mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2026-02-04 10:53:34 +00:00
Compare commits
9 Commits
master-483
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f957fa3d2a | ||
|
|
c252e03c6b | ||
|
|
e63daba33d | ||
|
|
3959109281 | ||
|
|
e411520407 | ||
|
|
43e829f219 | ||
|
|
7837232631 | ||
|
|
4ccce027b2 | ||
|
|
fa61ea744d |
BIN
assets/z_image/base_bf16.png
Normal file
BIN
assets/z_image/base_bf16.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 870 KiB |
39
clip.hpp
39
clip.hpp
@ -479,9 +479,9 @@ public:
|
|||||||
|
|
||||||
x = fc1->forward(ctx, x);
|
x = fc1->forward(ctx, x);
|
||||||
if (use_gelu) {
|
if (use_gelu) {
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
} else {
|
} else {
|
||||||
x = ggml_gelu_quick_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu_quick(ctx->ggml_ctx, x, true);
|
||||||
}
|
}
|
||||||
x = fc2->forward(ctx, x);
|
x = fc2->forward(ctx, x);
|
||||||
return x;
|
return x;
|
||||||
@ -510,7 +510,7 @@ public:
|
|||||||
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
|
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, bool mask = true) {
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, struct ggml_tensor* mask = nullptr) {
|
||||||
// x: [N, n_token, d_model]
|
// x: [N, n_token, d_model]
|
||||||
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
|
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
|
||||||
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
|
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
|
||||||
@ -542,8 +542,8 @@ public:
|
|||||||
|
|
||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||||
struct ggml_tensor* x,
|
struct ggml_tensor* x,
|
||||||
int clip_skip = -1,
|
struct ggml_tensor* mask = nullptr,
|
||||||
bool mask = true) {
|
int clip_skip = -1) {
|
||||||
// x: [N, n_token, d_model]
|
// x: [N, n_token, d_model]
|
||||||
int layer_idx = n_layer - 1;
|
int layer_idx = n_layer - 1;
|
||||||
// LOG_DEBUG("clip_skip %d", clip_skip);
|
// LOG_DEBUG("clip_skip %d", clip_skip);
|
||||||
@ -741,6 +741,7 @@ public:
|
|||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||||
struct ggml_tensor* input_ids,
|
struct ggml_tensor* input_ids,
|
||||||
struct ggml_tensor* tkn_embeddings,
|
struct ggml_tensor* tkn_embeddings,
|
||||||
|
struct ggml_tensor* mask = nullptr,
|
||||||
size_t max_token_idx = 0,
|
size_t max_token_idx = 0,
|
||||||
bool return_pooled = false,
|
bool return_pooled = false,
|
||||||
int clip_skip = -1) {
|
int clip_skip = -1) {
|
||||||
@ -750,7 +751,7 @@ public:
|
|||||||
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
|
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
|
||||||
|
|
||||||
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
|
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
|
||||||
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true);
|
x = encoder->forward(ctx, x, mask, return_pooled ? -1 : clip_skip);
|
||||||
if (return_pooled || with_final_ln) {
|
if (return_pooled || with_final_ln) {
|
||||||
x = final_layer_norm->forward(ctx, x);
|
x = final_layer_norm->forward(ctx, x);
|
||||||
}
|
}
|
||||||
@ -814,9 +815,10 @@ public:
|
|||||||
|
|
||||||
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
|
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
|
||||||
x = pre_layernorm->forward(ctx, x);
|
x = pre_layernorm->forward(ctx, x);
|
||||||
x = encoder->forward(ctx, x, clip_skip, false);
|
x = encoder->forward(ctx, x, nullptr, clip_skip);
|
||||||
// print_ggml_tensor(x, true, "ClipVisionModel x: ");
|
|
||||||
auto last_hidden_state = x;
|
auto last_hidden_state = x;
|
||||||
|
|
||||||
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
||||||
|
|
||||||
GGML_ASSERT(x->ne[3] == 1);
|
GGML_ASSERT(x->ne[3] == 1);
|
||||||
@ -905,6 +907,8 @@ public:
|
|||||||
struct CLIPTextModelRunner : public GGMLRunner {
|
struct CLIPTextModelRunner : public GGMLRunner {
|
||||||
CLIPTextModel model;
|
CLIPTextModel model;
|
||||||
|
|
||||||
|
std::vector<float> attention_mask_vec;
|
||||||
|
|
||||||
CLIPTextModelRunner(ggml_backend_t backend,
|
CLIPTextModelRunner(ggml_backend_t backend,
|
||||||
bool offload_params_to_cpu,
|
bool offload_params_to_cpu,
|
||||||
const String2TensorStorage& tensor_storage_map,
|
const String2TensorStorage& tensor_storage_map,
|
||||||
@ -938,6 +942,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
|||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||||
struct ggml_tensor* input_ids,
|
struct ggml_tensor* input_ids,
|
||||||
struct ggml_tensor* embeddings,
|
struct ggml_tensor* embeddings,
|
||||||
|
struct ggml_tensor* mask,
|
||||||
size_t max_token_idx = 0,
|
size_t max_token_idx = 0,
|
||||||
bool return_pooled = false,
|
bool return_pooled = false,
|
||||||
int clip_skip = -1) {
|
int clip_skip = -1) {
|
||||||
@ -948,7 +953,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
|||||||
input_ids = ggml_reshape_2d(ctx->ggml_ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
|
input_ids = ggml_reshape_2d(ctx->ggml_ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
|
||||||
}
|
}
|
||||||
|
|
||||||
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
return model.forward(ctx, input_ids, embeddings, mask, max_token_idx, return_pooled, clip_skip);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||||
@ -975,9 +980,23 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
|||||||
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
|
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int n_tokens = static_cast<int>(input_ids->ne[0]);
|
||||||
|
attention_mask_vec.resize(n_tokens * n_tokens);
|
||||||
|
for (int i0 = 0; i0 < n_tokens; i0++) {
|
||||||
|
for (int i1 = 0; i1 < n_tokens; i1++) {
|
||||||
|
float value = 0.f;
|
||||||
|
if (i0 > i1) {
|
||||||
|
value = -INFINITY;
|
||||||
|
}
|
||||||
|
attention_mask_vec[i1 * n_tokens + i0] = value;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto attention_mask = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||||
|
set_backend_tensor_data(attention_mask, attention_mask_vec.data());
|
||||||
|
|
||||||
auto runner_ctx = get_context();
|
auto runner_ctx = get_context();
|
||||||
|
|
||||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, attention_mask, max_token_idx, return_pooled, clip_skip);
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, hidden_states);
|
ggml_build_forward_expand(gf, hidden_states);
|
||||||
|
|
||||||
|
|||||||
10
common.hpp
10
common.hpp
@ -200,7 +200,7 @@ public:
|
|||||||
|
|
||||||
gate = ggml_cont(ctx->ggml_ctx, gate);
|
gate = ggml_cont(ctx->ggml_ctx, gate);
|
||||||
|
|
||||||
gate = ggml_gelu_inplace(ctx->ggml_ctx, gate);
|
gate = ggml_ext_gelu(ctx->ggml_ctx, gate, true);
|
||||||
|
|
||||||
x = ggml_mul(ctx->ggml_ctx, x, gate); // [ne3, ne2, ne1, dim_out]
|
x = ggml_mul(ctx->ggml_ctx, x, gate); // [ne3, ne2, ne1, dim_out]
|
||||||
|
|
||||||
@ -220,7 +220,7 @@ public:
|
|||||||
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
||||||
|
|
||||||
x = proj->forward(ctx, x);
|
x = proj->forward(ctx, x);
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -317,7 +317,7 @@ public:
|
|||||||
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
|
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
|
||||||
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
|
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
|
||||||
|
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
||||||
|
|
||||||
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
|
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
|
||||||
return x;
|
return x;
|
||||||
@ -536,8 +536,8 @@ public:
|
|||||||
// image_only_indicator is always tensor([0.])
|
// image_only_indicator is always tensor([0.])
|
||||||
float alpha = get_alpha();
|
float alpha = get_alpha();
|
||||||
auto x = ggml_add(ctx->ggml_ctx,
|
auto x = ggml_add(ctx->ggml_ctx,
|
||||||
ggml_scale(ctx->ggml_ctx, x_spatial, alpha),
|
ggml_ext_scale(ctx->ggml_ctx, x_spatial, alpha),
|
||||||
ggml_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
ggml_ext_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@ -34,6 +34,7 @@ struct Conditioner {
|
|||||||
virtual void free_params_buffer() = 0;
|
virtual void free_params_buffer() = 0;
|
||||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||||
virtual size_t get_params_buffer_size() = 0;
|
virtual size_t get_params_buffer_size() = 0;
|
||||||
|
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
|
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
|
||||||
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
||||||
int n_threads,
|
int n_threads,
|
||||||
@ -115,6 +116,13 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
|||||||
return buffer_size;
|
return buffer_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_flash_attention_enabled(bool enabled) override {
|
||||||
|
text_model->set_flash_attention_enabled(enabled);
|
||||||
|
if (sd_version_is_sdxl(version)) {
|
||||||
|
text_model2->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||||
text_model->set_weight_adapter(adapter);
|
text_model->set_weight_adapter(adapter);
|
||||||
if (sd_version_is_sdxl(version)) {
|
if (sd_version_is_sdxl(version)) {
|
||||||
@ -783,6 +791,18 @@ struct SD3CLIPEmbedder : public Conditioner {
|
|||||||
return buffer_size;
|
return buffer_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_flash_attention_enabled(bool enabled) override {
|
||||||
|
if (clip_l) {
|
||||||
|
clip_l->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
if (clip_g) {
|
||||||
|
clip_g->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
if (t5) {
|
||||||
|
t5->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||||
if (clip_l) {
|
if (clip_l) {
|
||||||
clip_l->set_weight_adapter(adapter);
|
clip_l->set_weight_adapter(adapter);
|
||||||
@ -1191,6 +1211,15 @@ struct FluxCLIPEmbedder : public Conditioner {
|
|||||||
return buffer_size;
|
return buffer_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_flash_attention_enabled(bool enabled) override {
|
||||||
|
if (clip_l) {
|
||||||
|
clip_l->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
if (t5) {
|
||||||
|
t5->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||||
if (clip_l) {
|
if (clip_l) {
|
||||||
clip_l->set_weight_adapter(adapter);
|
clip_l->set_weight_adapter(adapter);
|
||||||
@ -1440,6 +1469,12 @@ struct T5CLIPEmbedder : public Conditioner {
|
|||||||
return buffer_size;
|
return buffer_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_flash_attention_enabled(bool enabled) override {
|
||||||
|
if (t5) {
|
||||||
|
t5->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||||
if (t5) {
|
if (t5) {
|
||||||
t5->set_weight_adapter(adapter);
|
t5->set_weight_adapter(adapter);
|
||||||
@ -1650,6 +1685,10 @@ struct LLMEmbedder : public Conditioner {
|
|||||||
return buffer_size;
|
return buffer_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_flash_attention_enabled(bool enabled) override {
|
||||||
|
llm->set_flash_attention_enabled(enabled);
|
||||||
|
}
|
||||||
|
|
||||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||||
if (llm) {
|
if (llm) {
|
||||||
llm->set_weight_adapter(adapter);
|
llm->set_weight_adapter(adapter);
|
||||||
|
|||||||
305
denoiser.hpp
305
denoiser.hpp
@ -1,6 +1,8 @@
|
|||||||
#ifndef __DENOISER_HPP__
|
#ifndef __DENOISER_HPP__
|
||||||
#define __DENOISER_HPP__
|
#define __DENOISER_HPP__
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
#include "ggml_extend.hpp"
|
#include "ggml_extend.hpp"
|
||||||
#include "gits_noise.inl"
|
#include "gits_noise.inl"
|
||||||
|
|
||||||
@ -351,6 +353,95 @@ struct SmoothStepScheduler : SigmaScheduler {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct BongTangentScheduler : SigmaScheduler {
|
||||||
|
static constexpr float kPi = 3.14159265358979323846f;
|
||||||
|
|
||||||
|
static std::vector<float> get_bong_tangent_sigmas(int steps, float slope, float pivot, float start, float end) {
|
||||||
|
std::vector<float> sigmas;
|
||||||
|
if (steps <= 0) {
|
||||||
|
return sigmas;
|
||||||
|
}
|
||||||
|
|
||||||
|
float smax = ((2.0f / kPi) * atanf(-slope * (0.0f - pivot)) + 1.0f) * 0.5f;
|
||||||
|
float smin = ((2.0f / kPi) * atanf(-slope * ((float)(steps - 1) - pivot)) + 1.0f) * 0.5f;
|
||||||
|
float srange = smax - smin;
|
||||||
|
float sscale = start - end;
|
||||||
|
|
||||||
|
sigmas.reserve(steps);
|
||||||
|
|
||||||
|
if (fabsf(srange) < 1e-8f) {
|
||||||
|
if (steps == 1) {
|
||||||
|
sigmas.push_back(start);
|
||||||
|
return sigmas;
|
||||||
|
}
|
||||||
|
for (int i = 0; i < steps; ++i) {
|
||||||
|
float t = (float)i / (float)(steps - 1);
|
||||||
|
sigmas.push_back(start + (end - start) * t);
|
||||||
|
}
|
||||||
|
return sigmas;
|
||||||
|
}
|
||||||
|
|
||||||
|
float inv_srange = 1.0f / srange;
|
||||||
|
for (int x = 0; x < steps; ++x) {
|
||||||
|
float v = ((2.0f / kPi) * atanf(-slope * ((float)x - pivot)) + 1.0f) * 0.5f;
|
||||||
|
float sigma = ((v - smin) * inv_srange) * sscale + end;
|
||||||
|
sigmas.push_back(sigma);
|
||||||
|
}
|
||||||
|
|
||||||
|
return sigmas;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t /*t_to_sigma*/) override {
|
||||||
|
std::vector<float> result;
|
||||||
|
if (n == 0) {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
float start = sigma_max;
|
||||||
|
float end = sigma_min;
|
||||||
|
float middle = sigma_min + (sigma_max - sigma_min) * 0.5f;
|
||||||
|
|
||||||
|
float pivot_1 = 0.6f;
|
||||||
|
float pivot_2 = 0.6f;
|
||||||
|
float slope_1 = 0.2f;
|
||||||
|
float slope_2 = 0.2f;
|
||||||
|
|
||||||
|
int steps = static_cast<int>(n) + 2;
|
||||||
|
int midpoint = static_cast<int>(((float)steps * pivot_1 + (float)steps * pivot_2) * 0.5f);
|
||||||
|
int pivot_1_i = static_cast<int>((float)steps * pivot_1);
|
||||||
|
int pivot_2_i = static_cast<int>((float)steps * pivot_2);
|
||||||
|
|
||||||
|
float slope_scale = (float)steps / 40.0f;
|
||||||
|
slope_1 = slope_1 / slope_scale;
|
||||||
|
slope_2 = slope_2 / slope_scale;
|
||||||
|
|
||||||
|
int stage_2_len = steps - midpoint;
|
||||||
|
int stage_1_len = steps - stage_2_len;
|
||||||
|
|
||||||
|
std::vector<float> sigmas_1 = get_bong_tangent_sigmas(stage_1_len, slope_1, (float)pivot_1_i, start, middle);
|
||||||
|
std::vector<float> sigmas_2 = get_bong_tangent_sigmas(stage_2_len, slope_2, (float)(pivot_2_i - stage_1_len), middle, end);
|
||||||
|
|
||||||
|
if (!sigmas_1.empty()) {
|
||||||
|
sigmas_1.pop_back();
|
||||||
|
}
|
||||||
|
|
||||||
|
result.reserve(n + 1);
|
||||||
|
result.insert(result.end(), sigmas_1.begin(), sigmas_1.end());
|
||||||
|
result.insert(result.end(), sigmas_2.begin(), sigmas_2.end());
|
||||||
|
|
||||||
|
if (result.size() < n + 1) {
|
||||||
|
while (result.size() < n + 1) {
|
||||||
|
result.push_back(end);
|
||||||
|
}
|
||||||
|
} else if (result.size() > n + 1) {
|
||||||
|
result.resize(n + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
result[n] = 0.0f;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
struct KLOptimalScheduler : SigmaScheduler {
|
struct KLOptimalScheduler : SigmaScheduler {
|
||||||
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) override {
|
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) override {
|
||||||
std::vector<float> sigmas;
|
std::vector<float> sigmas;
|
||||||
@ -431,6 +522,10 @@ struct Denoiser {
|
|||||||
LOG_INFO("get_sigmas with SmoothStep scheduler");
|
LOG_INFO("get_sigmas with SmoothStep scheduler");
|
||||||
scheduler = std::make_shared<SmoothStepScheduler>();
|
scheduler = std::make_shared<SmoothStepScheduler>();
|
||||||
break;
|
break;
|
||||||
|
case BONG_TANGENT_SCHEDULER:
|
||||||
|
LOG_INFO("get_sigmas with bong_tangent scheduler");
|
||||||
|
scheduler = std::make_shared<BongTangentScheduler>();
|
||||||
|
break;
|
||||||
case KL_OPTIMAL_SCHEDULER:
|
case KL_OPTIMAL_SCHEDULER:
|
||||||
LOG_INFO("get_sigmas with KL Optimal scheduler");
|
LOG_INFO("get_sigmas with KL Optimal scheduler");
|
||||||
scheduler = std::make_shared<KLOptimalScheduler>();
|
scheduler = std::make_shared<KLOptimalScheduler>();
|
||||||
@ -1634,6 +1729,216 @@ static bool sample_k_diffusion(sample_method_t method,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case RES_MULTISTEP_SAMPLE_METHOD: // Res Multistep sampler
|
||||||
|
{
|
||||||
|
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||||
|
struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x);
|
||||||
|
|
||||||
|
bool have_old_sigma = false;
|
||||||
|
float old_sigma_down = 0.0f;
|
||||||
|
|
||||||
|
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||||
|
auto sigma_fn = [](float t) -> float { return expf(-t); };
|
||||||
|
auto phi1_fn = [](float t) -> float {
|
||||||
|
if (fabsf(t) < 1e-6f) {
|
||||||
|
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||||
|
}
|
||||||
|
return (expf(t) - 1.0f) / t;
|
||||||
|
};
|
||||||
|
auto phi2_fn = [&](float t) -> float {
|
||||||
|
if (fabsf(t) < 1e-6f) {
|
||||||
|
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||||
|
}
|
||||||
|
float phi1_val = phi1_fn(t);
|
||||||
|
return (phi1_val - 1.0f) / t;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int i = 0; i < steps; i++) {
|
||||||
|
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||||
|
if (denoised == nullptr) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
float sigma_from = sigmas[i];
|
||||||
|
float sigma_to = sigmas[i + 1];
|
||||||
|
float sigma_up = 0.0f;
|
||||||
|
float sigma_down = sigma_to;
|
||||||
|
|
||||||
|
if (eta > 0.0f) {
|
||||||
|
float sigma_from_sq = sigma_from * sigma_from;
|
||||||
|
float sigma_to_sq = sigma_to * sigma_to;
|
||||||
|
if (sigma_from_sq > 0.0f) {
|
||||||
|
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||||
|
if (term > 0.0f) {
|
||||||
|
sigma_up = eta * std::sqrt(term);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
sigma_up = std::min(sigma_up, sigma_to);
|
||||||
|
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||||
|
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sigma_down == 0.0f || !have_old_sigma) {
|
||||||
|
float dt = sigma_down - sigma_from;
|
||||||
|
float* vec_x = (float*)x->data;
|
||||||
|
float* vec_denoised = (float*)denoised->data;
|
||||||
|
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
float d = (vec_x[j] - vec_denoised[j]) / sigma_from;
|
||||||
|
vec_x[j] = vec_x[j] + d * dt;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
float t = t_fn(sigma_from);
|
||||||
|
float t_old = t_fn(old_sigma_down);
|
||||||
|
float t_next = t_fn(sigma_down);
|
||||||
|
float t_prev = t_fn(sigmas[i - 1]);
|
||||||
|
float h = t_next - t;
|
||||||
|
float c2 = (t_prev - t_old) / h;
|
||||||
|
|
||||||
|
float phi1_val = phi1_fn(-h);
|
||||||
|
float phi2_val = phi2_fn(-h);
|
||||||
|
float b1 = phi1_val - phi2_val / c2;
|
||||||
|
float b2 = phi2_val / c2;
|
||||||
|
|
||||||
|
if (!std::isfinite(b1)) {
|
||||||
|
b1 = 0.0f;
|
||||||
|
}
|
||||||
|
if (!std::isfinite(b2)) {
|
||||||
|
b2 = 0.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
float sigma_h = sigma_fn(h);
|
||||||
|
float* vec_x = (float*)x->data;
|
||||||
|
float* vec_denoised = (float*)denoised->data;
|
||||||
|
float* vec_old_denoised = (float*)old_denoised->data;
|
||||||
|
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_x[j] = sigma_h * vec_x[j] + h * (b1 * vec_denoised[j] + b2 * vec_old_denoised[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||||
|
ggml_ext_im_set_randn_f32(noise, rng);
|
||||||
|
float* vec_x = (float*)x->data;
|
||||||
|
float* vec_noise = (float*)noise->data;
|
||||||
|
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float* vec_old_denoised = (float*)old_denoised->data;
|
||||||
|
float* vec_denoised = (float*)denoised->data;
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_old_denoised[j] = vec_denoised[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
old_sigma_down = sigma_down;
|
||||||
|
have_old_sigma = true;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
case RES_2S_SAMPLE_METHOD: // Res 2s sampler
|
||||||
|
{
|
||||||
|
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||||
|
struct ggml_tensor* x0 = ggml_dup_tensor(work_ctx, x);
|
||||||
|
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
|
||||||
|
|
||||||
|
const float c2 = 0.5f;
|
||||||
|
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||||
|
auto phi1_fn = [](float t) -> float {
|
||||||
|
if (fabsf(t) < 1e-6f) {
|
||||||
|
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||||
|
}
|
||||||
|
return (expf(t) - 1.0f) / t;
|
||||||
|
};
|
||||||
|
auto phi2_fn = [&](float t) -> float {
|
||||||
|
if (fabsf(t) < 1e-6f) {
|
||||||
|
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||||
|
}
|
||||||
|
float phi1_val = phi1_fn(t);
|
||||||
|
return (phi1_val - 1.0f) / t;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int i = 0; i < steps; i++) {
|
||||||
|
float sigma_from = sigmas[i];
|
||||||
|
float sigma_to = sigmas[i + 1];
|
||||||
|
|
||||||
|
ggml_tensor* denoised = model(x, sigma_from, -(i + 1));
|
||||||
|
if (denoised == nullptr) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
float sigma_up = 0.0f;
|
||||||
|
float sigma_down = sigma_to;
|
||||||
|
if (eta > 0.0f) {
|
||||||
|
float sigma_from_sq = sigma_from * sigma_from;
|
||||||
|
float sigma_to_sq = sigma_to * sigma_to;
|
||||||
|
if (sigma_from_sq > 0.0f) {
|
||||||
|
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||||
|
if (term > 0.0f) {
|
||||||
|
sigma_up = eta * std::sqrt(term);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
sigma_up = std::min(sigma_up, sigma_to);
|
||||||
|
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||||
|
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
float* vec_x = (float*)x->data;
|
||||||
|
float* vec_x0 = (float*)x0->data;
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_x0[j] = vec_x[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sigma_down == 0.0f || sigma_from == 0.0f) {
|
||||||
|
float* vec_denoised = (float*)denoised->data;
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_x[j] = vec_denoised[j];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
float t = t_fn(sigma_from);
|
||||||
|
float t_next = t_fn(sigma_down);
|
||||||
|
float h = t_next - t;
|
||||||
|
|
||||||
|
float a21 = c2 * phi1_fn(-h * c2);
|
||||||
|
float phi1_val = phi1_fn(-h);
|
||||||
|
float phi2_val = phi2_fn(-h);
|
||||||
|
float b2 = phi2_val / c2;
|
||||||
|
float b1 = phi1_val - b2;
|
||||||
|
|
||||||
|
float sigma_c2 = expf(-(t + h * c2));
|
||||||
|
|
||||||
|
float* vec_denoised = (float*)denoised->data;
|
||||||
|
float* vec_x2 = (float*)x2->data;
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||||
|
vec_x2[j] = vec_x0[j] + h * a21 * eps1;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tensor* denoised2 = model(x2, sigma_c2, i + 1);
|
||||||
|
if (denoised2 == nullptr) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
float* vec_denoised2 = (float*)denoised2->data;
|
||||||
|
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||||
|
float eps2 = vec_denoised2[j] - vec_x0[j];
|
||||||
|
vec_x[j] = vec_x0[j] + h * (b1 * eps1 + b2 * eps2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||||
|
ggml_ext_im_set_randn_f32(noise, rng);
|
||||||
|
float* vec_x = (float*)x->data;
|
||||||
|
float* vec_noise = (float*)noise->data;
|
||||||
|
|
||||||
|
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||||
|
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
|
||||||
default:
|
default:
|
||||||
LOG_ERROR("Attempting to sample with nonexisting sample method %i", method);
|
LOG_ERROR("Attempting to sample with nonexisting sample method %i", method);
|
||||||
|
|||||||
@ -38,7 +38,7 @@ struct DiffusionModel {
|
|||||||
virtual size_t get_params_buffer_size() = 0;
|
virtual size_t get_params_buffer_size() = 0;
|
||||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
|
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
|
||||||
virtual int64_t get_adm_in_channels() = 0;
|
virtual int64_t get_adm_in_channels() = 0;
|
||||||
virtual void set_flash_attn_enabled(bool enabled) = 0;
|
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||||
virtual void set_circular_axes(bool circular_x, bool circular_y) = 0;
|
virtual void set_circular_axes(bool circular_x, bool circular_y) = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -84,7 +84,7 @@ struct UNetModel : public DiffusionModel {
|
|||||||
return unet.unet.adm_in_channels;
|
return unet.unet.adm_in_channels;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
unet.set_flash_attention_enabled(enabled);
|
unet.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -149,7 +149,7 @@ struct MMDiTModel : public DiffusionModel {
|
|||||||
return 768 + 1280;
|
return 768 + 1280;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
mmdit.set_flash_attention_enabled(enabled);
|
mmdit.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -215,7 +215,7 @@ struct FluxModel : public DiffusionModel {
|
|||||||
return 768;
|
return 768;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
flux.set_flash_attention_enabled(enabled);
|
flux.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -286,7 +286,7 @@ struct WanModel : public DiffusionModel {
|
|||||||
return 768;
|
return 768;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
wan.set_flash_attention_enabled(enabled);
|
wan.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -357,7 +357,7 @@ struct QwenImageModel : public DiffusionModel {
|
|||||||
return 768;
|
return 768;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
qwen_image.set_flash_attention_enabled(enabled);
|
qwen_image.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -424,7 +424,7 @@ struct ZImageModel : public DiffusionModel {
|
|||||||
return 768;
|
return 768;
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_flash_attn_enabled(bool enabled) {
|
void set_flash_attention_enabled(bool enabled) {
|
||||||
z_image.set_flash_attention_enabled(enabled);
|
z_image.set_flash_attention_enabled(enabled);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -7,6 +7,9 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
|||||||
- Download Z-Image-Turbo
|
- Download Z-Image-Turbo
|
||||||
- safetensors: https://huggingface.co/Comfy-Org/z_image_turbo/tree/main/split_files/diffusion_models
|
- safetensors: https://huggingface.co/Comfy-Org/z_image_turbo/tree/main/split_files/diffusion_models
|
||||||
- gguf: https://huggingface.co/leejet/Z-Image-Turbo-GGUF/tree/main
|
- gguf: https://huggingface.co/leejet/Z-Image-Turbo-GGUF/tree/main
|
||||||
|
- Download Z-Image
|
||||||
|
- safetensors: https://huggingface.co/Comfy-Org/z_image/tree/main/split_files/diffusion_models
|
||||||
|
- gguf: https://huggingface.co/unsloth/Z-Image-GGUF/tree/main
|
||||||
- Download vae
|
- Download vae
|
||||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main
|
- safetensors: https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main
|
||||||
- Download Qwen3 4b
|
- Download Qwen3 4b
|
||||||
@ -15,12 +18,22 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
|||||||
|
|
||||||
## Examples
|
## Examples
|
||||||
|
|
||||||
|
### Z-Image-Turbo
|
||||||
|
|
||||||
```
|
```
|
||||||
.\bin\Release\sd-cli.exe --diffusion-model z_image_turbo-Q3_K.gguf --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\Qwen3-4B-Instruct-2507-Q4_K_M.gguf -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 1.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
.\bin\Release\sd-cli.exe --diffusion-model z_image_turbo-Q3_K.gguf --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\Qwen3-4B-Instruct-2507-Q4_K_M.gguf -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 1.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||||
```
|
```
|
||||||
|
|
||||||
<img width="256" alt="z-image example" src="../assets/z_image/q3_K.png" />
|
<img width="256" alt="z-image example" src="../assets/z_image/q3_K.png" />
|
||||||
|
|
||||||
|
### Z-Image-Base
|
||||||
|
|
||||||
|
```
|
||||||
|
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\z_image_bf16.safetensors --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 5.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||||
|
```
|
||||||
|
|
||||||
|
<img width="256" alt="z-image example" src="../assets/z_image/base_bf16.png" />
|
||||||
|
|
||||||
## Comparison of Different Quantization Types
|
## Comparison of Different Quantization Types
|
||||||
|
|
||||||
| bf16 | q8_0 | q6_K | q5_0 | q4_K | q4_0 | q3_K | q2_K|
|
| bf16 | q8_0 | q6_K | q5_0 | q4_K | q4_0 | q3_K | q2_K|
|
||||||
|
|||||||
@ -51,7 +51,7 @@ public:
|
|||||||
x_cat = ggml_concat(ctx->ggml_ctx, x_cat, x4, 2);
|
x_cat = ggml_concat(ctx->ggml_ctx, x_cat, x4, 2);
|
||||||
auto x5 = conv5->forward(ctx, x_cat);
|
auto x5 = conv5->forward(ctx, x_cat);
|
||||||
|
|
||||||
x5 = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
x5 = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
||||||
return x5;
|
return x5;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -76,7 +76,7 @@ public:
|
|||||||
out = rdb2->forward(ctx, out);
|
out = rdb2->forward(ctx, out);
|
||||||
out = rdb3->forward(ctx, out);
|
out = rdb3->forward(ctx, out);
|
||||||
|
|
||||||
out = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, out, 0.2f), x);
|
out = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, out, 0.2f), x);
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|||||||
@ -52,7 +52,8 @@ Context Options:
|
|||||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||||
--clip-on-cpu keep clip in cpu (for low vram)
|
--clip-on-cpu keep clip in cpu (for low vram)
|
||||||
--vae-on-cpu keep vae in cpu (for low vram)
|
--vae-on-cpu keep vae in cpu (for low vram)
|
||||||
--diffusion-fa use flash attention in the diffusion model
|
--fa use flash attention
|
||||||
|
--diffusion-fa use flash attention in the diffusion model only
|
||||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||||
--circular enable circular padding for convolutions
|
--circular enable circular padding for convolutions
|
||||||
@ -107,14 +108,14 @@ Generation Options:
|
|||||||
medium
|
medium
|
||||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||||
--pm-style-strength <float>
|
--pm-style-strength <float>
|
||||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||||
@ -123,12 +124,12 @@ Generation Options:
|
|||||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||||
kl_optimal, lcm], default: discrete
|
kl_optimal, lcm, bong_tangent], default: discrete
|
||||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||||
|
|||||||
@ -603,7 +603,7 @@ int main(int argc, const char* argv[]) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (gen_params.mask_image_path.size() > 0) {
|
if (gen_params.mask_image_path.size() > 0) {
|
||||||
if (load_sd_image_from_file(&mask_image,
|
if (!load_sd_image_from_file(&mask_image,
|
||||||
gen_params.mask_image_path.c_str(),
|
gen_params.mask_image_path.c_str(),
|
||||||
gen_params.get_resolved_width(),
|
gen_params.get_resolved_width(),
|
||||||
gen_params.get_resolved_height(),
|
gen_params.get_resolved_height(),
|
||||||
@ -625,7 +625,7 @@ int main(int argc, const char* argv[]) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (gen_params.control_image_path.size() > 0) {
|
if (gen_params.control_image_path.size() > 0) {
|
||||||
if (load_sd_image_from_file(&control_image,
|
if (!load_sd_image_from_file(&control_image,
|
||||||
gen_params.control_image_path.c_str(),
|
gen_params.control_image_path.c_str(),
|
||||||
gen_params.get_resolved_width(),
|
gen_params.get_resolved_width(),
|
||||||
gen_params.get_resolved_height())) {
|
gen_params.get_resolved_height())) {
|
||||||
|
|||||||
@ -445,7 +445,7 @@ struct SDContextParams {
|
|||||||
std::string photo_maker_path;
|
std::string photo_maker_path;
|
||||||
sd_type_t wtype = SD_TYPE_COUNT;
|
sd_type_t wtype = SD_TYPE_COUNT;
|
||||||
std::string tensor_type_rules;
|
std::string tensor_type_rules;
|
||||||
std::string lora_model_dir;
|
std::string lora_model_dir = ".";
|
||||||
|
|
||||||
std::map<std::string, std::string> embedding_map;
|
std::map<std::string, std::string> embedding_map;
|
||||||
std::vector<sd_embedding_t> embedding_vec;
|
std::vector<sd_embedding_t> embedding_vec;
|
||||||
@ -457,6 +457,7 @@ struct SDContextParams {
|
|||||||
bool control_net_cpu = false;
|
bool control_net_cpu = false;
|
||||||
bool clip_on_cpu = false;
|
bool clip_on_cpu = false;
|
||||||
bool vae_on_cpu = false;
|
bool vae_on_cpu = false;
|
||||||
|
bool flash_attn = false;
|
||||||
bool diffusion_flash_attn = false;
|
bool diffusion_flash_attn = false;
|
||||||
bool diffusion_conv_direct = false;
|
bool diffusion_conv_direct = false;
|
||||||
bool vae_conv_direct = false;
|
bool vae_conv_direct = false;
|
||||||
@ -615,9 +616,13 @@ struct SDContextParams {
|
|||||||
"--vae-on-cpu",
|
"--vae-on-cpu",
|
||||||
"keep vae in cpu (for low vram)",
|
"keep vae in cpu (for low vram)",
|
||||||
true, &vae_on_cpu},
|
true, &vae_on_cpu},
|
||||||
|
{"",
|
||||||
|
"--fa",
|
||||||
|
"use flash attention",
|
||||||
|
true, &flash_attn},
|
||||||
{"",
|
{"",
|
||||||
"--diffusion-fa",
|
"--diffusion-fa",
|
||||||
"use flash attention in the diffusion model",
|
"use flash attention in the diffusion model only",
|
||||||
true, &diffusion_flash_attn},
|
true, &diffusion_flash_attn},
|
||||||
{"",
|
{"",
|
||||||
"--diffusion-conv-direct",
|
"--diffusion-conv-direct",
|
||||||
@ -904,6 +909,7 @@ struct SDContextParams {
|
|||||||
<< " control_net_cpu: " << (control_net_cpu ? "true" : "false") << ",\n"
|
<< " control_net_cpu: " << (control_net_cpu ? "true" : "false") << ",\n"
|
||||||
<< " clip_on_cpu: " << (clip_on_cpu ? "true" : "false") << ",\n"
|
<< " clip_on_cpu: " << (clip_on_cpu ? "true" : "false") << ",\n"
|
||||||
<< " vae_on_cpu: " << (vae_on_cpu ? "true" : "false") << ",\n"
|
<< " vae_on_cpu: " << (vae_on_cpu ? "true" : "false") << ",\n"
|
||||||
|
<< " flash_attn: " << (flash_attn ? "true" : "false") << ",\n"
|
||||||
<< " diffusion_flash_attn: " << (diffusion_flash_attn ? "true" : "false") << ",\n"
|
<< " diffusion_flash_attn: " << (diffusion_flash_attn ? "true" : "false") << ",\n"
|
||||||
<< " diffusion_conv_direct: " << (diffusion_conv_direct ? "true" : "false") << ",\n"
|
<< " diffusion_conv_direct: " << (diffusion_conv_direct ? "true" : "false") << ",\n"
|
||||||
<< " vae_conv_direct: " << (vae_conv_direct ? "true" : "false") << ",\n"
|
<< " vae_conv_direct: " << (vae_conv_direct ? "true" : "false") << ",\n"
|
||||||
@ -968,6 +974,7 @@ struct SDContextParams {
|
|||||||
clip_on_cpu,
|
clip_on_cpu,
|
||||||
control_net_cpu,
|
control_net_cpu,
|
||||||
vae_on_cpu,
|
vae_on_cpu,
|
||||||
|
flash_attn,
|
||||||
diffusion_flash_attn,
|
diffusion_flash_attn,
|
||||||
taesd_preview,
|
taesd_preview,
|
||||||
diffusion_conv_direct,
|
diffusion_conv_direct,
|
||||||
@ -1478,17 +1485,17 @@ struct SDGenerationParams {
|
|||||||
on_seed_arg},
|
on_seed_arg},
|
||||||
{"",
|
{"",
|
||||||
"--sampling-method",
|
"--sampling-method",
|
||||||
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd] "
|
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s] "
|
||||||
"(default: euler for Flux/SD3/Wan, euler_a otherwise)",
|
"(default: euler for Flux/SD3/Wan, euler_a otherwise)",
|
||||||
on_sample_method_arg},
|
on_sample_method_arg},
|
||||||
{"",
|
{"",
|
||||||
"--high-noise-sampling-method",
|
"--high-noise-sampling-method",
|
||||||
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd]"
|
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s]"
|
||||||
" default: euler for Flux/SD3/Wan, euler_a otherwise",
|
" default: euler for Flux/SD3/Wan, euler_a otherwise",
|
||||||
on_high_noise_sample_method_arg},
|
on_high_noise_sample_method_arg},
|
||||||
{"",
|
{"",
|
||||||
"--scheduler",
|
"--scheduler",
|
||||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm], default: discrete",
|
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm, bong_tangent], default: discrete",
|
||||||
on_scheduler_arg},
|
on_scheduler_arg},
|
||||||
{"",
|
{"",
|
||||||
"--sigmas",
|
"--sigmas",
|
||||||
|
|||||||
@ -44,7 +44,8 @@ Context Options:
|
|||||||
--clip-on-cpu keep clip in cpu (for low vram)
|
--clip-on-cpu keep clip in cpu (for low vram)
|
||||||
--vae-on-cpu keep vae in cpu (for low vram)
|
--vae-on-cpu keep vae in cpu (for low vram)
|
||||||
--mmap whether to memory-map model
|
--mmap whether to memory-map model
|
||||||
--diffusion-fa use flash attention in the diffusion model
|
--fa use flash attention
|
||||||
|
--diffusion-fa use flash attention in the diffusion model only
|
||||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||||
--circular enable circular padding for convolutions
|
--circular enable circular padding for convolutions
|
||||||
@ -99,14 +100,14 @@ Default Generation Options:
|
|||||||
medium
|
medium
|
||||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||||
--pm-style-strength <float>
|
--pm-style-strength <float>
|
||||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||||
@ -115,12 +116,12 @@ Default Generation Options:
|
|||||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||||
kl_optimal, lcm], default: discrete
|
kl_optimal, lcm, bong_tangent], default: discrete
|
||||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||||
|
|||||||
@ -785,7 +785,11 @@ int main(int argc, const char** argv) {
|
|||||||
{"lcm", LCM_SAMPLE_METHOD},
|
{"lcm", LCM_SAMPLE_METHOD},
|
||||||
{"ddim", DDIM_TRAILING_SAMPLE_METHOD},
|
{"ddim", DDIM_TRAILING_SAMPLE_METHOD},
|
||||||
{"dpm++ 2m", DPMPP2M_SAMPLE_METHOD},
|
{"dpm++ 2m", DPMPP2M_SAMPLE_METHOD},
|
||||||
{"k_dpmpp_2m", DPMPP2M_SAMPLE_METHOD}};
|
{"k_dpmpp_2m", DPMPP2M_SAMPLE_METHOD},
|
||||||
|
{"res multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||||
|
{"k_res_multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||||
|
{"res 2s", RES_2S_SAMPLE_METHOD},
|
||||||
|
{"k_res_2s", RES_2S_SAMPLE_METHOD}};
|
||||||
auto it = hardcoded.find(name);
|
auto it = hardcoded.find(name);
|
||||||
if (it != hardcoded.end()) return it->second;
|
if (it != hardcoded.end()) return it->second;
|
||||||
return SAMPLE_METHOD_COUNT;
|
return SAMPLE_METHOD_COUNT;
|
||||||
|
|||||||
71
flux.hpp
71
flux.hpp
@ -103,7 +103,7 @@ namespace Flux {
|
|||||||
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
||||||
|
|
||||||
auto qkv = qkv_proj->forward(ctx, x);
|
auto qkv = qkv_proj->forward(ctx, x);
|
||||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv);
|
auto qkv_vec = ggml_ext_chunk(ctx->ggml_ctx, qkv, 3, 0, true);
|
||||||
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
|
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
|
||||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]);
|
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]);
|
||||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]);
|
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]);
|
||||||
@ -153,7 +153,7 @@ namespace Flux {
|
|||||||
if (use_mlp_silu_act) {
|
if (use_mlp_silu_act) {
|
||||||
x = ggml_ext_silu_act(ctx->ggml_ctx, x);
|
x = ggml_ext_silu_act(ctx->ggml_ctx, x);
|
||||||
} else {
|
} else {
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
}
|
}
|
||||||
x = mlp_2->forward(ctx, x);
|
x = mlp_2->forward(ctx, x);
|
||||||
return x;
|
return x;
|
||||||
@ -377,25 +377,22 @@ namespace Flux {
|
|||||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||||
|
|
||||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
|
||||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
txt->ne[1],
|
txt->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
0); // [n_txt_token, N, hidden_size]
|
0); // [N, n_txt_token, hidden_size]
|
||||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
|
||||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
img->ne[1],
|
img->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
txt->ne[1] * attn->nb[1]); // [N, n_img_token, hidden_size]
|
||||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
|
||||||
|
|
||||||
// calculate the img bloks
|
// calculate the img bloks
|
||||||
img = ggml_add(ctx->ggml_ctx, img, ggml_mul(ctx->ggml_ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate));
|
img = ggml_add(ctx->ggml_ctx, img, ggml_mul(ctx->ggml_ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate));
|
||||||
@ -492,43 +489,29 @@ namespace Flux {
|
|||||||
}
|
}
|
||||||
|
|
||||||
auto x_mod = Flux::modulate(ctx->ggml_ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale);
|
auto x_mod = Flux::modulate(ctx->ggml_ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale);
|
||||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim]
|
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim*mlp_mult_factor]
|
||||||
qkv_mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv_mlp, 2, 0, 1, 3)); // [hidden_size * 3 + mlp_hidden_dim, N, n_token]
|
|
||||||
|
|
||||||
auto qkv = ggml_view_3d(ctx->ggml_ctx,
|
auto q = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], 0);
|
||||||
qkv_mlp,
|
auto k = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * qkv_mlp->nb[0]);
|
||||||
qkv_mlp->ne[0],
|
auto v = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 2 * qkv_mlp->nb[0]);
|
||||||
qkv_mlp->ne[1],
|
|
||||||
hidden_size * 3,
|
|
||||||
qkv_mlp->nb[1],
|
|
||||||
qkv_mlp->nb[2],
|
|
||||||
0); // [hidden_size * 3 , N, n_token]
|
|
||||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv, 1, 2, 0, 3)); // [N, n_token, hidden_size * 3]
|
|
||||||
auto mlp = ggml_view_3d(ctx->ggml_ctx,
|
|
||||||
qkv_mlp,
|
|
||||||
qkv_mlp->ne[0],
|
|
||||||
qkv_mlp->ne[1],
|
|
||||||
mlp_hidden_dim * mlp_mult_factor,
|
|
||||||
qkv_mlp->nb[1],
|
|
||||||
qkv_mlp->nb[2],
|
|
||||||
qkv_mlp->nb[2] * hidden_size * 3); // [mlp_hidden_dim*mlp_mult_factor , N, n_token]
|
|
||||||
mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, mlp, 1, 2, 0, 3)); // [N, n_token, mlp_hidden_dim*mlp_mult_factor]
|
|
||||||
|
|
||||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv); // q,k,v: [N, n_token, hidden_size]
|
|
||||||
int64_t head_dim = hidden_size / num_heads;
|
int64_t head_dim = hidden_size / num_heads;
|
||||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
|
|
||||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
|
q = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, q), head_dim, num_heads, q->ne[1], q->ne[2]); // [N, n_token, n_head, d_head]
|
||||||
auto v = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
|
k = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, k), head_dim, num_heads, k->ne[1], k->ne[2]); // [N, n_token, n_head, d_head]
|
||||||
|
v = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, v), head_dim, num_heads, v->ne[1], v->ne[2]); // [N, n_token, n_head, d_head]
|
||||||
|
|
||||||
q = norm->query_norm(ctx, q);
|
q = norm->query_norm(ctx, q);
|
||||||
k = norm->key_norm(ctx, k);
|
k = norm->key_norm(ctx, k);
|
||||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
||||||
|
|
||||||
|
auto mlp = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, mlp_hidden_dim * mlp_mult_factor, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 3 * qkv_mlp->nb[0]);
|
||||||
if (use_yak_mlp) {
|
if (use_yak_mlp) {
|
||||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp, false);
|
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp, false);
|
||||||
} else if (use_mlp_silu_act) {
|
} else if (use_mlp_silu_act) {
|
||||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp);
|
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp);
|
||||||
} else {
|
} else {
|
||||||
mlp = ggml_gelu_inplace(ctx->ggml_ctx, mlp);
|
mlp = ggml_ext_gelu(ctx->ggml_ctx, mlp, true);
|
||||||
}
|
}
|
||||||
auto attn_mlp = ggml_concat(ctx->ggml_ctx, attn, mlp, 0); // [N, n_token, hidden_size + mlp_hidden_dim]
|
auto attn_mlp = ggml_concat(ctx->ggml_ctx, attn, mlp, 0); // [N, n_token, hidden_size + mlp_hidden_dim]
|
||||||
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
|
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
|
||||||
@ -581,12 +564,9 @@ namespace Flux {
|
|||||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||||
|
|
||||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
shift = m_vec[0]; // [N, hidden_size]
|
||||||
|
scale = m_vec[1]; // [N, hidden_size]
|
||||||
int64_t offset = m->nb[1] * m->ne[1];
|
|
||||||
shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
|
||||||
scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
x = Flux::modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
x = Flux::modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||||
@ -1034,16 +1014,14 @@ namespace Flux {
|
|||||||
txt_img = block->forward(ctx, txt_img, vec, pe, txt_img_mask, ss_mods);
|
txt_img = block->forward(ctx, txt_img, vec, pe, txt_img_mask, ss_mods);
|
||||||
}
|
}
|
||||||
|
|
||||||
txt_img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_img, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
|
||||||
img = ggml_view_3d(ctx->ggml_ctx,
|
img = ggml_view_3d(ctx->ggml_ctx,
|
||||||
txt_img,
|
txt_img,
|
||||||
txt_img->ne[0],
|
txt_img->ne[0],
|
||||||
txt_img->ne[1],
|
|
||||||
img->ne[1],
|
img->ne[1],
|
||||||
|
txt_img->ne[2],
|
||||||
txt_img->nb[1],
|
txt_img->nb[1],
|
||||||
txt_img->nb[2],
|
txt_img->nb[2],
|
||||||
txt_img->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
txt->ne[1] * txt_img->nb[1]); // [N, n_img_token, hidden_size]
|
||||||
img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
|
||||||
|
|
||||||
if (final_layer) {
|
if (final_layer) {
|
||||||
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
|
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
|
||||||
@ -1196,9 +1174,8 @@ namespace Flux {
|
|||||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
||||||
|
|
||||||
if (out->ne[1] > img_tokens) {
|
if (out->ne[1] > img_tokens) {
|
||||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], img_tokens, out->ne[2], out->nb[1], out->nb[2], 0);
|
||||||
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
|
out = ggml_cont(ctx->ggml_ctx, out);
|
||||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [N, h*w, C * patch_size * patch_size]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
||||||
|
|||||||
2
ggml
2
ggml
@ -1 +1 @@
|
|||||||
Subproject commit 8891ab6fc742ac1198736d3da3b73c730e42af84
|
Subproject commit a8db410a252c8c8f2d120c6f2e7133ebe032f35d
|
||||||
@ -687,7 +687,8 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
|||||||
struct ggml_tensor* x,
|
struct ggml_tensor* x,
|
||||||
int dim,
|
int dim,
|
||||||
int64_t start,
|
int64_t start,
|
||||||
int64_t end) {
|
int64_t end,
|
||||||
|
bool cont = true) {
|
||||||
GGML_ASSERT(dim >= 0 && dim < 4);
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||||
if (x->ne[dim] == 1) {
|
if (x->ne[dim] == 1) {
|
||||||
return x;
|
return x;
|
||||||
@ -702,27 +703,15 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
|||||||
GGML_ASSERT(start >= 0 && start < x->ne[dim]);
|
GGML_ASSERT(start >= 0 && start < x->ne[dim]);
|
||||||
GGML_ASSERT(end > start && end <= x->ne[dim]);
|
GGML_ASSERT(end > start && end <= x->ne[dim]);
|
||||||
|
|
||||||
int perm[4] = {0, 1, 2, 3};
|
int64_t slice_size = end - start;
|
||||||
for (int i = dim; i < 3; ++i)
|
int64_t slice_ne[4] = {x->ne[0], x->ne[1], x->ne[2], x->ne[3]};
|
||||||
perm[i] = perm[i + 1];
|
slice_ne[dim] = slice_size;
|
||||||
perm[3] = dim;
|
|
||||||
|
|
||||||
int inv_perm[4];
|
x = ggml_view_4d(ctx, x,
|
||||||
for (int i = 0; i < 4; ++i)
|
slice_ne[0], slice_ne[1], slice_ne[2], slice_ne[3],
|
||||||
inv_perm[perm[i]] = i;
|
x->nb[1], x->nb[2], x->nb[3], start * x->nb[dim]);
|
||||||
|
|
||||||
if (dim != 3) {
|
if (cont) {
|
||||||
x = ggml_ext_torch_permute(ctx, x, perm[0], perm[1], perm[2], perm[3]);
|
|
||||||
x = ggml_cont(ctx, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
x = ggml_view_4d(
|
|
||||||
ctx, x,
|
|
||||||
x->ne[0], x->ne[1], x->ne[2], end - start,
|
|
||||||
x->nb[1], x->nb[2], x->nb[3], x->nb[3] * start);
|
|
||||||
|
|
||||||
if (dim != 3) {
|
|
||||||
x = ggml_ext_torch_permute(ctx, x, inv_perm[0], inv_perm[1], inv_perm[2], inv_perm[3]);
|
|
||||||
x = ggml_cont(ctx, x);
|
x = ggml_cont(ctx, x);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -960,6 +949,49 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_group_norm_32(struct ggml_context
|
|||||||
return ggml_group_norm(ctx, a, 32, eps);
|
return ggml_group_norm(ctx, a, 32, eps);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_scale(struct ggml_context* ctx,
|
||||||
|
struct ggml_tensor* x,
|
||||||
|
float factor,
|
||||||
|
bool inplace = false) {
|
||||||
|
if (!ggml_is_contiguous(x)) {
|
||||||
|
x = ggml_cont(ctx, x);
|
||||||
|
}
|
||||||
|
if (inplace) {
|
||||||
|
x = ggml_scale_inplace(ctx, x, factor);
|
||||||
|
} else {
|
||||||
|
x = ggml_scale(ctx, x, factor);
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu(struct ggml_context* ctx,
|
||||||
|
struct ggml_tensor* x,
|
||||||
|
bool inplace = false) {
|
||||||
|
if (!ggml_is_contiguous(x)) {
|
||||||
|
x = ggml_cont(ctx, x);
|
||||||
|
}
|
||||||
|
if (inplace) {
|
||||||
|
x = ggml_gelu_inplace(ctx, x);
|
||||||
|
} else {
|
||||||
|
x = ggml_gelu(ctx, x);
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu_quick(struct ggml_context* ctx,
|
||||||
|
struct ggml_tensor* x,
|
||||||
|
bool inplace = false) {
|
||||||
|
if (!ggml_is_contiguous(x)) {
|
||||||
|
x = ggml_cont(ctx, x);
|
||||||
|
}
|
||||||
|
if (inplace) {
|
||||||
|
x = ggml_gelu_quick_inplace(ctx, x);
|
||||||
|
} else {
|
||||||
|
x = ggml_gelu_quick(ctx, x);
|
||||||
|
}
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||||
struct ggml_tensor* x,
|
struct ggml_tensor* x,
|
||||||
struct ggml_tensor* w,
|
struct ggml_tensor* w,
|
||||||
@ -967,7 +999,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
|||||||
bool force_prec_f32 = false,
|
bool force_prec_f32 = false,
|
||||||
float scale = 1.f) {
|
float scale = 1.f) {
|
||||||
if (scale != 1.f) {
|
if (scale != 1.f) {
|
||||||
x = ggml_scale(ctx, x, scale);
|
x = ggml_ext_scale(ctx, x, scale);
|
||||||
}
|
}
|
||||||
if (x->ne[2] * x->ne[3] > 1024) {
|
if (x->ne[2] * x->ne[3] > 1024) {
|
||||||
// workaround: avoid ggml cuda error
|
// workaround: avoid ggml cuda error
|
||||||
@ -986,7 +1018,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (scale != 1.f) {
|
if (scale != 1.f) {
|
||||||
x = ggml_scale(ctx, x, 1.f / scale);
|
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||||
}
|
}
|
||||||
if (b != nullptr) {
|
if (b != nullptr) {
|
||||||
x = ggml_add_inplace(ctx, x, b);
|
x = ggml_add_inplace(ctx, x, b);
|
||||||
@ -1055,7 +1087,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx,
|
|||||||
bool circular_y = false,
|
bool circular_y = false,
|
||||||
float scale = 1.f) {
|
float scale = 1.f) {
|
||||||
if (scale != 1.f) {
|
if (scale != 1.f) {
|
||||||
x = ggml_scale(ctx, x, scale);
|
x = ggml_ext_scale(ctx, x, scale);
|
||||||
}
|
}
|
||||||
if (w->ne[2] != x->ne[2] && ggml_n_dims(w) == 2) {
|
if (w->ne[2] != x->ne[2] && ggml_n_dims(w) == 2) {
|
||||||
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], w->ne[1]);
|
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], w->ne[1]);
|
||||||
@ -1073,7 +1105,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx,
|
|||||||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||||
}
|
}
|
||||||
if (scale != 1.f) {
|
if (scale != 1.f) {
|
||||||
x = ggml_scale(ctx, x, 1.f / scale);
|
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||||
}
|
}
|
||||||
if (b != nullptr) {
|
if (b != nullptr) {
|
||||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||||||
@ -1171,7 +1203,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_full(struct ggml_context* ctx,
|
|||||||
int64_t ne2,
|
int64_t ne2,
|
||||||
int64_t ne3) {
|
int64_t ne3) {
|
||||||
auto one = ggml_get_tensor(ctx, "ggml_runner_build_in_tensor:one");
|
auto one = ggml_get_tensor(ctx, "ggml_runner_build_in_tensor:one");
|
||||||
auto t = ggml_scale(ctx, one, value); // [1,]
|
auto t = ggml_ext_scale(ctx, one, value); // [1,]
|
||||||
t = ggml_repeat_4d(ctx, t, ne0, ne1, ne2, ne3); // [ne0, ne1, ne2, ne3]
|
t = ggml_repeat_4d(ctx, t, ne0, ne1, ne2, ne3); // [ne0, ne1, ne2, ne3]
|
||||||
return t;
|
return t;
|
||||||
}
|
}
|
||||||
@ -1225,7 +1257,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
|||||||
struct ggml_tensor* v,
|
struct ggml_tensor* v,
|
||||||
int64_t n_head,
|
int64_t n_head,
|
||||||
struct ggml_tensor* mask = nullptr,
|
struct ggml_tensor* mask = nullptr,
|
||||||
bool diag_mask_inf = false,
|
|
||||||
bool skip_reshape = false,
|
bool skip_reshape = false,
|
||||||
bool flash_attn = false,
|
bool flash_attn = false,
|
||||||
float kv_scale = 1.0f) { // avoid overflow
|
float kv_scale = 1.0f) { // avoid overflow
|
||||||
@ -1271,7 +1302,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
|||||||
k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0);
|
k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0);
|
||||||
}
|
}
|
||||||
if (kv_scale != 1.0f) {
|
if (kv_scale != 1.0f) {
|
||||||
k_in = ggml_scale(ctx, k_in, kv_scale);
|
k_in = ggml_ext_scale(ctx, k_in, kv_scale);
|
||||||
}
|
}
|
||||||
k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16);
|
k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16);
|
||||||
|
|
||||||
@ -1281,7 +1312,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
|||||||
v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0);
|
v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0);
|
||||||
}
|
}
|
||||||
if (kv_scale != 1.0f) {
|
if (kv_scale != 1.0f) {
|
||||||
v_in = ggml_scale(ctx, v_in, kv_scale);
|
v_in = ggml_ext_scale(ctx, v_in, kv_scale);
|
||||||
}
|
}
|
||||||
v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16);
|
v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16);
|
||||||
|
|
||||||
@ -1313,7 +1344,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
|||||||
auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale / kv_scale, 0, 0);
|
auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale / kv_scale, 0, 0);
|
||||||
ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32);
|
ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32);
|
||||||
if (kv_scale != 1.0f) {
|
if (kv_scale != 1.0f) {
|
||||||
out = ggml_scale(ctx, out, 1.0f / kv_scale);
|
out = ggml_ext_scale(ctx, out, 1.0f / kv_scale);
|
||||||
}
|
}
|
||||||
return out;
|
return out;
|
||||||
};
|
};
|
||||||
@ -1353,9 +1384,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
|||||||
if (mask) {
|
if (mask) {
|
||||||
kq = ggml_add_inplace(ctx, kq, mask);
|
kq = ggml_add_inplace(ctx, kq, mask);
|
||||||
}
|
}
|
||||||
if (diag_mask_inf) {
|
|
||||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
|
||||||
}
|
|
||||||
kq = ggml_soft_max_inplace(ctx, kq);
|
kq = ggml_soft_max_inplace(ctx, kq);
|
||||||
|
|
||||||
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||||||
@ -1523,7 +1551,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_timestep_embedding(
|
|||||||
int dim,
|
int dim,
|
||||||
int max_period = 10000,
|
int max_period = 10000,
|
||||||
float time_factor = 1.0f) {
|
float time_factor = 1.0f) {
|
||||||
timesteps = ggml_scale(ctx, timesteps, time_factor);
|
timesteps = ggml_ext_scale(ctx, timesteps, time_factor);
|
||||||
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2572,7 +2600,7 @@ public:
|
|||||||
// x: [N, n_token, embed_dim]
|
// x: [N, n_token, embed_dim]
|
||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||||
struct ggml_tensor* x,
|
struct ggml_tensor* x,
|
||||||
bool mask = false) {
|
struct ggml_tensor* mask = nullptr) {
|
||||||
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);
|
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);
|
||||||
|
|
||||||
ggml_tensor* q;
|
ggml_tensor* q;
|
||||||
@ -2595,7 +2623,7 @@ public:
|
|||||||
v = v_proj->forward(ctx, x);
|
v = v_proj->forward(ctx, x);
|
||||||
}
|
}
|
||||||
|
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, mask); // [N, n_token, embed_dim]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, mask, false); // [N, n_token, embed_dim]
|
||||||
|
|
||||||
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
|
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
|
||||||
return x;
|
return x;
|
||||||
|
|||||||
4
llm.hpp
4
llm.hpp
@ -638,7 +638,7 @@ namespace LLM {
|
|||||||
x = ln_q->forward(ctx, x);
|
x = ln_q->forward(ctx, x);
|
||||||
x = ggml_reshape_2d(ctx->ggml_ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
|
x = ggml_reshape_2d(ctx->ggml_ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
|
||||||
x = mlp_0->forward(ctx, x);
|
x = mlp_0->forward(ctx, x);
|
||||||
x = ggml_gelu(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x);
|
||||||
x = mlp_2->forward(ctx, x);
|
x = mlp_2->forward(ctx, x);
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
@ -881,7 +881,7 @@ namespace LLM {
|
|||||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 2, 1, 3)); // [N, num_kv_heads, n_token, head_dim]
|
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 2, 1, 3)); // [N, num_kv_heads, n_token, head_dim]
|
||||||
k = ggml_reshape_3d(ctx->ggml_ctx, k, k->ne[0], k->ne[1], k->ne[2] * k->ne[3]); // [N*num_kv_heads, n_token, head_dim]
|
k = ggml_reshape_3d(ctx->ggml_ctx, k, k->ne[0], k->ne[1], k->ne[2] * k->ne[3]); // [N*num_kv_heads, n_token, head_dim]
|
||||||
|
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, attention_mask, false, true, false); // [N, n_token, hidden_size]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, attention_mask, true, false); // [N, n_token, hidden_size]
|
||||||
|
|
||||||
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
||||||
return x;
|
return x;
|
||||||
|
|||||||
10
lora.hpp
10
lora.hpp
@ -195,7 +195,7 @@ struct LoraModel : public GGMLRunner {
|
|||||||
scale_value *= multiplier;
|
scale_value *= multiplier;
|
||||||
|
|
||||||
auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
|
auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
|
||||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||||
|
|
||||||
if (updown == nullptr) {
|
if (updown == nullptr) {
|
||||||
updown = curr_updown;
|
updown = curr_updown;
|
||||||
@ -235,7 +235,7 @@ struct LoraModel : public GGMLRunner {
|
|||||||
float scale_value = 1.0f;
|
float scale_value = 1.0f;
|
||||||
scale_value *= multiplier;
|
scale_value *= multiplier;
|
||||||
|
|
||||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||||
|
|
||||||
if (updown == nullptr) {
|
if (updown == nullptr) {
|
||||||
updown = curr_updown;
|
updown = curr_updown;
|
||||||
@ -340,7 +340,7 @@ struct LoraModel : public GGMLRunner {
|
|||||||
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
|
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
|
||||||
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
|
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
|
||||||
auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
|
auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
|
||||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||||
if (updown == nullptr) {
|
if (updown == nullptr) {
|
||||||
updown = curr_updown;
|
updown = curr_updown;
|
||||||
} else {
|
} else {
|
||||||
@ -456,7 +456,7 @@ struct LoraModel : public GGMLRunner {
|
|||||||
scale_value *= multiplier;
|
scale_value *= multiplier;
|
||||||
|
|
||||||
auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
|
auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
|
||||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||||
|
|
||||||
if (updown == nullptr) {
|
if (updown == nullptr) {
|
||||||
updown = curr_updown;
|
updown = curr_updown;
|
||||||
@ -634,7 +634,7 @@ struct LoraModel : public GGMLRunner {
|
|||||||
forward_params.conv2d.scale);
|
forward_params.conv2d.scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
auto curr_out_diff = ggml_scale_inplace(ctx, lx, scale_value);
|
auto curr_out_diff = ggml_ext_scale(ctx, lx, scale_value, true);
|
||||||
|
|
||||||
if (out_diff == nullptr) {
|
if (out_diff == nullptr) {
|
||||||
out_diff = curr_out_diff;
|
out_diff = curr_out_diff;
|
||||||
|
|||||||
79
mmdit.hpp
79
mmdit.hpp
@ -33,7 +33,7 @@ public:
|
|||||||
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
|
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
|
||||||
|
|
||||||
x = fc1->forward(ctx, x);
|
x = fc1->forward(ctx, x);
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
x = fc2->forward(ctx, x);
|
x = fc2->forward(ctx, x);
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
@ -211,7 +211,7 @@ public:
|
|||||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||||
struct ggml_tensor* x) {
|
struct ggml_tensor* x) {
|
||||||
auto qkv = pre_attention(ctx, x);
|
auto qkv = pre_attention(ctx, x);
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
@ -284,23 +284,19 @@ public:
|
|||||||
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
|
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
|
||||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||||
|
|
||||||
int64_t n_mods = 9;
|
int n_mods = 9;
|
||||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
|
||||||
|
|
||||||
int64_t offset = m->nb[1] * m->ne[1];
|
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||||
|
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
auto shift_msa2 = m_vec[6]; // [N, hidden_size]
|
||||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
auto scale_msa2 = m_vec[7]; // [N, hidden_size]
|
||||||
|
auto gate_msa2 = m_vec[8]; // [N, hidden_size]
|
||||||
auto shift_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 6); // [N, hidden_size]
|
|
||||||
auto scale_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 7); // [N, hidden_size]
|
|
||||||
auto gate_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 8); // [N, hidden_size]
|
|
||||||
|
|
||||||
auto x_norm = norm1->forward(ctx, x);
|
auto x_norm = norm1->forward(ctx, x);
|
||||||
|
|
||||||
@ -322,22 +318,20 @@ public:
|
|||||||
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
|
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
|
||||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||||
|
|
||||||
int64_t n_mods = 6;
|
int n_mods = 6;
|
||||||
if (pre_only) {
|
if (pre_only) {
|
||||||
n_mods = 2;
|
n_mods = 2;
|
||||||
}
|
}
|
||||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
|
||||||
|
|
||||||
int64_t offset = m->nb[1] * m->ne[1];
|
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
|
||||||
if (!pre_only) {
|
if (!pre_only) {
|
||||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||||
|
|
||||||
auto attn_in = modulate(ctx->ggml_ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
|
auto attn_in = modulate(ctx->ggml_ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
|
||||||
|
|
||||||
@ -439,8 +433,8 @@ public:
|
|||||||
auto qkv2 = std::get<1>(qkv_intermediates);
|
auto qkv2 = std::get<1>(qkv_intermediates);
|
||||||
auto intermediates = std::get<2>(qkv_intermediates);
|
auto intermediates = std::get<2>(qkv_intermediates);
|
||||||
|
|
||||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
x = post_attention_x(ctx,
|
x = post_attention_x(ctx,
|
||||||
attn_out,
|
attn_out,
|
||||||
attn2_out,
|
attn2_out,
|
||||||
@ -456,7 +450,7 @@ public:
|
|||||||
auto qkv = qkv_intermediates.first;
|
auto qkv = qkv_intermediates.first;
|
||||||
auto intermediates = qkv_intermediates.second;
|
auto intermediates = qkv_intermediates.second;
|
||||||
|
|
||||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
x = post_attention(ctx,
|
x = post_attention(ctx,
|
||||||
attn_out,
|
attn_out,
|
||||||
intermediates[0],
|
intermediates[0],
|
||||||
@ -500,26 +494,24 @@ block_mixing(GGMLRunnerContext* ctx,
|
|||||||
qkv.push_back(ggml_concat(ctx->ggml_ctx, context_qkv[i], x_qkv[i], 1));
|
qkv.push_back(ggml_concat(ctx->ggml_ctx, context_qkv[i], x_qkv[i], 1));
|
||||||
}
|
}
|
||||||
|
|
||||||
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
||||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
|
|
||||||
auto context_attn = ggml_view_3d(ctx->ggml_ctx,
|
auto context_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
context->ne[1],
|
context->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
0); // [n_context, N, hidden_size]
|
0); // [N, n_context, hidden_size]
|
||||||
context_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, context_attn, 0, 2, 1, 3)); // [N, n_context, hidden_size]
|
|
||||||
auto x_attn = ggml_view_3d(ctx->ggml_ctx,
|
auto x_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
x->ne[1],
|
x->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
attn->nb[2] * context->ne[1]); // [n_token, N, hidden_size]
|
context->ne[1] * attn->nb[1]); // [N, n_token, hidden_size]
|
||||||
x_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x_attn, 0, 2, 1, 3)); // [N, n_token, hidden_size]
|
|
||||||
|
|
||||||
if (!context_block->pre_only) {
|
if (!context_block->pre_only) {
|
||||||
context = context_block->post_attention(ctx,
|
context = context_block->post_attention(ctx,
|
||||||
@ -534,7 +526,7 @@ block_mixing(GGMLRunnerContext* ctx,
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (x_block->self_attn) {
|
if (x_block->self_attn) {
|
||||||
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
||||||
|
|
||||||
x = x_block->post_attention_x(ctx,
|
x = x_block->post_attention_x(ctx,
|
||||||
x_attn,
|
x_attn,
|
||||||
@ -605,12 +597,9 @@ public:
|
|||||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||||
|
|
||||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
auto shift = m_vec[0]; // [N, hidden_size]
|
||||||
|
auto scale = m_vec[1]; // [N, hidden_size]
|
||||||
int64_t offset = m->nb[1] * m->ne[1];
|
|
||||||
auto shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
|
||||||
auto scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
|
||||||
|
|
||||||
x = modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
x = modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||||
x = linear->forward(ctx, x);
|
x = linear->forward(ctx, x);
|
||||||
|
|||||||
@ -842,6 +842,7 @@ std::string convert_sep_to_dot(std::string name) {
|
|||||||
"conv_in",
|
"conv_in",
|
||||||
"conv_out",
|
"conv_out",
|
||||||
"lora_down",
|
"lora_down",
|
||||||
|
"lora_mid",
|
||||||
"lora_up",
|
"lora_up",
|
||||||
"diff_b",
|
"diff_b",
|
||||||
"hada_w1_a",
|
"hada_w1_a",
|
||||||
@ -997,10 +998,13 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
|||||||
if (is_lora) {
|
if (is_lora) {
|
||||||
std::map<std::string, std::string> lora_suffix_map = {
|
std::map<std::string, std::string> lora_suffix_map = {
|
||||||
{".lora_down.weight", ".weight.lora_down"},
|
{".lora_down.weight", ".weight.lora_down"},
|
||||||
|
{".lora_mid.weight", ".weight.lora_mid"},
|
||||||
{".lora_up.weight", ".weight.lora_up"},
|
{".lora_up.weight", ".weight.lora_up"},
|
||||||
{".lora.down.weight", ".weight.lora_down"},
|
{".lora.down.weight", ".weight.lora_down"},
|
||||||
|
{".lora.mid.weight", ".weight.lora_mid"},
|
||||||
{".lora.up.weight", ".weight.lora_up"},
|
{".lora.up.weight", ".weight.lora_up"},
|
||||||
{"_lora.down.weight", ".weight.lora_down"},
|
{"_lora.down.weight", ".weight.lora_down"},
|
||||||
|
{"_lora.mid.weight", ".weight.lora_mid"},
|
||||||
{"_lora.up.weight", ".weight.lora_up"},
|
{"_lora.up.weight", ".weight.lora_up"},
|
||||||
{".lora_A.weight", ".weight.lora_down"},
|
{".lora_A.weight", ".weight.lora_down"},
|
||||||
{".lora_B.weight", ".weight.lora_up"},
|
{".lora_B.weight", ".weight.lora_up"},
|
||||||
|
|||||||
6
pmid.hpp
6
pmid.hpp
@ -33,7 +33,7 @@ public:
|
|||||||
x = layer_norm->forward(ctx, x);
|
x = layer_norm->forward(ctx, x);
|
||||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
|
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
|
||||||
x = fc1->forward(ctx, x);
|
x = fc1->forward(ctx, x);
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
x = fc2->forward(ctx, x);
|
x = fc2->forward(ctx, x);
|
||||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
|
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
|
||||||
if (use_residue)
|
if (use_residue)
|
||||||
@ -129,8 +129,8 @@ public:
|
|||||||
k = reshape_tensor(ctx->ggml_ctx, k, heads);
|
k = reshape_tensor(ctx->ggml_ctx, k, heads);
|
||||||
v = reshape_tensor(ctx->ggml_ctx, v, heads);
|
v = reshape_tensor(ctx->ggml_ctx, v, heads);
|
||||||
scale = 1.f / sqrt(sqrt((float)dim_head));
|
scale = 1.f / sqrt(sqrt((float)dim_head));
|
||||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, scale);
|
k = ggml_ext_scale(ctx->ggml_ctx, k, scale, true);
|
||||||
q = ggml_scale_inplace(ctx->ggml_ctx, q, scale);
|
q = ggml_ext_scale(ctx->ggml_ctx, q, scale, true);
|
||||||
// auto weight = ggml_mul_mat(ctx, q, k);
|
// auto weight = ggml_mul_mat(ctx, q, k);
|
||||||
auto weight = ggml_mul_mat(ctx->ggml_ctx, k, q); // NOTE order of mul is opposite to pytorch
|
auto weight = ggml_mul_mat(ctx->ggml_ctx, k, q); // NOTE order of mul is opposite to pytorch
|
||||||
|
|
||||||
|
|||||||
@ -163,25 +163,24 @@ namespace Qwen {
|
|||||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||||
|
|
||||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
|
||||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
txt->ne[1],
|
txt->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
0); // [n_txt_token, N, hidden_size]
|
0); // [N, n_txt_token, n_head*d_head]
|
||||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
|
||||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||||
attn,
|
attn,
|
||||||
attn->ne[0],
|
attn->ne[0],
|
||||||
attn->ne[1],
|
|
||||||
img->ne[1],
|
img->ne[1],
|
||||||
|
attn->ne[2],
|
||||||
attn->nb[1],
|
attn->nb[1],
|
||||||
attn->nb[2],
|
attn->nb[2],
|
||||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
txt->ne[1] * attn->nb[1]); // [N, n_img_token, n_head*d_head]
|
||||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
img_attn_out = ggml_cont(ctx->ggml_ctx, img_attn_out);
|
||||||
|
txt_attn_out = ggml_cont(ctx->ggml_ctx, txt_attn_out);
|
||||||
|
|
||||||
img_attn_out = to_out_0->forward(ctx, img_attn_out);
|
img_attn_out = to_out_0->forward(ctx, img_attn_out);
|
||||||
txt_attn_out = to_add_out->forward(ctx, txt_attn_out);
|
txt_attn_out = to_add_out->forward(ctx, txt_attn_out);
|
||||||
|
|||||||
2
rope.hpp
2
rope.hpp
@ -642,7 +642,7 @@ namespace Rope {
|
|||||||
q = apply_rope(ctx->ggml_ctx, q, pe, rope_interleaved); // [N*n_head, L, d_head]
|
q = apply_rope(ctx->ggml_ctx, q, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||||
k = apply_rope(ctx->ggml_ctx, k, pe, rope_interleaved); // [N*n_head, L, d_head]
|
k = apply_rope(ctx->ggml_ctx, k, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||||
|
|
||||||
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, false, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
}; // namespace Rope
|
}; // namespace Rope
|
||||||
|
|||||||
@ -67,6 +67,8 @@ const char* sampling_methods_str[] = {
|
|||||||
"LCM",
|
"LCM",
|
||||||
"DDIM \"trailing\"",
|
"DDIM \"trailing\"",
|
||||||
"TCD",
|
"TCD",
|
||||||
|
"Res Multistep",
|
||||||
|
"Res 2s",
|
||||||
};
|
};
|
||||||
|
|
||||||
/*================================================== Helper Functions ================================================*/
|
/*================================================== Helper Functions ================================================*/
|
||||||
@ -443,7 +445,7 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (is_chroma) {
|
if (is_chroma) {
|
||||||
if (sd_ctx_params->diffusion_flash_attn && sd_ctx_params->chroma_use_dit_mask) {
|
if ((sd_ctx_params->flash_attn || sd_ctx_params->diffusion_flash_attn) && sd_ctx_params->chroma_use_dit_mask) {
|
||||||
LOG_WARN(
|
LOG_WARN(
|
||||||
"!!!It looks like you are using Chroma with flash attention. "
|
"!!!It looks like you are using Chroma with flash attention. "
|
||||||
"This is currently unsupported. "
|
"This is currently unsupported. "
|
||||||
@ -569,14 +571,6 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sd_ctx_params->diffusion_flash_attn) {
|
|
||||||
LOG_INFO("Using flash attention in the diffusion model");
|
|
||||||
diffusion_model->set_flash_attn_enabled(true);
|
|
||||||
if (high_noise_diffusion_model) {
|
|
||||||
high_noise_diffusion_model->set_flash_attn_enabled(true);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
cond_stage_model->alloc_params_buffer();
|
cond_stage_model->alloc_params_buffer();
|
||||||
cond_stage_model->get_param_tensors(tensors);
|
cond_stage_model->get_param_tensors(tensors);
|
||||||
|
|
||||||
@ -723,6 +717,28 @@ public:
|
|||||||
pmid_model->get_param_tensors(tensors, "pmid");
|
pmid_model->get_param_tensors(tensors, "pmid");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (sd_ctx_params->flash_attn) {
|
||||||
|
LOG_INFO("Using flash attention");
|
||||||
|
cond_stage_model->set_flash_attention_enabled(true);
|
||||||
|
if (clip_vision) {
|
||||||
|
clip_vision->set_flash_attention_enabled(true);
|
||||||
|
}
|
||||||
|
if (first_stage_model) {
|
||||||
|
first_stage_model->set_flash_attention_enabled(true);
|
||||||
|
}
|
||||||
|
if (tae_first_stage) {
|
||||||
|
tae_first_stage->set_flash_attention_enabled(true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sd_ctx_params->flash_attn || sd_ctx_params->diffusion_flash_attn) {
|
||||||
|
LOG_INFO("Using flash attention in the diffusion model");
|
||||||
|
diffusion_model->set_flash_attention_enabled(true);
|
||||||
|
if (high_noise_diffusion_model) {
|
||||||
|
high_noise_diffusion_model->set_flash_attention_enabled(true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
||||||
if (high_noise_diffusion_model) {
|
if (high_noise_diffusion_model) {
|
||||||
high_noise_diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
high_noise_diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
||||||
@ -2743,6 +2759,8 @@ const char* sample_method_to_str[] = {
|
|||||||
"lcm",
|
"lcm",
|
||||||
"ddim_trailing",
|
"ddim_trailing",
|
||||||
"tcd",
|
"tcd",
|
||||||
|
"res_multistep",
|
||||||
|
"res_2s",
|
||||||
};
|
};
|
||||||
|
|
||||||
const char* sd_sample_method_name(enum sample_method_t sample_method) {
|
const char* sd_sample_method_name(enum sample_method_t sample_method) {
|
||||||
@ -2772,6 +2790,7 @@ const char* scheduler_to_str[] = {
|
|||||||
"smoothstep",
|
"smoothstep",
|
||||||
"kl_optimal",
|
"kl_optimal",
|
||||||
"lcm",
|
"lcm",
|
||||||
|
"bong_tangent",
|
||||||
};
|
};
|
||||||
|
|
||||||
const char* sd_scheduler_name(enum scheduler_t scheduler) {
|
const char* sd_scheduler_name(enum scheduler_t scheduler) {
|
||||||
@ -2937,6 +2956,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
|||||||
"keep_clip_on_cpu: %s\n"
|
"keep_clip_on_cpu: %s\n"
|
||||||
"keep_control_net_on_cpu: %s\n"
|
"keep_control_net_on_cpu: %s\n"
|
||||||
"keep_vae_on_cpu: %s\n"
|
"keep_vae_on_cpu: %s\n"
|
||||||
|
"flash_attn: %s\n"
|
||||||
"diffusion_flash_attn: %s\n"
|
"diffusion_flash_attn: %s\n"
|
||||||
"circular_x: %s\n"
|
"circular_x: %s\n"
|
||||||
"circular_y: %s\n"
|
"circular_y: %s\n"
|
||||||
@ -2968,6 +2988,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
|||||||
BOOL_STR(sd_ctx_params->keep_clip_on_cpu),
|
BOOL_STR(sd_ctx_params->keep_clip_on_cpu),
|
||||||
BOOL_STR(sd_ctx_params->keep_control_net_on_cpu),
|
BOOL_STR(sd_ctx_params->keep_control_net_on_cpu),
|
||||||
BOOL_STR(sd_ctx_params->keep_vae_on_cpu),
|
BOOL_STR(sd_ctx_params->keep_vae_on_cpu),
|
||||||
|
BOOL_STR(sd_ctx_params->flash_attn),
|
||||||
BOOL_STR(sd_ctx_params->diffusion_flash_attn),
|
BOOL_STR(sd_ctx_params->diffusion_flash_attn),
|
||||||
BOOL_STR(sd_ctx_params->circular_x),
|
BOOL_STR(sd_ctx_params->circular_x),
|
||||||
BOOL_STR(sd_ctx_params->circular_y),
|
BOOL_STR(sd_ctx_params->circular_y),
|
||||||
|
|||||||
@ -48,6 +48,8 @@ enum sample_method_t {
|
|||||||
LCM_SAMPLE_METHOD,
|
LCM_SAMPLE_METHOD,
|
||||||
DDIM_TRAILING_SAMPLE_METHOD,
|
DDIM_TRAILING_SAMPLE_METHOD,
|
||||||
TCD_SAMPLE_METHOD,
|
TCD_SAMPLE_METHOD,
|
||||||
|
RES_MULTISTEP_SAMPLE_METHOD,
|
||||||
|
RES_2S_SAMPLE_METHOD,
|
||||||
SAMPLE_METHOD_COUNT
|
SAMPLE_METHOD_COUNT
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -62,6 +64,7 @@ enum scheduler_t {
|
|||||||
SMOOTHSTEP_SCHEDULER,
|
SMOOTHSTEP_SCHEDULER,
|
||||||
KL_OPTIMAL_SCHEDULER,
|
KL_OPTIMAL_SCHEDULER,
|
||||||
LCM_SCHEDULER,
|
LCM_SCHEDULER,
|
||||||
|
BONG_TANGENT_SCHEDULER,
|
||||||
SCHEDULER_COUNT
|
SCHEDULER_COUNT
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -186,6 +189,7 @@ typedef struct {
|
|||||||
bool keep_clip_on_cpu;
|
bool keep_clip_on_cpu;
|
||||||
bool keep_control_net_on_cpu;
|
bool keep_control_net_on_cpu;
|
||||||
bool keep_vae_on_cpu;
|
bool keep_vae_on_cpu;
|
||||||
|
bool flash_attn;
|
||||||
bool diffusion_flash_attn;
|
bool diffusion_flash_attn;
|
||||||
bool tae_preview_only;
|
bool tae_preview_only;
|
||||||
bool diffusion_conv_direct;
|
bool diffusion_conv_direct;
|
||||||
|
|||||||
4
t5.hpp
4
t5.hpp
@ -515,7 +515,7 @@ public:
|
|||||||
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
|
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
|
||||||
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
|
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
|
||||||
|
|
||||||
auto hidden_gelu = ggml_gelu_inplace(ctx->ggml_ctx, wi_0->forward(ctx, x));
|
auto hidden_gelu = ggml_ext_gelu(ctx->ggml_ctx, wi_0->forward(ctx, x), true);
|
||||||
auto hidden_linear = wi_1->forward(ctx, x);
|
auto hidden_linear = wi_1->forward(ctx, x);
|
||||||
x = ggml_mul_inplace(ctx->ggml_ctx, hidden_gelu, hidden_linear);
|
x = ggml_mul_inplace(ctx->ggml_ctx, hidden_gelu, hidden_linear);
|
||||||
x = wo->forward(ctx, x);
|
x = wo->forward(ctx, x);
|
||||||
@ -608,7 +608,7 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, ::sqrtf(static_cast<float>(d_head)));
|
k = ggml_ext_scale(ctx->ggml_ctx, k, ::sqrtf(static_cast<float>(d_head)), true);
|
||||||
|
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
|
||||||
|
|
||||||
|
|||||||
11
tae.hpp
11
tae.hpp
@ -161,9 +161,9 @@ public:
|
|||||||
// z: [n, z_channels, h, w]
|
// z: [n, z_channels, h, w]
|
||||||
// return: [n, out_channels, h*8, w*8]
|
// return: [n, out_channels, h*8, w*8]
|
||||||
|
|
||||||
auto h = ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
auto h = ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
||||||
h = ggml_tanh_inplace(ctx->ggml_ctx, h);
|
h = ggml_tanh_inplace(ctx->ggml_ctx, h);
|
||||||
h = ggml_scale(ctx->ggml_ctx, h, 3.0f);
|
h = ggml_ext_scale(ctx->ggml_ctx, h, 3.0f);
|
||||||
|
|
||||||
for (int i = 0; i < num_blocks * 3 + 10; i++) {
|
for (int i = 0; i < num_blocks * 3 + 10; i++) {
|
||||||
if (blocks.find(std::to_string(i)) == blocks.end()) {
|
if (blocks.find(std::to_string(i)) == blocks.end()) {
|
||||||
@ -400,10 +400,11 @@ public:
|
|||||||
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["1"]);
|
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["1"]);
|
||||||
|
|
||||||
// Clamp()
|
// Clamp()
|
||||||
auto h = ggml_scale_inplace(ctx->ggml_ctx,
|
auto h = ggml_ext_scale(ctx->ggml_ctx,
|
||||||
ggml_tanh_inplace(ctx->ggml_ctx,
|
ggml_tanh_inplace(ctx->ggml_ctx,
|
||||||
ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
||||||
3.0f);
|
3.0f,
|
||||||
|
true);
|
||||||
|
|
||||||
h = first_conv->forward(ctx, h);
|
h = first_conv->forward(ctx, h);
|
||||||
h = ggml_relu_inplace(ctx->ggml_ctx, h);
|
h = ggml_relu_inplace(ctx->ggml_ctx, h);
|
||||||
|
|||||||
4
unet.hpp
4
unet.hpp
@ -529,7 +529,7 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (controls.size() > 0) {
|
if (controls.size() > 0) {
|
||||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[controls.size() - 1], control_strength);
|
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[controls.size() - 1], control_strength, true);
|
||||||
h = ggml_add(ctx->ggml_ctx, h, cs); // middle control
|
h = ggml_add(ctx->ggml_ctx, h, cs); // middle control
|
||||||
}
|
}
|
||||||
int control_offset = static_cast<int>(controls.size() - 2);
|
int control_offset = static_cast<int>(controls.size() - 2);
|
||||||
@ -542,7 +542,7 @@ public:
|
|||||||
hs.pop_back();
|
hs.pop_back();
|
||||||
|
|
||||||
if (controls.size() > 0) {
|
if (controls.size() > 0) {
|
||||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[control_offset], control_strength);
|
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[control_offset], control_strength, true);
|
||||||
h_skip = ggml_add(ctx->ggml_ctx, h_skip, cs); // control net condition
|
h_skip = ggml_add(ctx->ggml_ctx, h_skip, cs); // control net condition
|
||||||
control_offset--;
|
control_offset--;
|
||||||
}
|
}
|
||||||
|
|||||||
6
vae.hpp
6
vae.hpp
@ -141,7 +141,7 @@ public:
|
|||||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, c, h * w, n); // [N, h * w, in_channels]
|
v = ggml_reshape_3d(ctx->ggml_ctx, v, c, h * w, n); // [N, h * w, in_channels]
|
||||||
}
|
}
|
||||||
|
|
||||||
h_ = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, false, true, false);
|
h_ = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled);
|
||||||
|
|
||||||
if (use_linear) {
|
if (use_linear) {
|
||||||
h_ = proj_out->forward(ctx, h_); // [N, h * w, in_channels]
|
h_ = proj_out->forward(ctx, h_); // [N, h * w, in_channels]
|
||||||
@ -253,8 +253,8 @@ public:
|
|||||||
|
|
||||||
float alpha = get_alpha();
|
float alpha = get_alpha();
|
||||||
x = ggml_add(ctx->ggml_ctx,
|
x = ggml_add(ctx->ggml_ctx,
|
||||||
ggml_scale(ctx->ggml_ctx, x, alpha),
|
ggml_ext_scale(ctx->ggml_ctx, x, alpha),
|
||||||
ggml_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
ggml_ext_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
||||||
|
|
||||||
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
|
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
|
||||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
|
x = ggml_reshape_4d(ctx->ggml_ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
|
||||||
|
|||||||
23
wan.hpp
23
wan.hpp
@ -573,7 +573,7 @@ namespace WAN {
|
|||||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [t, c, h * w]
|
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [t, c, h * w]
|
||||||
|
|
||||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, false, true, false); // [t, h * w, c]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled); // [t, h * w, c]
|
||||||
|
|
||||||
x = ggml_ext_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [t, c, h * w]
|
x = ggml_ext_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [t, c, h * w]
|
||||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, c, n); // [t, c, h, w]
|
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, c, n); // [t, c, h, w]
|
||||||
@ -1393,7 +1393,7 @@ namespace WAN {
|
|||||||
k = norm_k->forward(ctx, k);
|
k = norm_k->forward(ctx, k);
|
||||||
auto v = v_proj->forward(ctx, context); // [N, n_context, dim]
|
auto v = v_proj->forward(ctx, context); // [N, n_context, dim]
|
||||||
|
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
|
|
||||||
x = o_proj->forward(ctx, x); // [N, n_token, dim]
|
x = o_proj->forward(ctx, x); // [N, n_token, dim]
|
||||||
return x;
|
return x;
|
||||||
@ -1442,11 +1442,8 @@ namespace WAN {
|
|||||||
int64_t dim = x->ne[0];
|
int64_t dim = x->ne[0];
|
||||||
int64_t context_txt_len = context->ne[1] - context_img_len;
|
int64_t context_txt_len = context->ne[1] - context_img_len;
|
||||||
|
|
||||||
context = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context, 0, 2, 1, 3)); // [context_img_len + context_txt_len, N, dim]
|
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, context_img_len, N, context->nb[1], context->nb[2], 0); // [N, context_img_len, dim]
|
||||||
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_img_len, context->nb[1], context->nb[2], 0);
|
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, context_txt_len, N, context->nb[1], context->nb[2], context_img_len * context->nb[1]); // [N, context_txt_len, dim]
|
||||||
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_txt_len, context->nb[1], context->nb[2], context_img_len * context->nb[2]);
|
|
||||||
context_img = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_img, 0, 2, 1, 3)); // [N, context_img_len, dim]
|
|
||||||
context_txt = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_txt, 0, 2, 1, 3)); // [N, context_txt_len, dim]
|
|
||||||
|
|
||||||
auto q = q_proj->forward(ctx, x);
|
auto q = q_proj->forward(ctx, x);
|
||||||
q = norm_q->forward(ctx, q);
|
q = norm_q->forward(ctx, q);
|
||||||
@ -1458,8 +1455,8 @@ namespace WAN {
|
|||||||
k_img = norm_k_img->forward(ctx, k_img);
|
k_img = norm_k_img->forward(ctx, k_img);
|
||||||
auto v_img = v_img_proj->forward(ctx, context_img); // [N, context_img_len, dim]
|
auto v_img = v_img_proj->forward(ctx, context_img); // [N, context_img_len, dim]
|
||||||
|
|
||||||
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||||
|
|
||||||
x = ggml_add(ctx->ggml_ctx, x, img_x);
|
x = ggml_add(ctx->ggml_ctx, x, img_x);
|
||||||
|
|
||||||
@ -1576,7 +1573,7 @@ namespace WAN {
|
|||||||
y = modulate_add(ctx->ggml_ctx, y, es[3]);
|
y = modulate_add(ctx->ggml_ctx, y, es[3]);
|
||||||
|
|
||||||
y = ffn_0->forward(ctx, y);
|
y = ffn_0->forward(ctx, y);
|
||||||
y = ggml_gelu_inplace(ctx->ggml_ctx, y);
|
y = ggml_ext_gelu(ctx->ggml_ctx, y, true);
|
||||||
y = ffn_2->forward(ctx, y);
|
y = ffn_2->forward(ctx, y);
|
||||||
|
|
||||||
x = ggml_add(ctx->ggml_ctx, x, modulate_mul(ctx->ggml_ctx, y, es[5]));
|
x = ggml_add(ctx->ggml_ctx, x, modulate_mul(ctx->ggml_ctx, y, es[5]));
|
||||||
@ -1723,7 +1720,7 @@ namespace WAN {
|
|||||||
|
|
||||||
auto x = proj_0->forward(ctx, image_embeds);
|
auto x = proj_0->forward(ctx, image_embeds);
|
||||||
x = proj_1->forward(ctx, x);
|
x = proj_1->forward(ctx, x);
|
||||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||||
x = proj_3->forward(ctx, x);
|
x = proj_3->forward(ctx, x);
|
||||||
x = proj_4->forward(ctx, x);
|
x = proj_4->forward(ctx, x);
|
||||||
|
|
||||||
@ -1910,7 +1907,7 @@ namespace WAN {
|
|||||||
e0 = ggml_reshape_4d(ctx->ggml_ctx, e0, e0->ne[0] / 6, 6, e0->ne[1], e0->ne[2]); // [N, 6, dim] or [N, T, 6, dim]
|
e0 = ggml_reshape_4d(ctx->ggml_ctx, e0, e0->ne[0] / 6, 6, e0->ne[1], e0->ne[2]); // [N, 6, dim] or [N, T, 6, dim]
|
||||||
|
|
||||||
context = text_embedding_0->forward(ctx, context);
|
context = text_embedding_0->forward(ctx, context);
|
||||||
context = ggml_gelu(ctx->ggml_ctx, context);
|
context = ggml_ext_gelu(ctx->ggml_ctx, context);
|
||||||
context = text_embedding_2->forward(ctx, context); // [N, context_txt_len, dim]
|
context = text_embedding_2->forward(ctx, context); // [N, context_txt_len, dim]
|
||||||
|
|
||||||
int64_t context_img_len = 0;
|
int64_t context_img_len = 0;
|
||||||
@ -1949,7 +1946,7 @@ namespace WAN {
|
|||||||
auto result = vace_block->forward(ctx, c, x_orig, e0, pe, context, context_img_len);
|
auto result = vace_block->forward(ctx, c, x_orig, e0, pe, context, context_img_len);
|
||||||
auto c_skip = result.first;
|
auto c_skip = result.first;
|
||||||
c = result.second;
|
c = result.second;
|
||||||
c_skip = ggml_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
c_skip = ggml_ext_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
||||||
x = ggml_add(ctx->ggml_ctx, x, c_skip);
|
x = ggml_add(ctx->ggml_ctx, x, c_skip);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
40
z_image.hpp
40
z_image.hpp
@ -54,15 +54,37 @@ namespace ZImage {
|
|||||||
|
|
||||||
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
||||||
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
||||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1)); // [num_heads + num_kv_heads*2, N, n_token, head_dim]
|
|
||||||
|
|
||||||
auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0); // [num_heads, N, n_token, head_dim]
|
auto q = ggml_view_4d(ctx->ggml_ctx,
|
||||||
auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads); // [num_kv_heads, N, n_token, head_dim]
|
qkv,
|
||||||
auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads)); // [num_kv_heads, N, n_token, head_dim]
|
qkv->ne[0],
|
||||||
|
num_heads,
|
||||||
q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2)); // [N, n_token, num_heads, head_dim]
|
qkv->ne[2],
|
||||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
qkv->ne[3],
|
||||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
qkv->nb[1],
|
||||||
|
qkv->nb[2],
|
||||||
|
qkv->nb[3],
|
||||||
|
0); // [N, n_token, num_heads, head_dim]
|
||||||
|
auto k = ggml_view_4d(ctx->ggml_ctx,
|
||||||
|
qkv,
|
||||||
|
qkv->ne[0],
|
||||||
|
num_kv_heads,
|
||||||
|
qkv->ne[2],
|
||||||
|
qkv->ne[3],
|
||||||
|
qkv->nb[1],
|
||||||
|
qkv->nb[2],
|
||||||
|
qkv->nb[3],
|
||||||
|
num_heads * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||||
|
auto v = ggml_view_4d(ctx->ggml_ctx,
|
||||||
|
qkv,
|
||||||
|
qkv->ne[0],
|
||||||
|
num_kv_heads,
|
||||||
|
qkv->ne[2],
|
||||||
|
qkv->ne[3],
|
||||||
|
qkv->nb[1],
|
||||||
|
qkv->nb[2],
|
||||||
|
qkv->nb[3],
|
||||||
|
(num_heads + num_kv_heads) * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||||
|
|
||||||
if (qk_norm) {
|
if (qk_norm) {
|
||||||
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
||||||
@ -495,7 +517,7 @@ namespace ZImage {
|
|||||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
||||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
||||||
|
|
||||||
out = ggml_scale(ctx->ggml_ctx, out, -1.f);
|
out = ggml_ext_scale(ctx->ggml_ctx, out, -1.f);
|
||||||
|
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user