}
h = ggml_add(ctx->ggml_ctx, h, x);
return h; // [N, out_channels, h, w] if dims == 2 else [N, out_channels, t, h, w]
return c; // [N, out_channels, h/2, w/2]
}
};
class GEGLU : public UnaryBlock {
protected:
int64_t dim_in;
int64_t dim_out;
struct UpSample {
// hparams
int channels;
int out_channels;
public:
GEGLU(int64_t dim_in, int64_t dim_out)
: dim_in(dim_in), dim_out(dim_out) {
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim_in, dim_out * 2));
// conv2d params
struct ggml_tensor* conv_w; // [out_channels, channels, 3, 3]
struct ggml_tensor* conv_b; // [out_channels,]
size_t calculate_mem_size(ggml_type wtype) {
double mem_size = 0;
mem_size += out_channels * channels * 3 * 3 * ggml_type_sizef(GGML_TYPE_F16); // op_w
mem_size += out_channels * ggml_type_sizef(GGML_TYPE_F32); // op_b
return static_cast<size_t>(mem_size);
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
// x: [ne3, ne2, ne1, dim_in]
// return: [ne3, ne2, ne1, dim_out]
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
x = proj->forward(ctx, x); // [ne3, ne2, ne1, dim_out*2]
auto x_vec = ggml_ext_chunk(ctx->ggml_ctx, x, 2, 0, false);
x = x_vec[0]; // [ne3, ne2, ne1, dim_out]
auto gate = x_vec[1]; // [ne3, ne2, ne1, dim_out]
gate = ggml_cont(ctx->ggml_ctx, gate);
gate = ggml_ext_gelu(ctx->ggml_ctx, gate, true);
x = ggml_mul(ctx->ggml_ctx, x, gate); // [ne3, ne2, ne1, dim_out]
return x;
}
};
class GELU : public UnaryBlock {
public:
GELU(int64_t dim_in, int64_t dim_out, bool bias = true) {
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim_in, dim_out, bias));
void init_params(struct ggml_context* ctx, ggml_type wtype) {
conv_w = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 3, 3, channels, out_channels);
conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels);
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
// x: [ne3, ne2, ne1, dim_in]
// return: [ne3, ne2, ne1, dim_out]
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
x = proj->forward(ctx, x);
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
return x;
}
};
class FeedForward : public GGMLBlock {
public:
enum class Activation {
GEGLU,
GELU
};
FeedForward(int64_t dim,
int64_t dim_out,
int64_t mult = 4,
Activation activation = Activation::GEGLU,
bool precision_fix = false) {
int64_t inner_dim = dim * mult;
if (activation == Activation::GELU) {
blocks["net.0"] = std::shared_ptr<GGMLBlock>(new GELU(dim, inner_dim));
} else {
blocks["net.0"] = std::shared_ptr<GGMLBlock>(new GEGLU(dim, inner_dim));
void map_by_name(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
tensors[prefix + "conv.weight"] = conv_w;
tensors[prefix + "conv.bias"] = conv_b;
}
// net_1 is nn.Dropout(), skip for inference
bool force_prec_f32 = false;
float scale = 1.f;
if (precision_fix) {
scale = 1.f / 128.f;
#ifdef SD_USE_VULKAN
force_prec_f32 = true;
#endif
}
// The purpose of the scale here is to prevent NaN issues in certain situations.
// For example, when using Vulkan without enabling force_prec_f32,
// or when using CUDA but the weights are k-quants.
blocks["net.2"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim_out, true, false, force_prec_f32, scale));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
// x: [ne3, ne2, ne1, dim]
// return: [ne3, ne2, ne1, dim_out]
auto net_0 = std::dynamic_pointer_cast<UnaryBlock>(blocks["net.0"]);
auto net_2 = std::dynamic_pointer_cast<Linear>(blocks["net.2"]);
x = net_0->forward(ctx, x); // [ne3, ne2, ne1, inner_dim]
x = net_2->forward(ctx, x); // [ne3, ne2, ne1, dim_out]
return x;
}
};
class CrossAttention : public GGMLBlock {
protected:
int64_t query_dim;
int64_t context_dim;
int64_t n_head;
int64_t d_head;
public:
CrossAttention(int64_t query_dim,
int64_t context_dim,
int64_t n_head,
int64_t d_head)
: n_head(n_head),
d_head(d_head),
query_dim(query_dim),
context_dim(context_dim) {
int64_t inner_dim = d_head * n_head;
blocks["to_q"] = std::shared_ptr<GGMLBlock>(new Linear(query_dim, inner_dim, false));
blocks["to_k"] = std::shared_ptr<GGMLBlock>(new Linear(context_dim, inner_dim, false));
blocks["to_v"] = std::shared_ptr<GGMLBlock>(new Linear(context_dim, inner_dim, false));
blocks["to_out.0"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, query_dim));
// to_out_1 is nn.Dropout(), skip for inference
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
auto to_q = std::dynamic_pointer_cast<Linear>(blocks["to_q"]);
auto to_k = std::dynamic_pointer_cast<Linear>(blocks["to_k"]);
auto to_v = std::dynamic_pointer_cast<Linear>(blocks["to_v"]);
auto to_out_0 = std::dynamic_pointer_cast<Linear>(blocks["to_out.0"]);
int64_t n = x->ne[2];
int64_t n_token = x->ne[1];
int64_t n_context = context->ne[1];
int64_t inner_dim = d_head * n_head;
auto q = to_q->forward(ctx, x); // [N, n_token, inner_dim]
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
return x;
}
};
class BasicTransformerBlock : public GGMLBlock {
protected:
int64_t n_head;
int64_t d_head;
bool ff_in;
public:
BasicTransformerBlock(int64_t dim,
int64_t n_head,
int64_t d_head,
int64_t context_dim,
bool ff_in = false)
: n_head(n_head), d_head(d_head), ff_in(ff_in) {
// disable_self_attn is always False
// disable_temporal_crossattention is always False
// switch_temporal_ca_to_sa is always False
// inner_dim is always None or equal to dim
// gated_ff is always True
blocks["attn1"] = std::shared_ptr<GGMLBlock>(new CrossAttention(dim, dim, n_head, d_head));
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new CrossAttention(dim, context_dim, n_head, d_head));
blocks["ff"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim));
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["norm3"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
if (ff_in) {
blocks["norm_in"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
blocks["ff_in"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim));
}
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
auto attn1 = std::dynamic_pointer_cast<CrossAttention>(blocks["attn1"]);
auto attn2 = std::dynamic_pointer_cast<CrossAttention>(blocks["attn2"]);
auto ff = std::dynamic_pointer_cast<FeedForward>(blocks["ff"]);
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]);
auto norm3 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm3"]);
if (ff_in) {
auto norm_in = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_in"]);
auto ff_in = std::dynamic_pointer_cast<FeedForward>(blocks["ff_in"]);
auto x_skip = x;
x = norm_in->forward(ctx, x);
x = ff_in->forward(ctx, x);
// self.is_res is always True
x = ggml_add(ctx->ggml_ctx, x, x_skip);
}
auto r = x;
x = norm1->forward(ctx, x);
x = attn1->forward(ctx, x, x); // self-attention
x = ggml_add(ctx->ggml_ctx, x, r);
r = x;
x = norm2->forward(ctx, x);
x = attn2->forward(ctx, x, context); // cross-attention
x = ggml_add(ctx->ggml_ctx, x, r);
r = x;
x = norm3->forward(ctx, x);
x = ff->forward(ctx, x);
x = ggml_add(ctx->ggml_ctx, x, r);
return x;
}
};
class SpatialTransformer : public GGMLBlock {
protected:
int64_t in_channels; // mult * model_channels
int64_t n_head;
int64_t d_head;
int64_t depth = 1; // 1
int64_t context_dim = 768; // hidden_size, 1024 for VERSION_SD2
bool use_linear = false;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") {
auto iter = tensor_storage_map.find(prefix + "proj_out.weight");
if (iter != tensor_storage_map.end()) {
int64_t inner_dim = n_head * d_head;
if (iter->second.n_dims == 4 && use_linear) {
use_linear = false;
blocks["proj_in"] = std::make_shared<Conv2d>(in_channels, inner_dim, std::pair{1, 1});
blocks["proj_out"] = std::make_shared<Conv2d>(inner_dim, in_channels, std::pair{1, 1});
} else if (iter->second.n_dims == 2 && !use_linear) {
use_linear = true;
blocks["proj_in"] = std::make_shared<Linear>(in_channels, inner_dim);
blocks["proj_out"] = std::make_shared<Linear>(inner_dim, in_channels);
}
}
}
public:
SpatialTransformer(int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim,
bool use_linear)
: in_channels(in_channels),
n_head(n_head),
d_head(d_head),
depth(depth),
context_dim(context_dim),
use_linear(use_linear) {
// disable_self_attn is always False
int64_t inner_dim = n_head * d_head; // in_channels
blocks["norm"] = std::shared_ptr<GGMLBlock>(new GroupNorm32(in_channels));
if (use_linear) {
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Linear(in_channels, inner_dim));
} else {
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, inner_dim, {1, 1}));
}
for (int i = 0; i < depth; i++) {
std::string name = "transformer_blocks." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new BasicTransformerBlock(inner_dim, n_head, d_head, context_dim, false));
}
if (use_linear) {
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, in_channels));
} else {
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Conv2d(inner_dim, in_channels, {1, 1}));
}
}
virtual struct ggml_tensor* forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, in_channels, h, w]
// context: [N, max_position(aka n_token), hidden_size(aka context_dim)]
auto norm = std::dynamic_pointer_cast<GroupNorm32>(blocks["norm"]);
auto proj_in = std::dynamic_pointer_cast<UnaryBlock>(blocks["proj_in"]);
auto proj_out = std::dynamic_pointer_cast<UnaryBlock>(blocks["proj_out"]);
auto x_in = x;
int64_t n = x->ne[3];
int64_t h = x->ne[1];
int64_t w = x->ne[0];
int64_t inner_dim = n_head * d_head;
x = norm->forward(ctx, x);
if (use_linear) {
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
x = ggml_reshape_3d(ctx->ggml_ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
x = proj_in->forward(ctx, x); // [N, inner_dim, h, w]
} else {
x = proj_in->forward(ctx, x); // [N, inner_dim, h, w]
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
x = ggml_reshape_3d(ctx->ggml_ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
}
for (int i = 0; i < depth; i++) {
std::string name = "transformer_blocks." + std::to_string(i);
auto transformer_block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[name]);
x = transformer_block->forward(ctx, x, context);
}
if (use_linear) {
// proj_out
x = proj_out->forward(ctx, x); // [N, in_channels, h, w]
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [N, inner_dim, h * w]
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, inner_dim, n); // [N, inner_dim, h, w]
} else {
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [N, inner_dim, h * w]
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, inner_dim, n); // [N, inner_dim, h, w]
// proj_out
x = proj_out->forward(ctx, x); // [N, in_channels, h, w]
}
x = ggml_add(ctx->ggml_ctx, x, x_in);
return x;
}
};
class AlphaBlender : public GGMLBlock {
protected:
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override {
// Get the type of the "mix_factor" tensor from the input tensors map with the specified prefix
enum ggml_type wtype = GGML_TYPE_F32;
params["mix_factor"] = ggml_new_tensor_1d(ctx, wtype, 1);
}
float get_alpha() {
// image_only_indicator is always tensor([0.]) and since mix_factor.shape is [1,]
// so learned_with_images is same as learned
float alpha = ggml_ext_backend_tensor_get_f32(params["mix_factor"]);
return sigmoid(alpha);
}
public:
AlphaBlender() {
// merge_strategy is always learned_with_images
// for inference, we don't need to set alpha
// since mix_factor.shape is [1,], we don't need rearrange using rearrange_pattern
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x_spatial,
struct ggml_tensor* x_temporal) {
// image_only_indicator is always tensor([0.])
float alpha = get_alpha();
auto x = ggml_add(ctx->ggml_ctx,
ggml_ext_scale(ctx->ggml_ctx, x_spatial, alpha),
ggml_ext_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
return x;
}
};
class VideoResBlock : public ResBlock {
public:
VideoResBlock(int64_t channels,
int64_t emb_channels,
int64_t out_channels,
std::pair<int, int> kernel_size = {3, 3},
int64_t video_kernel_size = 3,
int dims = 2) // always 2
: ResBlock(channels, emb_channels, out_channels, kernel_size, dims) {
blocks["time_stack"] = std::shared_ptr<GGMLBlock>(new ResBlock(out_channels, emb_channels, out_channels, kernel_size, 3, true));
blocks["time_mixer"] = std::shared_ptr<GGMLBlock>(new AlphaBlender());
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb,
int num_video_frames) {
// x: [N, channels, h, w] aka [b*t, channels, h, w]
// emb: [N, emb_channels] aka [b*t, emb_channels]
// image_only_indicator is always tensor([0.])
auto time_stack = std::dynamic_pointer_cast<ResBlock>(blocks["time_stack"]);
auto time_mixer = std::dynamic_pointer_cast<AlphaBlender>(blocks["time_mixer"]);
x = ResBlock::forward(ctx, x, emb);
int64_t T = num_video_frames;
int64_t B = x->ne[3] / T;
int64_t C = x->ne[2];
int64_t H = x->ne[1];
int64_t W = x->ne[0];
x = ggml_reshape_4d(ctx->ggml_ctx, x, W * H, C, T, B); // (b t) c h w -> b t c (h w)
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b t c (h w) -> b c t (h w)
auto x_mix = x;
emb = ggml_reshape_4d(ctx->ggml_ctx, emb, emb->ne[0], T, B, emb->ne[3]); // (b t) ... -> b t ...
x = time_stack->forward(ctx, x, emb); // b t c (h w)
x = time_mixer->forward(ctx, x_mix, x); // b t c (h w)
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
x = ggml_reshape_4d(ctx->ggml_ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
x = ggml_upscale(ctx, x, 2); // [N, channels, h*2, w*2]
x = ggml_nn_conv_2d(ctx, x, conv_w, conv_b, 1, 1, 1, 1); // [N, out_channels, h*2, w*2]
return x;
}
};

File diff suppressed because it is too large Load Diff

View File

@ -1,466 +0,0 @@
#ifndef __CONTROL_HPP__
#define __CONTROL_HPP__
#include "common.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#define CONTROL_NET_GRAPH_SIZE 1536
/*
=================================== ControlNet ===================================
Reference: https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/cldm/cldm.py
*/
class ControlNetBlock : public GGMLBlock {
protected:
SDVersion version = VERSION_SD1;
// network hparams
int in_channels = 4;
int out_channels = 4;
int hint_channels = 3;
int num_res_blocks = 2;
std::vector<int> attention_resolutions = {4, 2, 1};
std::vector<int> channel_mult = {1, 2, 4, 4};
std::vector<int> transformer_depth = {1, 1, 1, 1};
int time_embed_dim = 1280; // model_channels*4
int num_heads = 8;
int num_head_channels = -1; // channels // num_heads
int context_dim = 768; // 1024 for VERSION_SD2, 2048 for VERSION_SDXL
bool use_linear_projection = false;
public:
int model_channels = 320;
int adm_in_channels = 2816; // only for VERSION_SDXL
ControlNetBlock(SDVersion version = VERSION_SD1)
: version(version) {
if (sd_version_is_sd2(version)) {
context_dim = 1024;
num_head_channels = 64;
num_heads = -1;
} else if (sd_version_is_sdxl(version)) {
context_dim = 2048;
attention_resolutions = {4, 2};
channel_mult = {1, 2, 4};
transformer_depth = {1, 2, 10};
num_head_channels = 64;
num_heads = -1;
} else if (version == VERSION_SVD) {
in_channels = 8;
out_channels = 4;
context_dim = 1024;
adm_in_channels = 768;
num_head_channels = 64;
num_heads = -1;
}
blocks["time_embed.0"] = std::shared_ptr<GGMLBlock>(new Linear(model_channels, time_embed_dim));
// time_embed_1 is nn.SiLU()
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
if (sd_version_is_sdxl(version) || version == VERSION_SVD) {
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
// label_emb_1 is nn.SiLU()
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
}
// input_blocks
blocks["input_blocks.0.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, model_channels, {3, 3}, {1, 1}, {1, 1}));
std::vector<int> input_block_chans;
input_block_chans.push_back(model_channels);
int ch = model_channels;
int input_block_idx = 0;
int ds = 1;
auto get_resblock = [&](int64_t channels, int64_t emb_channels, int64_t out_channels) -> ResBlock* {
return new ResBlock(channels, emb_channels, out_channels);
};
auto get_attention_layer = [&](int64_t in_channels,
int64_t n_head,
int64_t d_head,
int64_t depth,
int64_t context_dim) -> SpatialTransformer* {
return new SpatialTransformer(in_channels, n_head, d_head, depth, context_dim, use_linear_projection);
};
auto make_zero_conv = [&](int64_t channels) {
return new Conv2d(channels, channels, {1, 1});
};
blocks["zero_convs.0.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(model_channels));
blocks["input_hint_block.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(hint_channels, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 16, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(16, 32, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.6"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 32, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.8"] = std::shared_ptr<GGMLBlock>(new Conv2d(32, 96, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.10"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 96, {3, 3}, {1, 1}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.12"] = std::shared_ptr<GGMLBlock>(new Conv2d(96, 256, {3, 3}, {2, 2}, {1, 1}));
// nn.SiLU()
blocks["input_hint_block.14"] = std::shared_ptr<GGMLBlock>(new Conv2d(256, model_channels, {3, 3}, {1, 1}, {1, 1}));
size_t len_mults = channel_mult.size();
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, mult * model_channels));
ch = mult * model_channels;
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
blocks[name] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[i],
context_dim));
}
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
}
if (i != len_mults - 1) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
blocks[name] = std::shared_ptr<GGMLBlock>(new DownSampleBlock(ch, ch));
blocks["zero_convs." + std::to_string(input_block_idx) + ".0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
input_block_chans.push_back(ch);
ds *= 2;
}
}
// middle blocks
int n_head = num_heads;
int d_head = ch / num_heads;
if (num_head_channels != -1) {
d_head = num_head_channels;
n_head = ch / d_head;
}
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
n_head,
d_head,
transformer_depth[transformer_depth.size() - 1],
context_dim));
blocks["middle_block.2"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
// middle_block_out
blocks["middle_block_out.0"] = std::shared_ptr<GGMLBlock>(make_zero_conv(ch));
}
struct ggml_tensor* resblock_forward(std::string name,
GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* emb) {
auto block = std::dynamic_pointer_cast<ResBlock>(blocks[name]);
return block->forward(ctx, x, emb);
}
struct ggml_tensor* attention_layer_forward(std::string name,
GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* context) {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
}
struct ggml_tensor* input_hint_block_forward(GGMLRunnerContext* ctx,
struct ggml_tensor* hint,
struct ggml_tensor* emb,
struct ggml_tensor* context) {
int num_input_blocks = 15;
auto h = hint;
for (int i = 0; i < num_input_blocks; i++) {
if (i % 2 == 0) {
auto block = std::dynamic_pointer_cast<Conv2d>(blocks["input_hint_block." + std::to_string(i)]);
h = block->forward(ctx, h);
} else {
h = ggml_silu_inplace(ctx->ggml_ctx, h);
}
}
return h;
}
std::vector<struct ggml_tensor*> forward(GGMLRunnerContext* ctx,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* guided_hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = nullptr) {
// x: [N, in_channels, h, w] or [N, in_channels/2, h, w]
// timesteps: [N,]
// context: [N, max_position, hidden_size] or [1, max_position, hidden_size]. for example, [N, 77, 768]
// y: [N, adm_in_channels] or [1, adm_in_channels]
if (context != nullptr) {
if (context->ne[2] != x->ne[3]) {
context = ggml_repeat(ctx->ggml_ctx, context, ggml_new_tensor_3d(ctx->ggml_ctx, GGML_TYPE_F32, context->ne[0], context->ne[1], x->ne[3]));
}
}
if (y != nullptr) {
if (y->ne[1] != x->ne[3]) {
y = ggml_repeat(ctx->ggml_ctx, y, ggml_new_tensor_2d(ctx->ggml_ctx, GGML_TYPE_F32, y->ne[0], x->ne[3]));
}
}
auto time_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.0"]);
auto time_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["time_embed.2"]);
auto input_blocks_0_0 = std::dynamic_pointer_cast<Conv2d>(blocks["input_blocks.0.0"]);
auto zero_convs_0 = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs.0.0"]);
auto middle_block_out = std::dynamic_pointer_cast<Conv2d>(blocks["middle_block_out.0"]);
auto t_emb = ggml_ext_timestep_embedding(ctx->ggml_ctx, timesteps, model_channels); // [N, model_channels]
auto emb = time_embed_0->forward(ctx, t_emb);
emb = ggml_silu_inplace(ctx->ggml_ctx, emb);
emb = time_embed_2->forward(ctx, emb); // [N, time_embed_dim]
// SDXL/SVD
if (y != nullptr) {
auto label_embed_0 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.0"]);
auto label_embed_2 = std::dynamic_pointer_cast<Linear>(blocks["label_emb.0.2"]);
auto label_emb = label_embed_0->forward(ctx, y);
label_emb = ggml_silu_inplace(ctx->ggml_ctx, label_emb);
label_emb = label_embed_2->forward(ctx, label_emb); // [N, time_embed_dim]
emb = ggml_add(ctx->ggml_ctx, emb, label_emb); // [N, time_embed_dim]
}
std::vector<struct ggml_tensor*> outs;
if (guided_hint == nullptr) {
guided_hint = input_hint_block_forward(ctx, hint, emb, context);
}
outs.push_back(guided_hint);
// input_blocks
// input block 0
auto h = input_blocks_0_0->forward(ctx, x);
h = ggml_add(ctx->ggml_ctx, h, guided_hint);
outs.push_back(zero_convs_0->forward(ctx, h));
// input block 1-11
size_t len_mults = channel_mult.size();
int input_block_idx = 0;
int ds = 1;
for (int i = 0; i < len_mults; i++) {
int mult = channel_mult[i];
for (int j = 0; j < num_res_blocks; j++) {
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
h = resblock_forward(name, ctx, h, emb); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context); // [N, mult*model_channels, h, w]
}
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
if (i != len_mults - 1) {
ds *= 2;
input_block_idx += 1;
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".0";
auto block = std::dynamic_pointer_cast<DownSampleBlock>(blocks[name]);
h = block->forward(ctx, h); // [N, mult*model_channels, h/(2^(i+1)), w/(2^(i+1))]
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
outs.push_back(zero_conv->forward(ctx, h));
}
}
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
// out
outs.push_back(middle_block_out->forward(ctx, h));
return outs;
}
};
struct ControlNet : public GGMLRunner {
SDVersion version = VERSION_SD1;
ControlNetBlock control_net;
ggml_backend_buffer_t control_buffer = nullptr; // keep control output tensors in backend memory
ggml_context* control_ctx = nullptr;
std::vector<struct ggml_tensor*> controls; // (12 input block outputs, 1 middle block output) SD 1.5
struct ggml_tensor* guided_hint = nullptr; // guided_hint cache, for faster inference
bool guided_hint_cached = false;
ControlNet(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
SDVersion version = VERSION_SD1)
: GGMLRunner(backend, offload_params_to_cpu), control_net(version) {
control_net.init(params_ctx, tensor_storage_map, "");
}
~ControlNet() override {
free_control_ctx();
}
void alloc_control_ctx(std::vector<struct ggml_tensor*> outs) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(outs.size() * ggml_tensor_overhead()) + 1024 * 1024;
params.mem_buffer = nullptr;
params.no_alloc = true;
control_ctx = ggml_init(params);
controls.resize(outs.size() - 1);
size_t control_buffer_size = 0;
guided_hint = ggml_dup_tensor(control_ctx, outs[0]);
control_buffer_size += ggml_nbytes(guided_hint);
for (int i = 0; i < outs.size() - 1; i++) {
controls[i] = ggml_dup_tensor(control_ctx, outs[i + 1]);
control_buffer_size += ggml_nbytes(controls[i]);
}
control_buffer = ggml_backend_alloc_ctx_tensors(control_ctx, runtime_backend);
LOG_DEBUG("control buffer size %.2fMB", control_buffer_size * 1.f / 1024.f / 1024.f);
}
void free_control_ctx() {
if (control_buffer != nullptr) {
ggml_backend_buffer_free(control_buffer);
control_buffer = nullptr;
}
if (control_ctx != nullptr) {
ggml_free(control_ctx);
control_ctx = nullptr;
}
guided_hint = nullptr;
guided_hint_cached = false;
controls.clear();
}
std::string get_desc() override {
return "control_net";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
control_net.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y = nullptr) {
struct ggml_cgraph* gf = new_graph_custom(CONTROL_NET_GRAPH_SIZE);
x = to_backend(x);
if (guided_hint_cached) {
hint = nullptr;
} else {
hint = to_backend(hint);
}
context = to_backend(context);
y = to_backend(y);
timesteps = to_backend(timesteps);
auto runner_ctx = get_context();
auto outs = control_net.forward(&runner_ctx,
x,
hint,
guided_hint_cached ? guided_hint : nullptr,
timesteps,
context,
y);
if (control_ctx == nullptr) {
alloc_control_ctx(outs);
}
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[0], guided_hint));
for (int i = 0; i < outs.size() - 1; i++) {
ggml_build_forward_expand(gf, ggml_cpy(compute_ctx, outs[i + 1], controls[i]));
}
return gf;
}
bool compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* y,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) {
// x: [N, in_channels, h, w]
// timesteps: [N, ]
// context: [N, max_position, hidden_size]([N, 77, 768]) or [1, max_position, hidden_size]
// y: [N, adm_in_channels] or [1, adm_in_channels]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, hint, timesteps, context, y);
};
bool res = GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
if (res) {
// cache guided_hint
guided_hint_cached = true;
}
return res;
}
bool load_from_file(const std::string& file_path, int n_threads) {
LOG_INFO("loading control net from '%s'", file_path.c_str());
alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;
control_net.get_param_tensors(tensors);
std::set<std::string> ignore_tensors;
ModelLoader model_loader;
if (!model_loader.init_from_file_and_convert_name(file_path)) {
LOG_ERROR("init control net model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(tensors, ignore_tensors, n_threads);
if (!success) {
LOG_ERROR("load control net tensors from model loader failed");
return false;
}
LOG_INFO("control net model loaded");
return success;
}
};
#endif // __CONTROL_HPP__

File diff suppressed because it is too large Load Diff

View File

@ -1,450 +0,0 @@
#ifndef __DIFFUSION_MODEL_H__
#define __DIFFUSION_MODEL_H__
#include "flux.hpp"
#include "mmdit.hpp"
#include "qwen_image.hpp"
#include "unet.hpp"
#include "wan.hpp"
#include "z_image.hpp"
struct DiffusionParams {
struct ggml_tensor* x = nullptr;
struct ggml_tensor* timesteps = nullptr;
struct ggml_tensor* context = nullptr;
struct ggml_tensor* c_concat = nullptr;
struct ggml_tensor* y = nullptr;
struct ggml_tensor* guidance = nullptr;
std::vector<ggml_tensor*> ref_latents = {};
bool increase_ref_index = false;
int num_video_frames = -1;
std::vector<struct ggml_tensor*> controls = {};
float control_strength = 0.f;
struct ggml_tensor* vace_context = nullptr;
float vace_strength = 1.f;
std::vector<int> skip_layers = {};
};
struct DiffusionModel {
virtual std::string get_desc() = 0;
virtual bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) = 0;
virtual void alloc_params_buffer() = 0;
virtual void free_params_buffer() = 0;
virtual void free_compute_buffer() = 0;
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
virtual size_t get_params_buffer_size() = 0;
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
virtual int64_t get_adm_in_channels() = 0;
virtual void set_flash_attention_enabled(bool enabled) = 0;
virtual void set_circular_axes(bool circular_x, bool circular_y) = 0;
};
struct UNetModel : public DiffusionModel {
UNetModelRunner unet;
UNetModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
SDVersion version = VERSION_SD1)
: unet(backend, offload_params_to_cpu, tensor_storage_map, "model.diffusion_model", version) {
}
std::string get_desc() override {
return unet.get_desc();
}
void alloc_params_buffer() override {
unet.alloc_params_buffer();
}
void free_params_buffer() override {
unet.free_params_buffer();
}
void free_compute_buffer() override {
unet.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
unet.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() override {
return unet.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
unet.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return unet.unet.adm_in_channels;
}
void set_flash_attention_enabled(bool enabled) {
unet.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
unet.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return unet.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.c_concat,
diffusion_params.y,
diffusion_params.num_video_frames,
diffusion_params.controls,
diffusion_params.control_strength, output, output_ctx);
}
};
struct MMDiTModel : public DiffusionModel {
MMDiTRunner mmdit;
MMDiTModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {})
: mmdit(backend, offload_params_to_cpu, tensor_storage_map, "model.diffusion_model") {
}
std::string get_desc() override {
return mmdit.get_desc();
}
void alloc_params_buffer() override {
mmdit.alloc_params_buffer();
}
void free_params_buffer() override {
mmdit.free_params_buffer();
}
void free_compute_buffer() override {
mmdit.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
mmdit.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() override {
return mmdit.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
mmdit.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return 768 + 1280;
}
void set_flash_attention_enabled(bool enabled) {
mmdit.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
mmdit.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return mmdit.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.y,
output,
output_ctx,
diffusion_params.skip_layers);
}
};
struct FluxModel : public DiffusionModel {
Flux::FluxRunner flux;
FluxModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
SDVersion version = VERSION_FLUX,
bool use_mask = false)
: flux(backend, offload_params_to_cpu, tensor_storage_map, "model.diffusion_model", version, use_mask) {
}
std::string get_desc() override {
return flux.get_desc();
}
void alloc_params_buffer() override {
flux.alloc_params_buffer();
}
void free_params_buffer() override {
flux.free_params_buffer();
}
void free_compute_buffer() override {
flux.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
flux.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() override {
return flux.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
flux.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return 768;
}
void set_flash_attention_enabled(bool enabled) {
flux.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
flux.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return flux.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.c_concat,
diffusion_params.y,
diffusion_params.guidance,
diffusion_params.ref_latents,
diffusion_params.increase_ref_index,
output,
output_ctx,
diffusion_params.skip_layers);
}
};
struct WanModel : public DiffusionModel {
std::string prefix;
WAN::WanRunner wan;
WanModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
const std::string prefix = "model.diffusion_model",
SDVersion version = VERSION_WAN2)
: prefix(prefix), wan(backend, offload_params_to_cpu, tensor_storage_map, prefix, version) {
}
std::string get_desc() override {
return wan.get_desc();
}
void alloc_params_buffer() override {
wan.alloc_params_buffer();
}
void free_params_buffer() override {
wan.free_params_buffer();
}
void free_compute_buffer() override {
wan.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
wan.get_param_tensors(tensors, prefix);
}
size_t get_params_buffer_size() override {
return wan.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
wan.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return 768;
}
void set_flash_attention_enabled(bool enabled) {
wan.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
wan.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return wan.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.y,
diffusion_params.c_concat,
nullptr,
diffusion_params.vace_context,
diffusion_params.vace_strength,
output,
output_ctx);
}
};
struct QwenImageModel : public DiffusionModel {
std::string prefix;
Qwen::QwenImageRunner qwen_image;
QwenImageModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
const std::string prefix = "model.diffusion_model",
SDVersion version = VERSION_QWEN_IMAGE,
bool zero_cond_t = false)
: prefix(prefix), qwen_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version, zero_cond_t) {
}
std::string get_desc() override {
return qwen_image.get_desc();
}
void alloc_params_buffer() override {
qwen_image.alloc_params_buffer();
}
void free_params_buffer() override {
qwen_image.free_params_buffer();
}
void free_compute_buffer() override {
qwen_image.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
qwen_image.get_param_tensors(tensors, prefix);
}
size_t get_params_buffer_size() override {
return qwen_image.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
qwen_image.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return 768;
}
void set_flash_attention_enabled(bool enabled) {
qwen_image.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
qwen_image.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return qwen_image.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.ref_latents,
true, // increase_ref_index
output,
output_ctx);
}
};
struct ZImageModel : public DiffusionModel {
std::string prefix;
ZImage::ZImageRunner z_image;
ZImageModel(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map = {},
const std::string prefix = "model.diffusion_model",
SDVersion version = VERSION_Z_IMAGE)
: prefix(prefix), z_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version) {
}
std::string get_desc() override {
return z_image.get_desc();
}
void alloc_params_buffer() override {
z_image.alloc_params_buffer();
}
void free_params_buffer() override {
z_image.free_params_buffer();
}
void free_compute_buffer() override {
z_image.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
z_image.get_param_tensors(tensors, prefix);
}
size_t get_params_buffer_size() override {
return z_image.get_params_buffer_size();
}
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
z_image.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override {
return 768;
}
void set_flash_attention_enabled(bool enabled) {
z_image.set_flash_attention_enabled(enabled);
}
void set_circular_axes(bool circular_x, bool circular_y) override {
z_image.set_circular_axes(circular_x, circular_y);
}
bool compute(int n_threads,
DiffusionParams diffusion_params,
struct ggml_tensor** output = nullptr,
struct ggml_context* output_ctx = nullptr) override {
return z_image.compute(n_threads,
diffusion_params.x,
diffusion_params.timesteps,
diffusion_params.context,
diffusion_params.ref_latents,
true, // increase_ref_index
output,
output_ctx);
}
};
#endif

View File

@ -1,173 +0,0 @@
# Build from scratch
## Get the Code
```
git clone --recursive https://github.com/leejet/stable-diffusion.cpp
cd stable-diffusion.cpp
```
- If you have already cloned the repository, you can use the following command to update the repository to the latest code.
```
cd stable-diffusion.cpp
git pull origin master
git submodule init
git submodule update
```
## Build (CPU only)
If you don't have a GPU or CUDA installed, you can build a CPU-only version.
```shell
mkdir build && cd build
cmake ..
cmake --build . --config Release
```
## Build with OpenBLAS
```shell
mkdir build && cd build
cmake .. -DGGML_OPENBLAS=ON
cmake --build . --config Release
```
## Build with CUDA
This provides GPU acceleration using NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads). Recommended to have at least 4 GB of VRAM.
```shell
mkdir build && cd build
cmake .. -DSD_CUDA=ON
cmake --build . --config Release
```
## Build with HipBLAS
This provides GPU acceleration using AMD GPU. Make sure to have the ROCm toolkit installed.
To build for another GPU architecture than installed in your system, set `$GFX_NAME` manually to the desired architecture (replace first command). This is also necessary if your GPU is not officially supported by ROCm, for example you have to set `$GFX_NAME` manually to `gfx1030` for consumer RDNA2 cards.
Windows User Refer to [docs/hipBLAS_on_Windows.md](docs%2FhipBLAS_on_Windows.md) for a comprehensive guide.
```shell
mkdir build && cd build
if command -v rocminfo; then export GFX_NAME=$(rocminfo | awk '/ *Name: +gfx[1-9]/ {print $2; exit}'); else echo "rocminfo missing!"; fi
if [ -z "${GFX_NAME}" ]; then echo "Error: Couldn't detect GPU!"; else echo "Building for GPU: ${GFX_NAME}"; fi
cmake .. -G "Ninja" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGPU_TARGETS=$GFX_NAME -DAMDGPU_TARGETS=$GFX_NAME -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON
cmake --build . --config Release
```
## Build with MUSA
This provides GPU acceleration using Moore Threads GPU. Make sure to have the MUSA toolkit installed.
```shell
mkdir build && cd build
cmake .. -DCMAKE_C_COMPILER=/usr/local/musa/bin/clang -DCMAKE_CXX_COMPILER=/usr/local/musa/bin/clang++ -DSD_MUSA=ON -DCMAKE_BUILD_TYPE=Release
cmake --build . --config Release
```
## Build with Metal
Using Metal makes the computation run on the GPU. Currently, there are some issues with Metal when performing operations on very large matrices, making it highly inefficient at the moment. Performance improvements are expected in the near future.
```shell
mkdir build && cd build
cmake .. -DSD_METAL=ON
cmake --build . --config Release
```
## Build with Vulkan
Install Vulkan SDK from https://www.lunarg.com/vulkan-sdk/.
```shell
mkdir build && cd build
cmake .. -DSD_VULKAN=ON
cmake --build . --config Release
```
## Build with OpenCL (for Adreno GPU)
Currently, it supports only Adreno GPUs and is primarily optimized for Q4_0 type
To build for Windows ARM please refers to [Windows 11 Arm64](https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/OPENCL.md#windows-11-arm64)
Building for Android:
Android NDK:
Download and install the Android NDK from the [official Android developer site](https://developer.android.com/ndk/downloads).
Setup OpenCL Dependencies for NDK:
You need to provide OpenCL headers and the ICD loader library to your NDK sysroot.
* OpenCL Headers:
```bash
# In a temporary working directory
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
# Replace <YOUR_NDK_PATH> with your actual NDK installation path
# e.g., cp -r CL /path/to/android-ndk-r26c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
sudo cp -r CL <YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ..
```
* OpenCL ICD Loader:
```shell
# In the same temporary working directory
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
cd OpenCL-ICD-Loader
mkdir build_ndk && cd build_ndk
# Replace <YOUR_NDK_PATH> in the CMAKE_TOOLCHAIN_FILE and OPENCL_ICD_LOADER_HEADERS_DIR
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=<YOUR_NDK_PATH>/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=<YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared
ninja
# Replace <YOUR_NDK_PATH>
# e.g., cp libOpenCL.so /path/to/android-ndk-r26c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
sudo cp libOpenCL.so <YOUR_NDK_PATH>/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
cd ../..
```
Build `stable-diffusion.cpp` for Android with OpenCL:
```shell
mkdir build-android && cd build-android
# Replace <YOUR_NDK_PATH> with your actual NDK installation path
# e.g., -DCMAKE_TOOLCHAIN_FILE=/path/to/android-ndk-r26c/build/cmake/android.toolchain.cmake
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=<YOUR_NDK_PATH>/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DGGML_OPENMP=OFF \
-DSD_OPENCL=ON
ninja
```
*(Note: Don't forget to include `LD_LIBRARY_PATH=/vendor/lib64` in your command line before running the binary)*
## Build with SYCL
Using SYCL makes the computation run on the Intel GPU. Please make sure you have installed the related driver and [Intel® oneAPI Base toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) before start. More details and steps can refer to [llama.cpp SYCL backend](https://github.com/ggml-org/llama.cpp/blob/master/docs/backend/SYCL.md#linux).
```shell
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake .. -DSD_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake .. -DSD_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake --build . --config Release
```

View File

@ -1,126 +0,0 @@
## Caching
Caching methods accelerate diffusion inference by reusing intermediate computations when changes between steps are small.
### Cache Modes
| Mode | Target | Description |
|------|--------|-------------|
| `ucache` | UNET models | Condition-level caching with error tracking |
| `easycache` | DiT models | Condition-level cache |
| `dbcache` | DiT models | Block-level L1 residual threshold |
| `taylorseer` | DiT models | Taylor series approximation |
| `cache-dit` | DiT models | Combined DBCache + TaylorSeer |
### UCache (UNET Models)
UCache caches the residual difference (output - input) and reuses it when input changes are below threshold.
```bash
sd-cli -m model.safetensors -p "a cat" --cache-mode ucache --cache-option "threshold=1.5"
```
#### Parameters
| Parameter | Description | Default |
|-----------|-------------|---------|
| `threshold` | Error threshold for reuse decision | 1.0 |
| `start` | Start caching at this percent of steps | 0.15 |
| `end` | Stop caching at this percent of steps | 0.95 |
| `decay` | Error decay rate (0-1) | 1.0 |
| `relative` | Scale threshold by output norm (0/1) | 1 |
| `reset` | Reset error after computing (0/1) | 1 |
#### Reset Parameter
The `reset` parameter controls error accumulation behavior:
- `reset=1` (default): Resets accumulated error after each computed step. More aggressive caching, works well with most samplers.
- `reset=0`: Keeps error accumulated. More conservative, recommended for `euler_a` sampler.
### EasyCache (DiT Models)
Condition-level caching for DiT models. Caches and reuses outputs when input changes are below threshold.
```bash
--cache-mode easycache --cache-option "threshold=0.3"
```
#### Parameters
| Parameter | Description | Default |
|-----------|-------------|---------|
| `threshold` | Input change threshold for reuse | 0.2 |
| `start` | Start caching at this percent of steps | 0.15 |
| `end` | Stop caching at this percent of steps | 0.95 |
### Cache-DIT (DiT Models)
For DiT models like FLUX and QWEN, use block-level caching modes.
#### DBCache
Caches blocks based on L1 residual difference threshold:
```bash
--cache-mode dbcache --cache-option "threshold=0.25,warmup=4"
```
#### TaylorSeer
Uses Taylor series approximation to predict block outputs:
```bash
--cache-mode taylorseer
```
#### Cache-DIT (Combined)
Combines DBCache and TaylorSeer:
```bash
--cache-mode cache-dit --cache-preset fast
```
#### Parameters
| Parameter | Description | Default |
|-----------|-------------|---------|
| `Fn` | Front blocks to always compute | 8 |
| `Bn` | Back blocks to always compute | 0 |
| `threshold` | L1 residual difference threshold | 0.08 |
| `warmup` | Steps before caching starts | 8 |
#### Presets
Available presets: `slow`, `medium`, `fast`, `ultra` (or `s`, `m`, `f`, `u`).
```bash
--cache-mode cache-dit --cache-preset fast
```
#### SCM Options
Steps Computation Mask controls which steps can be cached:
```bash
--scm-mask "1,1,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1"
```
Mask values: `1` = compute, `0` = can cache.
| Policy | Description |
|--------|-------------|
| `dynamic` | Check threshold before caching |
| `static` | Always cache on cacheable steps |
```bash
--scm-policy dynamic
```
### Performance Tips
- Start with default thresholds and adjust based on output quality
- Lower threshold = better quality, less speedup
- Higher threshold = more speedup, potential quality loss
- More steps generally means more caching opportunities

View File

@ -1,33 +0,0 @@
# How to Use
You can run Chroma using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
## Download weights
- Download Chroma
- If you don't want to do the conversion yourself, download the preconverted gguf model from [silveroxides/Chroma-GGUF](https://huggingface.co/silveroxides/Chroma-GGUF)
- Otherwise, download chroma's safetensors from [lodestones/Chroma](https://huggingface.co/lodestones/Chroma)
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Convert Chroma weights
You can download the preconverted gguf weights from [silveroxides/Chroma-GGUF](https://huggingface.co/silveroxides/Chroma-GGUF), this way you don't have to do the conversion yourself.
```
.\bin\Release\sd-cli.exe -M convert -m ..\..\ComfyUI\models\unet\chroma-unlocked-v40.safetensors -o ..\models\chroma-unlocked-v40-q8_0.gguf -v --type q8_0
```
## Run
### Example
For example:
```
.\bin\Release\sd-cli.exe --diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask --clip-on-cpu
```
![](../assets/flux/chroma_v40.png)

View File

@ -1,21 +0,0 @@
# How to Use
## Download weights
- Download Chroma1-Radiance
- safetensors: https://huggingface.co/lodestones/Chroma1-Radiance/tree/main
- gguf: https://huggingface.co/silveroxides/Chroma1-Radiance-GGUF/tree/main
- Download t5xxl
- safetensors: https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Examples
```
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\Chroma1-Radiance-v0.4-Q8_0.gguf --t5xxl ..\..\ComfyUI\models\clip\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma radiance cpp'" --cfg-scale 4.0 --sampling-method euler -v
```
<img alt="Chroma1-Radiance" src="../assets/flux/chroma1-radiance.png" />

View File

@ -1,137 +0,0 @@
# Running distilled models: SSD1B, Vega and SDx.x with tiny U-Nets
## Preface
These models feature a reduced U-Net architecture. Unlike standard SDXL models, the SSD-1B and Vega U-Net contains only one middle block and fewer attention layers in its up- and down-blocks, resulting in significantly smaller file sizes. Using these models can reduce inference time by more than 33%. For more details, refer to Segmind's paper: https://arxiv.org/abs/2401.02677v1.
Similarly, SD1.x- and SD2.x-style models with a tiny U-Net consist of only 6 U-Net blocks, leading to very small files and time savings of up to 50%. For more information, see the paper: https://arxiv.org/pdf/2305.15798.pdf.
## SSD1B
Note that not all of these models follow the standard parameter naming conventions. However, several useful SSD-1B models are available online, such as:
* https://huggingface.co/segmind/SSD-1B/resolve/main/SSD-1B-A1111.safetensors
* https://huggingface.co/hassenhamdi/SSD-1B-fp8_e4m3fn/resolve/main/SSD-1B_fp8_e4m3fn.safetensors
Useful LoRAs are also available:
* https://huggingface.co/seungminh/lora-swarovski-SSD-1B/resolve/main/pytorch_lora_weights.safetensors
* https://huggingface.co/kylielee505/mylcmlorassd/resolve/main/pytorch_lora_weights.safetensors
## Vega
Segmind's Vega model is available online here:
* https://huggingface.co/segmind/Segmind-Vega/resolve/main/segmind-vega.safetensors
VegaRT is an example for an LCM-LoRA:
* https://huggingface.co/segmind/Segmind-VegaRT/resolve/main/pytorch_lora_weights.safetensors
Both files can be used out-of-the-box, unlike the models described in next sections.
## SD1.x, SD2.x with tiny U-Nets
These models require conversion before use. You will need a Python script provided by the diffusers team, available on GitHub:
* https://raw.githubusercontent.com/huggingface/diffusers/refs/heads/main/scripts/convert_diffusers_to_original_stable_diffusion.py
### SD2.x
NotaAI provides the following model online:
* https://huggingface.co/nota-ai/bk-sdm-v2-tiny
Creating a .safetensors file involves two steps. First, run this short Python script to download the model from Hugging Face:
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("nota-ai/bk-sdm-v2-tiny",cache_dir="./")
```
Second, create the .safetensors file by running:
```bash
python convert_diffusers_to_original_stable_diffusion.py \
--model_path models--nota-ai--bk-sdm-v2-tiny/snapshots/68277af553777858cd47e133f92e4db47321bc74 \
--checkpoint_path bk-sdm-v2-tiny.safetensors --half --use_safetensors
```
This will generate the **file bk-sdm-v2-tiny.safetensors**, which is now ready for use with sd.cpp.
### SD1.x
Several Tiny SD 1.x models are available online, such as:
* https://huggingface.co/segmind/tiny-sd
* https://huggingface.co/segmind/portrait-finetuned
* https://huggingface.co/nota-ai/bk-sdm-tiny
These models also require conversion, partly because some tensors are stored in a non-contiguous manner. To create a usable checkpoint file, follow these simple steps:
Download and prepare the model using Python:
##### Download the model using Python on your computer, for example this way:
```python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("segmind/tiny-sd")
unet=pipe.unet
for param in unet.parameters():
param.data = param.data.contiguous() # <- important here
pipe.save_pretrained("segmindtiny-sd", safe_serialization=True)
```
##### Run the conversion script:
```bash
python convert_diffusers_to_original_stable_diffusion.py \
--model_path ./segmindtiny-sd \
--checkpoint_path ./segmind_tiny-sd.ckpt --half
```
The file segmind_tiny-sd.ckpt will be generated and is now ready for use with sd.cpp. You can follow a similar process for the other models mentioned above.
##### Another available .ckpt file:
* https://huggingface.co/ClashSAN/small-sd/resolve/main/tinySDdistilled.ckpt
To use this file, you must first adjust its non-contiguous tensors:
```python
import torch
ckpt = torch.load("tinySDdistilled.ckpt", map_location=torch.device('cpu'))
for key, value in ckpt['state_dict'].items():
if isinstance(value, torch.Tensor):
ckpt['state_dict'][key] = value.contiguous()
torch.save(ckpt, "tinySDdistilled_fixed.ckpt")
```
### SDXS-512
Another very tiny and **incredibly fast** model is SDXS by IDKiro et al. The authors refer to it as *"Real-Time One-Step Latent Diffusion Models with Image Conditions"*. For details read the paper: https://arxiv.org/pdf/2403.16627 . Once again the authors removed some more blocks of U-Net part and unlike other SD1 models they use an adjusted _AutoEncoderTiny_ instead of default _AutoEncoderKL_ for the VAE part.
##### 1. Download the diffusers model from Hugging Face using Python:
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper")
pipe.save_pretrained(save_directory="sdxs")
```
##### 2. Create a safetensors file
```bash
python convert_diffusers_to_original_stable_diffusion.py \
--model_path sdxs --checkpoint_path sdxs.safetensors --half --use_safetensors
```
##### 3. Run the model as follows:
```bash
~/stable-diffusion.cpp/build/bin/sd-cli -m sdxs.safetensors -p "portrait of a lovely cat" \
--cfg-scale 1 --steps 1
```
Both options: ``` --cfg-scale 1 ``` and ``` --steps 1 ``` are mandatory here.

View File

@ -1,39 +0,0 @@
# Docker
## Run CLI
```shell
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output ghcr.io/leejet/stable-diffusion.cpp:master [args...]
# For example
# docker run --rm -v ./models:/models -v ./build:/output ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```
## Run server
```shell
docker run --rm --init -v /path/to/models:/models -v /path/to/output/:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master [args...]
# For example
# docker run --rm --init -v ./models:/models -v ./build:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```
## Building using Docker
```shell
docker build -t sd .
```
## Building variants using Docker
Vulkan:
```shell
docker build -f Dockerfile.vulkan -t sd .
```
## Run locally built image's CLI
```shell
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
# For example
# docker run --rm -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
```

View File

@ -1,9 +0,0 @@
## Using ESRGAN to upscale results
You can use ESRGAN—such as the model [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)—to upscale the generated images and improve their overall resolution and clarity.
- Specify the model path using the `--upscale-model PATH` parameter. example:
```bash
sd-cli -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --upscale-model ../models/RealESRGAN_x4plus_anime_6B.pth
```

View File

@ -1,66 +0,0 @@
# How to Use
You can run Flux using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
## Download weights
- Download flux
- If you don't want to do the conversion yourself, download the preconverted gguf model from [FLUX.1-dev-gguf](https://huggingface.co/leejet/FLUX.1-dev-gguf) or [FLUX.1-schnell](https://huggingface.co/leejet/FLUX.1-schnell-gguf)
- Otherwise, download flux-dev from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors or flux-schnell from https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/main/flux1-schnell.safetensors
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
- Download clip_l from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/clip_l.safetensors
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
## Convert flux weights
You can download the preconverted gguf weights from [FLUX.1-dev-gguf](https://huggingface.co/leejet/FLUX.1-dev-gguf) or [FLUX.1-schnell](https://huggingface.co/leejet/FLUX.1-schnell-gguf), this way you don't have to do the conversion yourself.
For example:
```
.\bin\Release\sd-cli.exe -M convert -m ..\..\ComfyUI\models\unet\flux1-dev.sft -o ..\models\flux1-dev-q8_0.gguf -v --type q8_0
```
## Run
- `--cfg-scale` is recommended to be set to 1.
### Flux-dev
For example:
```
.\bin\Release\sd-cli.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
```
Using formats of different precisions will yield results of varying quality.
| Type | q8_0 | q4_0 | q4_k | q3_k | q2_k |
|---- | ---- |---- |---- |---- |---- |
| **Memory** | 12068.09 MB | 6394.53 MB | 6395.17 MB | 4888.16 MB | 3735.73 MB |
| **Result** | ![](../assets/flux/flux1-dev-q8_0.png) |![](../assets/flux/flux1-dev-q4_0.png) |![](../assets/flux/flux1-dev-q4_k.png) |![](../assets/flux/flux1-dev-q3_k.png) |![](../assets/flux/flux1-dev-q2_k.png)|
### Flux-schnell
```
.\bin\Release\sd-cli.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4 --clip-on-cpu
```
| q8_0 |
| ---- |
|![](../assets/flux/flux1-schnell-q8_0.png) |
## Run with LoRA
Since many flux LoRA training libraries have used various LoRA naming formats, it is possible that not all flux LoRA naming formats are supported. It is recommended to use LoRA with naming formats compatible with ComfyUI.
### Flux-dev q8_0 with LoRA
- LoRA model from https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main (using comfy converted version!!!)
```
.\bin\Release\sd-cli.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models --clip-on-cpu
```
![output](../assets/flux/flux1-dev-q8_0%20with%20lora.png)

Some files were not shown because too many files have changed in this diff Show More