Compare commits
50 Commits
master-443
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
65891d74cc | ||
|
|
f957fa3d2a | ||
|
|
c252e03c6b | ||
|
|
e63daba33d | ||
|
|
3959109281 | ||
|
|
e411520407 | ||
|
|
43e829f219 | ||
|
|
7837232631 | ||
|
|
4ccce027b2 | ||
|
|
fa61ea744d | ||
|
|
5e4579c11d | ||
|
|
329571131d | ||
|
|
a48b4a3ade | ||
|
|
b87fe13afd | ||
|
|
e50e1f253d | ||
|
|
c6206fb351 | ||
|
|
639091fbe9 | ||
|
|
9293016c9d | ||
|
|
2efd19978d | ||
|
|
61659ef299 | ||
|
|
9565c7f6bd | ||
|
|
fbce16e02d | ||
|
|
7010bb4dff | ||
|
|
48d3161a8d | ||
|
|
271b594e74 | ||
|
|
885e62ea82 | ||
|
|
0e52afc651 | ||
|
|
27b5f17401 | ||
|
|
dfe6d6c664 | ||
|
|
9be0b91927 | ||
|
|
e7e83ed4d1 | ||
|
|
c5602a676c | ||
|
|
c34730d9b4 | ||
|
|
fdcacc1ebb | ||
|
|
496ec9421e | ||
|
|
05006cd6e1 | ||
|
|
b90b1ee9cf | ||
|
|
2cef4badb8 | ||
|
|
a119a4da9a | ||
|
|
6eefd2d49a | ||
|
|
4ff2c8c74b | ||
|
|
51bd9c8004 | ||
|
|
d0d836ae74 | ||
|
|
a2d83dd0c8 | ||
|
|
cc107714d7 | ||
|
|
37c9860b79 | ||
|
|
ccb6b0ac9d | ||
|
|
df4efe26bd | ||
|
|
860a78e248 | ||
|
|
a0adcfb148 |
@ -1,4 +1,5 @@
|
||||
build*/
|
||||
docs/
|
||||
test/
|
||||
|
||||
.cache/
|
||||
|
||||
129
.github/workflows/build.yml
vendored
@ -38,6 +38,10 @@ on:
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
@ -92,6 +96,123 @@ jobs:
|
||||
path: |
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
|
||||
|
||||
ubuntu-latest-cmake-vulkan:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev glslc
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DSD_BUILD_SHARED_LIBS=ON -DSD_VULKAN=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Fetch system info
|
||||
id: system-info
|
||||
run: |
|
||||
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_NAME=`lsb_release -s -i`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_VERSION=`lsb_release -s -r`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp ggml/LICENSE ./build/bin/ggml.txt
|
||||
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
|
||||
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
|
||||
path: |
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
|
||||
|
||||
build-and-push-docker-images:
|
||||
name: Build and push container images
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
id-token: write
|
||||
attestations: write
|
||||
artifact-metadata: write
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
variant: [musa, sycl, vulkan]
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Log in to the container registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata for Docker
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
|
||||
- name: Free Disk Space (Ubuntu)
|
||||
uses: jlumbroso/free-disk-space@v1.3.1
|
||||
with:
|
||||
# this might remove tools that are actually needed,
|
||||
# if set to "true" but frees about 6 GB
|
||||
tool-cache: false
|
||||
|
||||
- name: Build and push Docker image
|
||||
id: build-push
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
platforms: linux/amd64
|
||||
push: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
file: Dockerfile.${{ matrix.variant }}
|
||||
tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:${{ env.BRANCH_NAME }}-${{ matrix.variant }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
annotations: ${{ steps.meta.outputs.annotations }}
|
||||
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -146,7 +267,7 @@ jobs:
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-2025
|
||||
runs-on: windows-2022
|
||||
|
||||
env:
|
||||
VULKAN_VERSION: 1.4.328.1
|
||||
@ -164,7 +285,7 @@ jobs:
|
||||
defines: "-DGGML_NATIVE=OFF -DGGML_AVX512=ON -DGGML_AVX=ON -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
|
||||
- build: "cuda12"
|
||||
defines: "-DSD_CUDA=ON -DSD_BUILD_SHARED_LIBS=ON -DCMAKE_CUDA_ARCHITECTURES='61;70;75;80;86;89;90;100;120' -DCMAKE_CUDA_FLAGS='-Xcudafe \"--diag_suppress=177\" -Xcudafe \"--diag_suppress=550\"'"
|
||||
- build: 'vulkan'
|
||||
- build: "vulkan"
|
||||
defines: "-DSD_VULKAN=ON -DSD_BUILD_SHARED_LIBS=ON"
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -200,7 +321,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DCMAKE_CXX_FLAGS='/bigobj' -G Ninja -DCMAKE_C_COMPILER=cl.exe -DCMAKE_CXX_COMPILER=cl.exe ${{ matrix.defines }}
|
||||
cmake .. -DCMAKE_CXX_FLAGS='/bigobj' -G Ninja -DCMAKE_C_COMPILER=cl.exe -DCMAKE_CXX_COMPILER=cl.exe -DCMAKE_BUILD_TYPE=Release ${{ matrix.defines }}
|
||||
cmake --build .
|
||||
|
||||
- name: Check AVX512F support
|
||||
@ -371,6 +492,8 @@ jobs:
|
||||
|
||||
needs:
|
||||
- ubuntu-latest-cmake
|
||||
- ubuntu-latest-cmake-vulkan
|
||||
- build-and-push-docker-images
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-hip
|
||||
|
||||
@ -8,6 +8,11 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
add_compile_definitions(_SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING)
|
||||
endif()
|
||||
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@ -18,5 +18,6 @@ RUN apt-get update && \
|
||||
apt-get clean
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
@ -19,5 +19,6 @@ RUN mkdir build && cd build && \
|
||||
FROM mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64 as runtime
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
@ -15,5 +15,6 @@ RUN mkdir build && cd build && \
|
||||
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS runtime
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
|
||||
23
Dockerfile.vulkan
Normal file
@ -0,0 +1,23 @@
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends build-essential git cmake libvulkan-dev glslc
|
||||
|
||||
WORKDIR /sd.cpp
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake . -B ./build -DSD_VULKAN=ON
|
||||
RUN cmake --build ./build --config Release --parallel
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install --yes --no-install-recommends libgomp1 libvulkan1 mesa-vulkan-drivers && \
|
||||
apt-get clean
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
17
README.md
@ -15,6 +15,9 @@ API and command-line option may change frequently.***
|
||||
|
||||
## 🔥Important News
|
||||
|
||||
* **2026/01/18** 🚀 stable-diffusion.cpp now supports **FLUX.2-klein**
|
||||
👉 Details: [PR #1193](https://github.com/leejet/stable-diffusion.cpp/pull/1193)
|
||||
|
||||
* **2025/12/01** 🚀 stable-diffusion.cpp now supports **Z-Image**
|
||||
👉 Details: [PR #1020](https://github.com/leejet/stable-diffusion.cpp/pull/1020)
|
||||
|
||||
@ -43,8 +46,8 @@ API and command-line option may change frequently.***
|
||||
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
|
||||
- [Some SD1.x and SDXL distilled models](./docs/distilled_sd.md)
|
||||
- [SD3/SD3.5](./docs/sd3.md)
|
||||
- [FlUX.1-dev/FlUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev](./docs/flux2.md)
|
||||
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
|
||||
- [Chroma](./docs/chroma.md)
|
||||
- [Chroma1-Radiance](./docs/chroma_radiance.md)
|
||||
- [Qwen Image](./docs/qwen_image.md)
|
||||
@ -52,7 +55,7 @@ API and command-line option may change frequently.***
|
||||
- [Ovis-Image](./docs/ovis_image.md)
|
||||
- Image Edit Models
|
||||
- [FLUX.1-Kontext-dev](./docs/kontext.md)
|
||||
- [Qwen Image Edit/Qwen Image Edit 2509](./docs/qwen_image_edit.md)
|
||||
- [Qwen Image Edit series](./docs/qwen_image_edit.md)
|
||||
- Video Models
|
||||
- [Wan2.1/Wan2.2](./docs/wan.md)
|
||||
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker) support.
|
||||
@ -70,7 +73,7 @@ API and command-line option may change frequently.***
|
||||
- SYCL
|
||||
- Supported weight formats
|
||||
- Pytorch checkpoint (`.ckpt` or `.pth`)
|
||||
- Safetensors (`./safetensors`)
|
||||
- Safetensors (`.safetensors`)
|
||||
- GGUF (`.gguf`)
|
||||
- Supported platforms
|
||||
- Linux
|
||||
@ -127,12 +130,12 @@ If you want to improve performance or reduce VRAM/RAM usage, please refer to [pe
|
||||
|
||||
- [SD1.x/SD2.x/SDXL](./docs/sd.md)
|
||||
- [SD3/SD3.5](./docs/sd3.md)
|
||||
- [FlUX.1-dev/FlUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev](./docs/flux2.md)
|
||||
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
|
||||
- [FLUX.1-Kontext-dev](./docs/kontext.md)
|
||||
- [Chroma](./docs/chroma.md)
|
||||
- [🔥Qwen Image](./docs/qwen_image.md)
|
||||
- [🔥Qwen Image Edit/Qwen Image Edit 2509](./docs/qwen_image_edit.md)
|
||||
- [🔥Qwen Image Edit series](./docs/qwen_image_edit.md)
|
||||
- [🔥Wan2.1/Wan2.2](./docs/wan.md)
|
||||
- [🔥Z-Image](./docs/z_image.md)
|
||||
- [Ovis-Image](./docs/ovis_image.md)
|
||||
|
||||
BIN
assets/flux2/flux2-klein-4b-edit.png
Normal file
|
After Width: | Height: | Size: 510 KiB |
BIN
assets/flux2/flux2-klein-4b.png
Normal file
|
After Width: | Height: | Size: 455 KiB |
BIN
assets/flux2/flux2-klein-9b-edit.png
Normal file
|
After Width: | Height: | Size: 511 KiB |
BIN
assets/flux2/flux2-klein-9b.png
Normal file
|
After Width: | Height: | Size: 491 KiB |
BIN
assets/flux2/flux2-klein-base-4b.png
Normal file
|
After Width: | Height: | Size: 464 KiB |
BIN
assets/flux2/flux2-klein-base-9b.png
Normal file
|
After Width: | Height: | Size: 552 KiB |
BIN
assets/qwen/qwen_image_edit_2511.png
Normal file
|
After Width: | Height: | Size: 450 KiB |
BIN
assets/z_image/base_bf16.png
Normal file
|
After Width: | Height: | Size: 870 KiB |
@ -117,7 +117,7 @@ struct TaylorSeerState {
|
||||
continue;
|
||||
if (o > 0)
|
||||
factorial *= static_cast<float>(o);
|
||||
float coeff = std::pow(static_cast<float>(elapsed), o) / factorial;
|
||||
float coeff = ::powf(static_cast<float>(elapsed), static_cast<float>(o)) / factorial;
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
output[i] += coeff * dY_prev[o][i];
|
||||
}
|
||||
|
||||
67
clip.hpp
@ -296,7 +296,7 @@ public:
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
if (max_length > 0 && padding) {
|
||||
size_t n = std::ceil(tokens.size() * 1.0 / (max_length - 2));
|
||||
size_t n = static_cast<size_t>(std::ceil(tokens.size() * 1.0 / (max_length - 2)));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
@ -479,9 +479,9 @@ public:
|
||||
|
||||
x = fc1->forward(ctx, x);
|
||||
if (use_gelu) {
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
} else {
|
||||
x = ggml_gelu_quick_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu_quick(ctx->ggml_ctx, x, true);
|
||||
}
|
||||
x = fc2->forward(ctx, x);
|
||||
return x;
|
||||
@ -510,7 +510,7 @@ public:
|
||||
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, bool mask = true) {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, struct ggml_tensor* mask = nullptr) {
|
||||
// x: [N, n_token, d_model]
|
||||
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
|
||||
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
|
||||
@ -525,10 +525,10 @@ public:
|
||||
|
||||
struct CLIPEncoder : public GGMLBlock {
|
||||
protected:
|
||||
int64_t n_layer;
|
||||
int n_layer;
|
||||
|
||||
public:
|
||||
CLIPEncoder(int64_t n_layer,
|
||||
CLIPEncoder(int n_layer,
|
||||
int64_t d_model,
|
||||
int64_t n_head,
|
||||
int64_t intermediate_size,
|
||||
@ -542,8 +542,8 @@ public:
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int clip_skip = -1,
|
||||
bool mask = true) {
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
int clip_skip = -1) {
|
||||
// x: [N, n_token, d_model]
|
||||
int layer_idx = n_layer - 1;
|
||||
// LOG_DEBUG("clip_skip %d", clip_skip);
|
||||
@ -623,10 +623,10 @@ public:
|
||||
class CLIPVisionEmbeddings : public GGMLBlock {
|
||||
protected:
|
||||
int64_t embed_dim;
|
||||
int64_t num_channels;
|
||||
int64_t patch_size;
|
||||
int64_t image_size;
|
||||
int64_t num_patches;
|
||||
int num_channels;
|
||||
int patch_size;
|
||||
int image_size;
|
||||
int num_patches;
|
||||
int64_t num_positions;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
@ -641,9 +641,9 @@ protected:
|
||||
|
||||
public:
|
||||
CLIPVisionEmbeddings(int64_t embed_dim,
|
||||
int64_t num_channels = 3,
|
||||
int64_t patch_size = 14,
|
||||
int64_t image_size = 224)
|
||||
int num_channels = 3,
|
||||
int patch_size = 14,
|
||||
int image_size = 224)
|
||||
: embed_dim(embed_dim),
|
||||
num_channels(num_channels),
|
||||
patch_size(patch_size),
|
||||
@ -741,16 +741,17 @@ public:
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* tkn_embeddings,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
// input_ids: [N, n_token]
|
||||
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
|
||||
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
|
||||
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
|
||||
|
||||
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
|
||||
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true);
|
||||
x = encoder->forward(ctx, x, mask, return_pooled ? -1 : clip_skip);
|
||||
if (return_pooled || with_final_ln) {
|
||||
x = final_layer_norm->forward(ctx, x);
|
||||
}
|
||||
@ -814,10 +815,11 @@ public:
|
||||
|
||||
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
|
||||
x = pre_layernorm->forward(ctx, x);
|
||||
x = encoder->forward(ctx, x, clip_skip, false);
|
||||
// print_ggml_tensor(x, true, "ClipVisionModel x: ");
|
||||
x = encoder->forward(ctx, x, nullptr, clip_skip);
|
||||
|
||||
auto last_hidden_state = x;
|
||||
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
|
||||
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
if (return_pooled) {
|
||||
@ -905,6 +907,8 @@ public:
|
||||
struct CLIPTextModelRunner : public GGMLRunner {
|
||||
CLIPTextModel model;
|
||||
|
||||
std::vector<float> attention_mask_vec;
|
||||
|
||||
CLIPTextModelRunner(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map,
|
||||
@ -938,6 +942,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* embeddings,
|
||||
struct ggml_tensor* mask,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
@ -948,7 +953,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
input_ids = ggml_reshape_2d(ctx->ggml_ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
|
||||
}
|
||||
|
||||
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
return model.forward(ctx, input_ids, embeddings, mask, max_token_idx, return_pooled, clip_skip);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||
@ -975,9 +980,23 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
|
||||
}
|
||||
|
||||
int n_tokens = static_cast<int>(input_ids->ne[0]);
|
||||
attention_mask_vec.resize(n_tokens * n_tokens);
|
||||
for (int i0 = 0; i0 < n_tokens; i0++) {
|
||||
for (int i1 = 0; i1 < n_tokens; i1++) {
|
||||
float value = 0.f;
|
||||
if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
attention_mask_vec[i1 * n_tokens + i0] = value;
|
||||
}
|
||||
}
|
||||
auto attention_mask = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
set_backend_tensor_data(attention_mask, attention_mask_vec.data());
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, attention_mask, max_token_idx, return_pooled, clip_skip);
|
||||
|
||||
ggml_build_forward_expand(gf, hidden_states);
|
||||
|
||||
|
||||
18
common.hpp
@ -80,7 +80,7 @@ protected:
|
||||
std::pair<int, int> padding) {
|
||||
GGML_ASSERT(dims == 2 || dims == 3);
|
||||
if (dims == 3) {
|
||||
return std::shared_ptr<GGMLBlock>(new Conv3dnx1x1(in_channels, out_channels, kernel_size.first, 1, padding.first));
|
||||
return std::shared_ptr<GGMLBlock>(new Conv3d(in_channels, out_channels, {kernel_size.first, 1, 1}, {1, 1, 1}, {padding.first, 0, 0}));
|
||||
} else {
|
||||
return std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, out_channels, kernel_size, {1, 1}, padding));
|
||||
}
|
||||
@ -200,7 +200,7 @@ public:
|
||||
|
||||
gate = ggml_cont(ctx->ggml_ctx, gate);
|
||||
|
||||
gate = ggml_gelu_inplace(ctx->ggml_ctx, gate);
|
||||
gate = ggml_ext_gelu(ctx->ggml_ctx, gate, true);
|
||||
|
||||
x = ggml_mul(ctx->ggml_ctx, x, gate); // [ne3, ne2, ne1, dim_out]
|
||||
|
||||
@ -220,7 +220,7 @@ public:
|
||||
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
||||
|
||||
x = proj->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
@ -317,7 +317,7 @@ public:
|
||||
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
|
||||
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
||||
|
||||
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
|
||||
return x;
|
||||
@ -536,17 +536,17 @@ public:
|
||||
// image_only_indicator is always tensor([0.])
|
||||
float alpha = get_alpha();
|
||||
auto x = ggml_add(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, x_spatial, alpha),
|
||||
ggml_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_spatial, alpha),
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
class VideoResBlock : public ResBlock {
|
||||
public:
|
||||
VideoResBlock(int channels,
|
||||
int emb_channels,
|
||||
int out_channels,
|
||||
VideoResBlock(int64_t channels,
|
||||
int64_t emb_channels,
|
||||
int64_t out_channels,
|
||||
std::pair<int, int> kernel_size = {3, 3},
|
||||
int64_t video_kernel_size = 3,
|
||||
int dims = 2) // always 2
|
||||
|
||||
112
conditioner.hpp
@ -34,6 +34,7 @@ struct Conditioner {
|
||||
virtual void free_params_buffer() = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
|
||||
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
@ -115,6 +116,13 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
text_model->set_flash_attention_enabled(enabled);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
text_model2->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
text_model->set_weight_adapter(adapter);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
@ -303,11 +311,11 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
int class_token = clean_input_ids[class_token_index[0]];
|
||||
class_idx = tokens_acc + class_token_index[0];
|
||||
std::vector<int> clean_input_ids_tmp;
|
||||
for (uint32_t i = 0; i < class_token_index[0]; i++)
|
||||
for (int i = 0; i < class_token_index[0]; i++)
|
||||
clean_input_ids_tmp.push_back(clean_input_ids[i]);
|
||||
for (uint32_t i = 0; i < (pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs); i++)
|
||||
for (int i = 0; i < (pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs); i++)
|
||||
clean_input_ids_tmp.push_back(class_token);
|
||||
for (uint32_t i = class_token_index[0] + 1; i < clean_input_ids.size(); i++)
|
||||
for (int i = class_token_index[0] + 1; i < clean_input_ids.size(); i++)
|
||||
clean_input_ids_tmp.push_back(clean_input_ids[i]);
|
||||
clean_input_ids.clear();
|
||||
clean_input_ids = clean_input_ids_tmp;
|
||||
@ -322,7 +330,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
|
||||
tokenizer.pad_tokens(tokens, weights, max_length, padding);
|
||||
int offset = pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs;
|
||||
for (uint32_t i = 0; i < tokens.size(); i++) {
|
||||
for (int i = 0; i < tokens.size(); i++) {
|
||||
// if (class_idx + 1 <= i && i < class_idx + 1 + 2*num_input_imgs) // photomaker V2 has num_tokens(=2)*num_input_imgs
|
||||
if (class_idx + 1 <= i && i < class_idx + 1 + offset) // photomaker V2 has num_tokens(=2)*num_input_imgs
|
||||
// hardcode for now
|
||||
@ -783,6 +791,18 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
@ -1191,6 +1211,15 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
@ -1440,6 +1469,12 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (t5) {
|
||||
t5->set_weight_adapter(adapter);
|
||||
@ -1584,7 +1619,7 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
|
||||
modify_mask_to_attend_padding(t5_attn_mask, ggml_nelements(t5_attn_mask), mask_pad);
|
||||
modify_mask_to_attend_padding(t5_attn_mask, static_cast<int>(ggml_nelements(t5_attn_mask)), mask_pad);
|
||||
|
||||
return {hidden_states, t5_attn_mask, nullptr};
|
||||
}
|
||||
@ -1614,9 +1649,9 @@ struct LLMEmbedder : public Conditioner {
|
||||
bool enable_vision = false)
|
||||
: version(version) {
|
||||
LLM::LLMArch arch = LLM::LLMArch::QWEN2_5_VL;
|
||||
if (sd_version_is_flux2(version)) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
arch = LLM::LLMArch::MISTRAL_SMALL_3_2;
|
||||
} else if (sd_version_is_z_image(version) || version == VERSION_OVIS_IMAGE) {
|
||||
} else if (sd_version_is_z_image(version) || version == VERSION_OVIS_IMAGE || version == VERSION_FLUX2_KLEIN) {
|
||||
arch = LLM::LLMArch::QWEN3;
|
||||
}
|
||||
if (arch == LLM::LLMArch::MISTRAL_SMALL_3_2) {
|
||||
@ -1650,6 +1685,10 @@ struct LLMEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
llm->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (llm) {
|
||||
llm->set_weight_adapter(adapter);
|
||||
@ -1708,6 +1747,9 @@ struct LLMEmbedder : public Conditioner {
|
||||
int prompt_template_encode_start_idx = 34;
|
||||
int max_length = 0;
|
||||
std::set<int> out_layers;
|
||||
std::vector<int> tokens;
|
||||
std::vector<float> weights;
|
||||
std::vector<float> mask;
|
||||
if (llm->enable_vision && conditioner_params.ref_images.size() > 0) {
|
||||
LOG_INFO("QwenImageEditPlusPipeline");
|
||||
prompt_template_encode_start_idx = 64;
|
||||
@ -1723,8 +1765,8 @@ struct LLMEmbedder : public Conditioner {
|
||||
double factor = llm->params.vision.patch_size * llm->params.vision.spatial_merge_size;
|
||||
int height = image.height;
|
||||
int width = image.width;
|
||||
int h_bar = static_cast<int>(std::round(height / factor)) * factor;
|
||||
int w_bar = static_cast<int>(std::round(width / factor)) * factor;
|
||||
int h_bar = static_cast<int>(std::round(height / factor) * factor);
|
||||
int w_bar = static_cast<int>(std::round(width / factor) * factor);
|
||||
|
||||
if (static_cast<double>(h_bar) * w_bar > max_pixels) {
|
||||
double beta = std::sqrt((height * width) / static_cast<double>(max_pixels));
|
||||
@ -1752,7 +1794,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
ggml_tensor* image_embed = nullptr;
|
||||
llm->encode_image(n_threads, image_tensor, &image_embed, work_ctx);
|
||||
image_embeds.emplace_back(image_embed_idx, image_embed);
|
||||
image_embed_idx += 1 + image_embed->ne[1] + 6;
|
||||
image_embed_idx += 1 + static_cast<int>(image_embed->ne[1]) + 6;
|
||||
|
||||
img_prompt += "Picture " + std::to_string(i + 1) + ": <|vision_start|>"; // [24669, 220, index, 25, 220, 151652]
|
||||
int64_t num_image_tokens = image_embed->ne[1];
|
||||
@ -1771,7 +1813,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
} else if (version == VERSION_FLUX2) {
|
||||
prompt_template_encode_start_idx = 0;
|
||||
out_layers = {10, 20, 30};
|
||||
|
||||
@ -1793,17 +1835,28 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
} else if (version == VERSION_FLUX2_KLEIN) {
|
||||
prompt_template_encode_start_idx = 0;
|
||||
out_layers = {10, 20, 30};
|
||||
max_length = 512;
|
||||
out_layers = {9, 18, 27};
|
||||
|
||||
prompt = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
prompt = "<|im_start|>user\n";
|
||||
|
||||
prompt_attn_range.first = prompt.size();
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = prompt.size();
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "[/INST]";
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n";
|
||||
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, 0, false);
|
||||
tokens = std::get<0>(tokens_and_weights);
|
||||
weights = std::get<1>(tokens_and_weights);
|
||||
|
||||
mask.insert(mask.end(), tokens.size(), 1.f);
|
||||
if (tokens.size() < max_length) {
|
||||
mask.insert(mask.end(), max_length - tokens.size(), 0.f);
|
||||
tokenizer->pad_tokens(tokens, weights, max_length, true);
|
||||
}
|
||||
} else if (version == VERSION_OVIS_IMAGE) {
|
||||
prompt_template_encode_start_idx = 28;
|
||||
max_length = prompt_template_encode_start_idx + 256;
|
||||
@ -1827,17 +1880,34 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
}
|
||||
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, max_length, max_length > 0);
|
||||
auto& tokens = std::get<0>(tokens_and_weights);
|
||||
auto& weights = std::get<1>(tokens_and_weights);
|
||||
if (tokens.empty()) {
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, max_length, max_length > 0);
|
||||
tokens = std::get<0>(tokens_and_weights);
|
||||
weights = std::get<1>(tokens_and_weights);
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = nullptr; // [N, n_token, 3584]
|
||||
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
|
||||
ggml_tensor* attention_mask = nullptr;
|
||||
if (!mask.empty()) {
|
||||
attention_mask = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, mask.size(), mask.size());
|
||||
ggml_ext_tensor_iter(attention_mask, [&](ggml_tensor* attention_mask, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = 0.f;
|
||||
if (mask[i0] == 0.f) {
|
||||
value = -INFINITY;
|
||||
} else if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
ggml_ext_tensor_set_f32(attention_mask, value, i0, i1, i2, i3);
|
||||
});
|
||||
}
|
||||
|
||||
llm->compute(n_threads,
|
||||
input_ids,
|
||||
attention_mask,
|
||||
image_embeds,
|
||||
out_layers,
|
||||
&hidden_states,
|
||||
@ -1861,7 +1931,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
GGML_ASSERT(hidden_states->ne[1] > prompt_template_encode_start_idx);
|
||||
|
||||
int64_t min_length = 0;
|
||||
if (sd_version_is_flux2(version)) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
min_length = 512;
|
||||
}
|
||||
|
||||
|
||||
372
denoiser.hpp
@ -1,6 +1,8 @@
|
||||
#ifndef __DENOISER_HPP__
|
||||
#define __DENOISER_HPP__
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#include "gits_noise.inl"
|
||||
|
||||
@ -245,7 +247,7 @@ struct SGMUniformScheduler : SigmaScheduler {
|
||||
int t_max = TIMESTEPS - 1;
|
||||
int t_min = 0;
|
||||
std::vector<float> timesteps = linear_space(static_cast<float>(t_max), static_cast<float>(t_min), n + 1);
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
result.push_back(t_to_sigma_func(timesteps[i]));
|
||||
}
|
||||
result.push_back(0.0f);
|
||||
@ -259,11 +261,11 @@ struct LCMScheduler : SigmaScheduler {
|
||||
result.reserve(n + 1);
|
||||
const int original_steps = 50;
|
||||
const int k = TIMESTEPS / original_steps;
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
// the rounding ensures we match the training schedule of the LCM model
|
||||
int index = (i * original_steps) / n;
|
||||
int timestep = (original_steps - index) * k - 1;
|
||||
result.push_back(t_to_sigma(timestep));
|
||||
result.push_back(t_to_sigma(static_cast<float>(timestep)));
|
||||
}
|
||||
result.push_back(0.0f);
|
||||
return result;
|
||||
@ -276,6 +278,10 @@ struct KarrasScheduler : SigmaScheduler {
|
||||
// but does anybody ever bother to touch them?
|
||||
float rho = 7.f;
|
||||
|
||||
if (sigma_min <= 1e-6f) {
|
||||
sigma_min = 1e-6f;
|
||||
}
|
||||
|
||||
std::vector<float> result(n + 1);
|
||||
|
||||
float min_inv_rho = pow(sigma_min, (1.f / rho));
|
||||
@ -347,7 +353,95 @@ struct SmoothStepScheduler : SigmaScheduler {
|
||||
}
|
||||
};
|
||||
|
||||
// Implementation adapted from https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608
|
||||
struct BongTangentScheduler : SigmaScheduler {
|
||||
static constexpr float kPi = 3.14159265358979323846f;
|
||||
|
||||
static std::vector<float> get_bong_tangent_sigmas(int steps, float slope, float pivot, float start, float end) {
|
||||
std::vector<float> sigmas;
|
||||
if (steps <= 0) {
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
float smax = ((2.0f / kPi) * atanf(-slope * (0.0f - pivot)) + 1.0f) * 0.5f;
|
||||
float smin = ((2.0f / kPi) * atanf(-slope * ((float)(steps - 1) - pivot)) + 1.0f) * 0.5f;
|
||||
float srange = smax - smin;
|
||||
float sscale = start - end;
|
||||
|
||||
sigmas.reserve(steps);
|
||||
|
||||
if (fabsf(srange) < 1e-8f) {
|
||||
if (steps == 1) {
|
||||
sigmas.push_back(start);
|
||||
return sigmas;
|
||||
}
|
||||
for (int i = 0; i < steps; ++i) {
|
||||
float t = (float)i / (float)(steps - 1);
|
||||
sigmas.push_back(start + (end - start) * t);
|
||||
}
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
float inv_srange = 1.0f / srange;
|
||||
for (int x = 0; x < steps; ++x) {
|
||||
float v = ((2.0f / kPi) * atanf(-slope * ((float)x - pivot)) + 1.0f) * 0.5f;
|
||||
float sigma = ((v - smin) * inv_srange) * sscale + end;
|
||||
sigmas.push_back(sigma);
|
||||
}
|
||||
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t /*t_to_sigma*/) override {
|
||||
std::vector<float> result;
|
||||
if (n == 0) {
|
||||
return result;
|
||||
}
|
||||
|
||||
float start = sigma_max;
|
||||
float end = sigma_min;
|
||||
float middle = sigma_min + (sigma_max - sigma_min) * 0.5f;
|
||||
|
||||
float pivot_1 = 0.6f;
|
||||
float pivot_2 = 0.6f;
|
||||
float slope_1 = 0.2f;
|
||||
float slope_2 = 0.2f;
|
||||
|
||||
int steps = static_cast<int>(n) + 2;
|
||||
int midpoint = static_cast<int>(((float)steps * pivot_1 + (float)steps * pivot_2) * 0.5f);
|
||||
int pivot_1_i = static_cast<int>((float)steps * pivot_1);
|
||||
int pivot_2_i = static_cast<int>((float)steps * pivot_2);
|
||||
|
||||
float slope_scale = (float)steps / 40.0f;
|
||||
slope_1 = slope_1 / slope_scale;
|
||||
slope_2 = slope_2 / slope_scale;
|
||||
|
||||
int stage_2_len = steps - midpoint;
|
||||
int stage_1_len = steps - stage_2_len;
|
||||
|
||||
std::vector<float> sigmas_1 = get_bong_tangent_sigmas(stage_1_len, slope_1, (float)pivot_1_i, start, middle);
|
||||
std::vector<float> sigmas_2 = get_bong_tangent_sigmas(stage_2_len, slope_2, (float)(pivot_2_i - stage_1_len), middle, end);
|
||||
|
||||
if (!sigmas_1.empty()) {
|
||||
sigmas_1.pop_back();
|
||||
}
|
||||
|
||||
result.reserve(n + 1);
|
||||
result.insert(result.end(), sigmas_1.begin(), sigmas_1.end());
|
||||
result.insert(result.end(), sigmas_2.begin(), sigmas_2.end());
|
||||
|
||||
if (result.size() < n + 1) {
|
||||
while (result.size() < n + 1) {
|
||||
result.push_back(end);
|
||||
}
|
||||
} else if (result.size() > n + 1) {
|
||||
result.resize(n + 1);
|
||||
}
|
||||
|
||||
result[n] = 0.0f;
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
struct KLOptimalScheduler : SigmaScheduler {
|
||||
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) override {
|
||||
std::vector<float> sigmas;
|
||||
@ -355,27 +449,28 @@ struct KLOptimalScheduler : SigmaScheduler {
|
||||
if (n == 0) {
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
sigmas.push_back(sigma_max);
|
||||
sigmas.push_back(0.0f);
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
if (sigma_min <= 1e-6f) {
|
||||
sigma_min = 1e-6f;
|
||||
}
|
||||
|
||||
sigmas.reserve(n + 1);
|
||||
|
||||
float alpha_min = std::atan(sigma_min);
|
||||
float alpha_max = std::atan(sigma_max);
|
||||
|
||||
for (uint32_t i = 0; i < n; ++i) {
|
||||
// t goes from 0.0 to 1.0
|
||||
float t = static_cast<float>(i) / static_cast<float>(n - 1);
|
||||
|
||||
// Interpolate in the angle domain
|
||||
float t = static_cast<float>(i) / static_cast<float>(n - 1);
|
||||
float angle = t * alpha_min + (1.0f - t) * alpha_max;
|
||||
|
||||
// Convert back to sigma
|
||||
sigmas.push_back(std::tan(angle));
|
||||
}
|
||||
|
||||
// Append the final zero to sigma
|
||||
sigmas.push_back(0.0f);
|
||||
|
||||
return sigmas;
|
||||
@ -427,6 +522,10 @@ struct Denoiser {
|
||||
LOG_INFO("get_sigmas with SmoothStep scheduler");
|
||||
scheduler = std::make_shared<SmoothStepScheduler>();
|
||||
break;
|
||||
case BONG_TANGENT_SCHEDULER:
|
||||
LOG_INFO("get_sigmas with bong_tangent scheduler");
|
||||
scheduler = std::make_shared<BongTangentScheduler>();
|
||||
break;
|
||||
case KL_OPTIMAL_SCHEDULER:
|
||||
LOG_INFO("get_sigmas with KL Optimal scheduler");
|
||||
scheduler = std::make_shared<KLOptimalScheduler>();
|
||||
@ -521,8 +620,8 @@ struct CompVisVDenoiser : public CompVisDenoiser {
|
||||
};
|
||||
|
||||
struct EDMVDenoiser : public CompVisVDenoiser {
|
||||
float min_sigma = 0.002;
|
||||
float max_sigma = 120.0;
|
||||
float min_sigma = 0.002f;
|
||||
float max_sigma = 120.0f;
|
||||
|
||||
EDMVDenoiser(float min_sigma = 0.002, float max_sigma = 120.0)
|
||||
: min_sigma(min_sigma), max_sigma(max_sigma) {
|
||||
@ -533,7 +632,7 @@ struct EDMVDenoiser : public CompVisVDenoiser {
|
||||
}
|
||||
|
||||
float sigma_to_t(float s) override {
|
||||
return 0.25 * std::log(s);
|
||||
return 0.25f * std::log(s);
|
||||
}
|
||||
|
||||
float sigma_min() override {
|
||||
@ -565,7 +664,7 @@ struct DiscreteFlowDenoiser : public Denoiser {
|
||||
|
||||
void set_parameters() {
|
||||
for (int i = 1; i < TIMESTEPS + 1; i++) {
|
||||
sigmas[i - 1] = t_to_sigma(i);
|
||||
sigmas[i - 1] = t_to_sigma(static_cast<float>(i));
|
||||
}
|
||||
}
|
||||
|
||||
@ -608,7 +707,7 @@ struct DiscreteFlowDenoiser : public Denoiser {
|
||||
};
|
||||
|
||||
float flux_time_shift(float mu, float sigma, float t) {
|
||||
return std::exp(mu) / (std::exp(mu) + std::pow((1.0 / t - 1.0), sigma));
|
||||
return ::expf(mu) / (::expf(mu) + ::powf((1.0f / t - 1.0f), sigma));
|
||||
}
|
||||
|
||||
struct FluxFlowDenoiser : public Denoiser {
|
||||
@ -628,7 +727,7 @@ struct FluxFlowDenoiser : public Denoiser {
|
||||
void set_parameters(float shift) {
|
||||
set_shift(shift);
|
||||
for (int i = 0; i < TIMESTEPS; i++) {
|
||||
sigmas[i] = t_to_sigma(i);
|
||||
sigmas[i] = t_to_sigma(static_cast<float>(i));
|
||||
}
|
||||
}
|
||||
|
||||
@ -869,7 +968,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
// denoise
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
ggml_tensor* denoised = model(x, sigmas[i], -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
@ -927,7 +1026,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
// denoise
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
ggml_tensor* denoised = model(x, sigmas[i], -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
@ -1323,15 +1422,12 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// - pred_sample_direction -> "direction pointing to
|
||||
// x_t"
|
||||
// - pred_prev_sample -> "x_t-1"
|
||||
int timestep =
|
||||
roundf(TIMESTEPS -
|
||||
i * ((float)TIMESTEPS / steps)) -
|
||||
1;
|
||||
int timestep = static_cast<int>(roundf(TIMESTEPS - i * ((float)TIMESTEPS / steps))) - 1;
|
||||
// 1. get previous step value (=t-1)
|
||||
int prev_timestep = timestep - TIMESTEPS / steps;
|
||||
int prev_timestep = timestep - TIMESTEPS / static_cast<int>(steps);
|
||||
// The sigma here is chosen to cause the
|
||||
// CompVisDenoiser to produce t = timestep
|
||||
float sigma = compvis_sigmas[timestep];
|
||||
float sigma = static_cast<float>(compvis_sigmas[timestep]);
|
||||
if (i == 0) {
|
||||
// The function add_noise intializes x to
|
||||
// Diffusers' latents * sigma (as in Diffusers'
|
||||
@ -1388,10 +1484,10 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
}
|
||||
}
|
||||
// 2. compute alphas, betas
|
||||
float alpha_prod_t = alphas_cumprod[timestep];
|
||||
float alpha_prod_t = static_cast<float>(alphas_cumprod[timestep]);
|
||||
// Note final_alpha_cumprod = alphas_cumprod[0] due to
|
||||
// trailing timestep spacing
|
||||
float alpha_prod_t_prev = prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0];
|
||||
float alpha_prod_t_prev = static_cast<float>(prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0]);
|
||||
float beta_prod_t = 1 - alpha_prod_t;
|
||||
// 3. compute predicted original sample from predicted
|
||||
// noise also called "predicted x_0" of formula (12)
|
||||
@ -1438,8 +1534,8 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// Two step inner loop without an explicit
|
||||
// tensor
|
||||
float pred_sample_direction =
|
||||
std::sqrt(1 - alpha_prod_t_prev -
|
||||
std::pow(std_dev_t, 2)) *
|
||||
::sqrtf(1 - alpha_prod_t_prev -
|
||||
::powf(std_dev_t, 2)) *
|
||||
vec_model_output[j];
|
||||
vec_x[j] = std::sqrt(alpha_prod_t_prev) *
|
||||
vec_pred_original_sample[j] +
|
||||
@ -1514,7 +1610,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// Begin k-diffusion specific workaround for
|
||||
// evaluating F_theta(x; ...) from D(x, sigma), same
|
||||
// as in DDIM (and see there for detailed comments)
|
||||
float sigma = compvis_sigmas[timestep];
|
||||
float sigma = static_cast<float>(compvis_sigmas[timestep]);
|
||||
if (i == 0) {
|
||||
float* vec_x = (float*)x->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
@ -1553,14 +1649,14 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// is different from the notation alpha_t in
|
||||
// DPM-Solver. In fact, we have alpha_{t_n} =
|
||||
// \sqrt{\hat{alpha_n}}, [...]"
|
||||
float alpha_prod_t = alphas_cumprod[timestep];
|
||||
float alpha_prod_t = static_cast<float>(alphas_cumprod[timestep]);
|
||||
float beta_prod_t = 1 - alpha_prod_t;
|
||||
// Note final_alpha_cumprod = alphas_cumprod[0] since
|
||||
// TCD is always "trailing"
|
||||
float alpha_prod_t_prev = prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0];
|
||||
float alpha_prod_t_prev = static_cast<float>(prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0]);
|
||||
// The subscript _s are the only portion in this
|
||||
// section (2) unique to TCD
|
||||
float alpha_prod_s = alphas_cumprod[timestep_s];
|
||||
float alpha_prod_s = static_cast<float>(alphas_cumprod[timestep_s]);
|
||||
float beta_prod_s = 1 - alpha_prod_s;
|
||||
// 3. Compute the predicted noised sample x_s based on
|
||||
// the model parameterization
|
||||
@ -1633,6 +1729,216 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case RES_MULTISTEP_SAMPLE_METHOD: // Res Multistep sampler
|
||||
{
|
||||
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x);
|
||||
|
||||
bool have_old_sigma = false;
|
||||
float old_sigma_down = 0.0f;
|
||||
|
||||
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||
auto sigma_fn = [](float t) -> float { return expf(-t); };
|
||||
auto phi1_fn = [](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||
}
|
||||
return (expf(t) - 1.0f) / t;
|
||||
};
|
||||
auto phi2_fn = [&](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||
}
|
||||
float phi1_val = phi1_fn(t);
|
||||
return (phi1_val - 1.0f) / t;
|
||||
};
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float sigma_from = sigmas[i];
|
||||
float sigma_to = sigmas[i + 1];
|
||||
float sigma_up = 0.0f;
|
||||
float sigma_down = sigma_to;
|
||||
|
||||
if (eta > 0.0f) {
|
||||
float sigma_from_sq = sigma_from * sigma_from;
|
||||
float sigma_to_sq = sigma_to * sigma_to;
|
||||
if (sigma_from_sq > 0.0f) {
|
||||
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||
if (term > 0.0f) {
|
||||
sigma_up = eta * std::sqrt(term);
|
||||
}
|
||||
}
|
||||
sigma_up = std::min(sigma_up, sigma_to);
|
||||
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||
}
|
||||
|
||||
if (sigma_down == 0.0f || !have_old_sigma) {
|
||||
float dt = sigma_down - sigma_from;
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float d = (vec_x[j] - vec_denoised[j]) / sigma_from;
|
||||
vec_x[j] = vec_x[j] + d * dt;
|
||||
}
|
||||
} else {
|
||||
float t = t_fn(sigma_from);
|
||||
float t_old = t_fn(old_sigma_down);
|
||||
float t_next = t_fn(sigma_down);
|
||||
float t_prev = t_fn(sigmas[i - 1]);
|
||||
float h = t_next - t;
|
||||
float c2 = (t_prev - t_old) / h;
|
||||
|
||||
float phi1_val = phi1_fn(-h);
|
||||
float phi2_val = phi2_fn(-h);
|
||||
float b1 = phi1_val - phi2_val / c2;
|
||||
float b2 = phi2_val / c2;
|
||||
|
||||
if (!std::isfinite(b1)) {
|
||||
b1 = 0.0f;
|
||||
}
|
||||
if (!std::isfinite(b2)) {
|
||||
b2 = 0.0f;
|
||||
}
|
||||
|
||||
float sigma_h = sigma_fn(h);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
float* vec_old_denoised = (float*)old_denoised->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = sigma_h * vec_x[j] + h * (b1 * vec_denoised[j] + b2 * vec_old_denoised[j]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||
ggml_ext_im_set_randn_f32(noise, rng);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_noise = (float*)noise->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||
}
|
||||
}
|
||||
|
||||
float* vec_old_denoised = (float*)old_denoised->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_old_denoised[j] = vec_denoised[j];
|
||||
}
|
||||
|
||||
old_sigma_down = sigma_down;
|
||||
have_old_sigma = true;
|
||||
}
|
||||
} break;
|
||||
case RES_2S_SAMPLE_METHOD: // Res 2s sampler
|
||||
{
|
||||
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* x0 = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
|
||||
|
||||
const float c2 = 0.5f;
|
||||
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||
auto phi1_fn = [](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||
}
|
||||
return (expf(t) - 1.0f) / t;
|
||||
};
|
||||
auto phi2_fn = [&](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||
}
|
||||
float phi1_val = phi1_fn(t);
|
||||
return (phi1_val - 1.0f) / t;
|
||||
};
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
float sigma_from = sigmas[i];
|
||||
float sigma_to = sigmas[i + 1];
|
||||
|
||||
ggml_tensor* denoised = model(x, sigma_from, -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float sigma_up = 0.0f;
|
||||
float sigma_down = sigma_to;
|
||||
if (eta > 0.0f) {
|
||||
float sigma_from_sq = sigma_from * sigma_from;
|
||||
float sigma_to_sq = sigma_to * sigma_to;
|
||||
if (sigma_from_sq > 0.0f) {
|
||||
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||
if (term > 0.0f) {
|
||||
sigma_up = eta * std::sqrt(term);
|
||||
}
|
||||
}
|
||||
sigma_up = std::min(sigma_up, sigma_to);
|
||||
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||
}
|
||||
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_x0 = (float*)x0->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x0[j] = vec_x[j];
|
||||
}
|
||||
|
||||
if (sigma_down == 0.0f || sigma_from == 0.0f) {
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_denoised[j];
|
||||
}
|
||||
} else {
|
||||
float t = t_fn(sigma_from);
|
||||
float t_next = t_fn(sigma_down);
|
||||
float h = t_next - t;
|
||||
|
||||
float a21 = c2 * phi1_fn(-h * c2);
|
||||
float phi1_val = phi1_fn(-h);
|
||||
float phi2_val = phi2_fn(-h);
|
||||
float b2 = phi2_val / c2;
|
||||
float b1 = phi1_val - b2;
|
||||
|
||||
float sigma_c2 = expf(-(t + h * c2));
|
||||
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
float* vec_x2 = (float*)x2->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||
vec_x2[j] = vec_x0[j] + h * a21 * eps1;
|
||||
}
|
||||
|
||||
ggml_tensor* denoised2 = model(x2, sigma_c2, i + 1);
|
||||
if (denoised2 == nullptr) {
|
||||
return false;
|
||||
}
|
||||
float* vec_denoised2 = (float*)denoised2->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||
float eps2 = vec_denoised2[j] - vec_x0[j];
|
||||
vec_x[j] = vec_x0[j] + h * (b1 * eps1 + b2 * eps2);
|
||||
}
|
||||
}
|
||||
|
||||
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||
ggml_ext_im_set_randn_f32(noise, rng);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_noise = (float*)noise->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
||||
default:
|
||||
LOG_ERROR("Attempting to sample with nonexisting sample method %i", method);
|
||||
|
||||
@ -38,7 +38,7 @@ struct DiffusionModel {
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
|
||||
virtual int64_t get_adm_in_channels() = 0;
|
||||
virtual void set_flash_attn_enabled(bool enabled) = 0;
|
||||
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||
virtual void set_circular_axes(bool circular_x, bool circular_y) = 0;
|
||||
};
|
||||
|
||||
@ -84,7 +84,7 @@ struct UNetModel : public DiffusionModel {
|
||||
return unet.unet.adm_in_channels;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
unet.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
@ -149,7 +149,7 @@ struct MMDiTModel : public DiffusionModel {
|
||||
return 768 + 1280;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
mmdit.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
@ -215,7 +215,7 @@ struct FluxModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
flux.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
@ -286,7 +286,7 @@ struct WanModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
wan.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
@ -320,8 +320,9 @@ struct QwenImageModel : public DiffusionModel {
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "model.diffusion_model",
|
||||
SDVersion version = VERSION_QWEN_IMAGE)
|
||||
: prefix(prefix), qwen_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version) {
|
||||
SDVersion version = VERSION_QWEN_IMAGE,
|
||||
bool zero_cond_t = false)
|
||||
: prefix(prefix), qwen_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version, zero_cond_t) {
|
||||
}
|
||||
|
||||
std::string get_desc() override {
|
||||
@ -356,7 +357,7 @@ struct QwenImageModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
qwen_image.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
@ -423,7 +424,7 @@ struct ZImageModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
z_image.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
# Running distilled models: SSD1B and SDx.x with tiny U-Nets
|
||||
# Running distilled models: SSD1B, Vega and SDx.x with tiny U-Nets
|
||||
|
||||
## Preface
|
||||
|
||||
These models feature a reduced U-Net architecture. Unlike standard SDXL models, the SSD-1B U-Net contains only one middle block and fewer attention layers in its up- and down-blocks, resulting in significantly smaller file sizes. Using these models can reduce inference time by more than 33%. For more details, refer to Segmind's paper: https://arxiv.org/abs/2401.02677v1.
|
||||
These models feature a reduced U-Net architecture. Unlike standard SDXL models, the SSD-1B and Vega U-Net contains only one middle block and fewer attention layers in its up- and down-blocks, resulting in significantly smaller file sizes. Using these models can reduce inference time by more than 33%. For more details, refer to Segmind's paper: https://arxiv.org/abs/2401.02677v1.
|
||||
Similarly, SD1.x- and SD2.x-style models with a tiny U-Net consist of only 6 U-Net blocks, leading to very small files and time savings of up to 50%. For more information, see the paper: https://arxiv.org/pdf/2305.15798.pdf.
|
||||
|
||||
## SSD1B
|
||||
@ -17,7 +17,17 @@ Useful LoRAs are also available:
|
||||
* https://huggingface.co/seungminh/lora-swarovski-SSD-1B/resolve/main/pytorch_lora_weights.safetensors
|
||||
* https://huggingface.co/kylielee505/mylcmlorassd/resolve/main/pytorch_lora_weights.safetensors
|
||||
|
||||
These files can be used out-of-the-box, unlike the models described in the next section.
|
||||
## Vega
|
||||
|
||||
Segmind's Vega model is available online here:
|
||||
|
||||
* https://huggingface.co/segmind/Segmind-Vega/resolve/main/segmind-vega.safetensors
|
||||
|
||||
VegaRT is an example for an LCM-LoRA:
|
||||
|
||||
* https://huggingface.co/segmind/Segmind-VegaRT/resolve/main/pytorch_lora_weights.safetensors
|
||||
|
||||
Both files can be used out-of-the-box, unlike the models described in next sections.
|
||||
|
||||
|
||||
## SD1.x, SD2.x with tiny U-Nets
|
||||
@ -83,7 +93,7 @@ python convert_diffusers_to_original_stable_diffusion.py \
|
||||
The file segmind_tiny-sd.ckpt will be generated and is now ready for use with sd.cpp. You can follow a similar process for the other models mentioned above.
|
||||
|
||||
|
||||
### Another available .ckpt file:
|
||||
##### Another available .ckpt file:
|
||||
|
||||
* https://huggingface.co/ClashSAN/small-sd/resolve/main/tinySDdistilled.ckpt
|
||||
|
||||
@ -97,3 +107,31 @@ for key, value in ckpt['state_dict'].items():
|
||||
ckpt['state_dict'][key] = value.contiguous()
|
||||
torch.save(ckpt, "tinySDdistilled_fixed.ckpt")
|
||||
```
|
||||
|
||||
|
||||
### SDXS-512
|
||||
|
||||
Another very tiny and **incredibly fast** model is SDXS by IDKiro et al. The authors refer to it as *"Real-Time One-Step Latent Diffusion Models with Image Conditions"*. For details read the paper: https://arxiv.org/pdf/2403.16627 . Once again the authors removed some more blocks of U-Net part and unlike other SD1 models they use an adjusted _AutoEncoderTiny_ instead of default _AutoEncoderKL_ for the VAE part.
|
||||
|
||||
##### 1. Download the diffusers model from Hugging Face using Python:
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionPipeline
|
||||
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper")
|
||||
pipe.save_pretrained(save_directory="sdxs")
|
||||
```
|
||||
##### 2. Create a safetensors file
|
||||
|
||||
```bash
|
||||
python convert_diffusers_to_original_stable_diffusion.py \
|
||||
--model_path sdxs --checkpoint_path sdxs.safetensors --half --use_safetensors
|
||||
```
|
||||
|
||||
##### 3. Run the model as follows:
|
||||
|
||||
```bash
|
||||
~/stable-diffusion.cpp/build/bin/sd-cli -m sdxs.safetensors -p "portrait of a lovely cat" \
|
||||
--cfg-scale 1 --steps 1
|
||||
```
|
||||
|
||||
Both options: ``` --cfg-scale 1 ``` and ``` --steps 1 ``` are mandatory here.
|
||||
|
||||
@ -1,15 +1,39 @@
|
||||
## Docker
|
||||
# Docker
|
||||
|
||||
### Building using Docker
|
||||
## Run CLI
|
||||
|
||||
```shell
|
||||
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output ghcr.io/leejet/stable-diffusion.cpp:master [args...]
|
||||
# For example
|
||||
# docker run --rm -v ./models:/models -v ./build:/output ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
## Run server
|
||||
|
||||
```shell
|
||||
docker run --rm --init -v /path/to/models:/models -v /path/to/output/:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master [args...]
|
||||
# For example
|
||||
# docker run --rm --init -v ./models:/models -v ./build:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
## Building using Docker
|
||||
|
||||
```shell
|
||||
docker build -t sd .
|
||||
```
|
||||
|
||||
### Run
|
||||
## Building variants using Docker
|
||||
|
||||
Vulkan:
|
||||
|
||||
```shell
|
||||
docker run -v /path/to/models:/models -v /path/to/output/:/output sd-cli [args...]
|
||||
docker build -f Dockerfile.vulkan -t sd .
|
||||
```
|
||||
|
||||
## Run locally built image's CLI
|
||||
|
||||
```shell
|
||||
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
|
||||
# For example
|
||||
# docker run -v ./models:/models -v ./build:/output sd-cli -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
# docker run --rm -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
## Using ESRGAN to upscale results
|
||||
|
||||
You can use ESRGAN to upscale the generated images. At the moment, only the [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) model is supported. Support for more models of this architecture will be added soon.
|
||||
You can use ESRGAN—such as the model [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)—to upscale the generated images and improve their overall resolution and clarity.
|
||||
|
||||
- Specify the model path using the `--upscale-model PATH` parameter. example:
|
||||
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
# How to Use
|
||||
|
||||
## Download weights
|
||||
## Flux.2-dev
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-dev
|
||||
- gguf: https://huggingface.co/city96/FLUX.2-dev-gguf/tree/main
|
||||
@ -9,7 +11,7 @@
|
||||
- Download Mistral-Small-3.2-24B-Instruct-2506-GGUF
|
||||
- gguf: https://huggingface.co/unsloth/Mistral-Small-3.2-24B-Instruct-2506-GGUF/tree/main
|
||||
|
||||
## Examples
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux2-dev-Q4_K_S.gguf --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf -r .\kontext_input.png -p "change 'flux.cpp' to 'flux2-dev.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu
|
||||
@ -17,5 +19,74 @@
|
||||
|
||||
<img alt="flux2 example" src="../assets/flux2/example.png" />
|
||||
|
||||
## Flux.2 klein 4B / Flux.2 klein base 4B
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-klein-4B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-4B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-4B-GGUF/tree/main
|
||||
- Download FLUX.2-klein-base-4B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-base-4B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-base-4B-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-dev/tree/main
|
||||
- Download Qwen3 4b
|
||||
- safetensors: https://huggingface.co/Comfy-Org/flux2-klein-4B/tree/main/split_files/text_encoders
|
||||
- gguf: https://huggingface.co/unsloth/Qwen3-4B-GGUF/tree/main
|
||||
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "a lovely cat" --cfg-scale 1.0 --steps 4 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-4b" src="../assets/flux2/flux2-klein-4b.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -r .\kontext_input.png -p "change 'flux.cpp' to 'klein.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu --steps 4
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-4b-edit" src="../assets/flux2/flux2-klein-4b-edit.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-base-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "a lovely cat" --cfg-scale 4.0 --steps 20 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-base-4b" src="../assets/flux2/flux2-klein-base-4b.png" />
|
||||
|
||||
## Flux.2 klein 9B / Flux.2 klein base 9B
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-klein-9B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-9B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-9B-GGUF/tree/main
|
||||
- Download FLUX.2-klein-base-9B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-base-9B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-base-9B-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-dev/tree/main
|
||||
- Download Qwen3 8B
|
||||
- safetensors: https://huggingface.co/Comfy-Org/flux2-klein-9B/tree/main/split_files/text_encoders
|
||||
- gguf: https://huggingface.co/unsloth/Qwen3-8B-GGUF/tree/main
|
||||
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -p "a lovely cat" --cfg-scale 1.0 --steps 4 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-9b" src="../assets/flux2/flux2-klein-9b.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -r .\kontext_input.png -p "change 'flux.cpp' to 'klein.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu --steps 4
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-9b-edit" src="../assets/flux2/flux2-klein-9b-edit.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-base-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -p "a lovely cat" --cfg-scale 4.0 --steps 20 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-base-9b" src="../assets/flux2/flux2-klein-base-9b.png" />
|
||||
@ -9,6 +9,9 @@
|
||||
- Qwen Image Edit 2509
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image-Edit_ComfyUI/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/QuantStack/Qwen-Image-Edit-2509-GGUF/tree/main
|
||||
- Qwen Image Edit 2511
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image-Edit_ComfyUI/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/unsloth/Qwen-Image-Edit-2511-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/vae
|
||||
- Download qwen_2.5_vl 7b
|
||||
@ -32,4 +35,14 @@
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\Qwen-Image-Edit-2509-Q4_K_S.gguf --vae ..\..\ComfyUI\models\vae\qwen_image_vae.safetensors --llm ..\..\ComfyUI\models\text_encoders\Qwen2.5-VL-7B-Instruct-Q8_0.gguf --llm_vision ..\..\ComfyUI\models\text_encoders\Qwen2.5-VL-7B-Instruct.mmproj-Q8_0.gguf --cfg-scale 2.5 --sampling-method euler -v --offload-to-cpu --diffusion-fa --flow-shift 3 -r ..\assets\flux\flux1-dev-q8_0.png -p "change 'flux.cpp' to 'Qwen Image Edit 2509'"
|
||||
```
|
||||
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2509.png" />
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2509.png" />
|
||||
|
||||
### Qwen Image Edit 2511
|
||||
|
||||
To use the new Qwen Image Edit 2511 mode, the `--qwen-image-zero-cond-t` flag must be enabled; otherwise, image editing quality will degrade significantly.
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\qwen-image-edit-2511-Q4_K_M.gguf --vae ..\..\ComfyUI\models\vae\qwen_image_vae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_2.5_vl_7b.safetensors --cfg-scale 2.5 --sampling-method euler -v --offload-to-cpu --diffusion-fa --flow-shift 3 -r ..\assets\flux\flux1-dev-q8_0.png -p "change 'flux.cpp' to 'edit.cpp'" --qwen-image-zero-cond-t
|
||||
```
|
||||
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2511.png" />
|
||||
@ -7,6 +7,9 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
||||
- Download Z-Image-Turbo
|
||||
- safetensors: https://huggingface.co/Comfy-Org/z_image_turbo/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/leejet/Z-Image-Turbo-GGUF/tree/main
|
||||
- Download Z-Image
|
||||
- safetensors: https://huggingface.co/Comfy-Org/z_image/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/unsloth/Z-Image-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main
|
||||
- Download Qwen3 4b
|
||||
@ -15,12 +18,22 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
||||
|
||||
## Examples
|
||||
|
||||
### Z-Image-Turbo
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model z_image_turbo-Q3_K.gguf --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\Qwen3-4B-Instruct-2507-Q4_K_M.gguf -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 1.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||
```
|
||||
|
||||
<img width="256" alt="z-image example" src="../assets/z_image/q3_K.png" />
|
||||
|
||||
### Z-Image-Base
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\z_image_bf16.safetensors --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 5.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||
```
|
||||
|
||||
<img width="256" alt="z-image example" src="../assets/z_image/base_bf16.png" />
|
||||
|
||||
## Comparison of Different Quantization Types
|
||||
|
||||
| bf16 | q8_0 | q6_K | q5_0 | q4_K | q4_0 | q3_K | q2_K|
|
||||
|
||||
@ -51,7 +51,7 @@ public:
|
||||
x_cat = ggml_concat(ctx->ggml_ctx, x_cat, x4, 2);
|
||||
auto x5 = conv5->forward(ctx, x_cat);
|
||||
|
||||
x5 = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
||||
x5 = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
||||
return x5;
|
||||
}
|
||||
};
|
||||
@ -76,7 +76,7 @@ public:
|
||||
out = rdb2->forward(ctx, out);
|
||||
out = rdb3->forward(ctx, out);
|
||||
|
||||
out = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, out, 0.2f), x);
|
||||
out = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, out, 0.2f), x);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
@ -4,7 +4,8 @@
|
||||
usage: ./bin/sd-cli [options]
|
||||
|
||||
CLI Options:
|
||||
-o, --output <string> path to write result image to (default: ./output.png)
|
||||
-o, --output <string> path to write result image to. you can use printf-style %d format specifiers for image sequences (default: ./output.png) (eg. output_%03d.png)
|
||||
--output-begin-idx <int> starting index for output image sequence, must be non-negative (default 0 if specified %d in output path, 1 otherwise)
|
||||
--preview-path <string> path to write preview image to (default: ./preview.png)
|
||||
--preview-interval <int> interval in denoising steps between consecutive updates of the image preview file (default is 1, meaning updating at
|
||||
every step)
|
||||
@ -47,10 +48,12 @@ Context Options:
|
||||
--vae-tiling process vae in tiles to reduce memory usage
|
||||
--force-sdxl-vae-conv-scale force use of conv scale on sdxl vae
|
||||
--offload-to-cpu place the weights in RAM to save VRAM, and automatically load them into VRAM when needed
|
||||
--mmap whether to memory-map model
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--clip-on-cpu keep clip in cpu (for low vram)
|
||||
--vae-on-cpu keep vae in cpu (for low vram)
|
||||
--diffusion-fa use flash attention in the diffusion model
|
||||
--fa use flash attention
|
||||
--diffusion-fa use flash attention in the diffusion model only
|
||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||
--circular enable circular padding for convolutions
|
||||
@ -105,14 +108,14 @@ Generation Options:
|
||||
medium
|
||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||
--pm-style-strength <float>
|
||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||
@ -121,24 +124,20 @@ Generation Options:
|
||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||
kl_optimal, lcm], default: discrete
|
||||
kl_optimal, lcm, bong_tangent], default: discrete
|
||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||
-r, --ref-image reference image for Flux Kontext models (can be used multiple times)
|
||||
--cache-mode caching method: 'easycache' (DiT), 'ucache' (UNET), 'dbcache'/'taylorseer'/'cache-dit' (DiT block-level)
|
||||
--cache-option named cache params (key=value format, comma-separated):
|
||||
- easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=
|
||||
- dbcache/taylorseer/cache-dit:
|
||||
Fn=,Bn=,threshold=,warmup=
|
||||
Examples: "threshold=0.25" or
|
||||
"threshold=1.5,reset=0"
|
||||
--cache-option named cache params (key=value format, comma-separated). easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples:
|
||||
"threshold=0.25" or "threshold=1.5,reset=0"
|
||||
--cache-preset cache-dit preset: 'slow'/'s', 'medium'/'m', 'fast'/'f', 'ultra'/'u'
|
||||
--scm-mask SCM steps mask for cache-dit: comma-separated 0/1 (e.g., "1,1,1,0,0,1,0,0,1,0") - 1=compute, 0=can cache
|
||||
--scm-policy SCM policy: 'dynamic' (default) or 'static'
|
||||
|
||||
@ -172,9 +172,9 @@ int create_mjpg_avi_from_sd_images(const char* filename, sd_image_t* images, int
|
||||
|
||||
// Write '00dc' chunk (video frame)
|
||||
fwrite("00dc", 4, 1, f);
|
||||
write_u32_le(f, jpeg_data.size);
|
||||
write_u32_le(f, (uint32_t)jpeg_data.size);
|
||||
index[i].offset = ftell(f) - 8;
|
||||
index[i].size = jpeg_data.size;
|
||||
index[i].size = (uint32_t)jpeg_data.size;
|
||||
fwrite(jpeg_data.buf, 1, jpeg_data.size, f);
|
||||
|
||||
// Align to even byte size
|
||||
|
||||
@ -26,9 +26,12 @@ const char* previews_str[] = {
|
||||
"vae",
|
||||
};
|
||||
|
||||
std::regex format_specifier_regex("(?:[^%]|^)(?:%%)*(%\\d{0,3}d)");
|
||||
|
||||
struct SDCliParams {
|
||||
SDMode mode = IMG_GEN;
|
||||
std::string output_path = "output.png";
|
||||
int output_begin_idx = -1;
|
||||
|
||||
bool verbose = false;
|
||||
bool canny_preprocess = false;
|
||||
@ -50,7 +53,7 @@ struct SDCliParams {
|
||||
options.string_options = {
|
||||
{"-o",
|
||||
"--output",
|
||||
"path to write result image to (default: ./output.png)",
|
||||
"path to write result image to. you can use printf-style %d format specifiers for image sequences (default: ./output.png) (eg. output_%03d.png)",
|
||||
&output_path},
|
||||
{"",
|
||||
"--preview-path",
|
||||
@ -63,6 +66,10 @@ struct SDCliParams {
|
||||
"--preview-interval",
|
||||
"interval in denoising steps between consecutive updates of the image preview file (default is 1, meaning updating at every step)",
|
||||
&preview_interval},
|
||||
{"",
|
||||
"--output-begin-idx",
|
||||
"starting index for output image sequence, must be non-negative (default 0 if specified %d in output path, 1 otherwise)",
|
||||
&output_begin_idx},
|
||||
};
|
||||
|
||||
options.bool_options = {
|
||||
@ -238,7 +245,7 @@ std::string get_image_params(const SDCliParams& cli_params, const SDContextParam
|
||||
parameter_string += "Guidance: " + std::to_string(gen_params.sample_params.guidance.distilled_guidance) + ", ";
|
||||
parameter_string += "Eta: " + std::to_string(gen_params.sample_params.eta) + ", ";
|
||||
parameter_string += "Seed: " + std::to_string(seed) + ", ";
|
||||
parameter_string += "Size: " + std::to_string(gen_params.width) + "x" + std::to_string(gen_params.height) + ", ";
|
||||
parameter_string += "Size: " + std::to_string(gen_params.get_resolved_width()) + "x" + std::to_string(gen_params.get_resolved_height()) + ", ";
|
||||
parameter_string += "Model: " + sd_basename(ctx_params.model_path) + ", ";
|
||||
parameter_string += "RNG: " + std::string(sd_rng_type_name(ctx_params.rng_type)) + ", ";
|
||||
if (ctx_params.sampler_rng_type != RNG_TYPE_COUNT) {
|
||||
@ -344,6 +351,114 @@ void step_callback(int step, int frame_count, sd_image_t* image, bool is_noisy,
|
||||
}
|
||||
}
|
||||
|
||||
std::string format_frame_idx(std::string pattern, int frame_idx) {
|
||||
std::smatch match;
|
||||
std::string result = pattern;
|
||||
while (std::regex_search(result, match, format_specifier_regex)) {
|
||||
std::string specifier = match.str(1);
|
||||
char buffer[32];
|
||||
snprintf(buffer, sizeof(buffer), specifier.c_str(), frame_idx);
|
||||
result.replace(match.position(1), match.length(1), buffer);
|
||||
}
|
||||
|
||||
// Then replace all '%%' with '%'
|
||||
size_t pos = 0;
|
||||
while ((pos = result.find("%%", pos)) != std::string::npos) {
|
||||
result.replace(pos, 2, "%");
|
||||
pos += 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool save_results(const SDCliParams& cli_params,
|
||||
const SDContextParams& ctx_params,
|
||||
const SDGenerationParams& gen_params,
|
||||
sd_image_t* results,
|
||||
int num_results) {
|
||||
if (results == nullptr || num_results <= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
fs::path out_path = cli_params.output_path;
|
||||
|
||||
if (!out_path.parent_path().empty()) {
|
||||
std::error_code ec;
|
||||
fs::create_directories(out_path.parent_path(), ec);
|
||||
if (ec) {
|
||||
LOG_ERROR("failed to create directory '%s': %s",
|
||||
out_path.parent_path().string().c_str(), ec.message().c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
fs::path base_path = out_path;
|
||||
fs::path ext = out_path.has_extension() ? out_path.extension() : fs::path{};
|
||||
if (!ext.empty())
|
||||
base_path.replace_extension();
|
||||
|
||||
std::string ext_lower = ext.string();
|
||||
std::transform(ext_lower.begin(), ext_lower.end(), ext_lower.begin(), ::tolower);
|
||||
bool is_jpg = (ext_lower == ".jpg" || ext_lower == ".jpeg" || ext_lower == ".jpe");
|
||||
|
||||
int output_begin_idx = cli_params.output_begin_idx;
|
||||
if (output_begin_idx < 0) {
|
||||
output_begin_idx = 0;
|
||||
}
|
||||
|
||||
auto write_image = [&](const fs::path& path, int idx) {
|
||||
const sd_image_t& img = results[idx];
|
||||
if (!img.data)
|
||||
return;
|
||||
|
||||
std::string params = get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + idx);
|
||||
int ok = 0;
|
||||
if (is_jpg) {
|
||||
ok = stbi_write_jpg(path.string().c_str(), img.width, img.height, img.channel, img.data, 90, params.c_str());
|
||||
} else {
|
||||
ok = stbi_write_png(path.string().c_str(), img.width, img.height, img.channel, img.data, 0, params.c_str());
|
||||
}
|
||||
LOG_INFO("save result image %d to '%s' (%s)", idx, path.string().c_str(), ok ? "success" : "failure");
|
||||
};
|
||||
|
||||
if (std::regex_search(cli_params.output_path, format_specifier_regex)) {
|
||||
if (!is_jpg && ext_lower != ".png")
|
||||
ext = ".png";
|
||||
fs::path pattern = base_path;
|
||||
pattern += ext;
|
||||
|
||||
for (int i = 0; i < num_results; ++i) {
|
||||
fs::path img_path = format_frame_idx(pattern.string(), output_begin_idx + i);
|
||||
write_image(img_path, i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (cli_params.mode == VID_GEN && num_results > 1) {
|
||||
if (ext_lower != ".avi")
|
||||
ext = ".avi";
|
||||
fs::path video_path = base_path;
|
||||
video_path += ext;
|
||||
create_mjpg_avi_from_sd_images(video_path.string().c_str(), results, num_results, gen_params.fps);
|
||||
LOG_INFO("save result MJPG AVI video to '%s'", video_path.string().c_str());
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!is_jpg && ext_lower != ".png")
|
||||
ext = ".png";
|
||||
|
||||
for (int i = 0; i < num_results; ++i) {
|
||||
fs::path img_path = base_path;
|
||||
if (num_results > 1) {
|
||||
img_path += "_" + std::to_string(output_begin_idx + i);
|
||||
}
|
||||
img_path += ext;
|
||||
write_image(img_path, i);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
if (argc > 1 && std::string(argv[1]) == "--version") {
|
||||
std::cout << version_string() << "\n";
|
||||
@ -411,10 +526,10 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
|
||||
bool vae_decode_only = true;
|
||||
sd_image_t init_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t end_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t control_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t mask_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 1, nullptr};
|
||||
sd_image_t init_image = {0, 0, 3, nullptr};
|
||||
sd_image_t end_image = {0, 0, 3, nullptr};
|
||||
sd_image_t control_image = {0, 0, 3, nullptr};
|
||||
sd_image_t mask_image = {0, 0, 1, nullptr};
|
||||
std::vector<sd_image_t> ref_images;
|
||||
std::vector<sd_image_t> pmid_images;
|
||||
std::vector<sd_image_t> control_frames;
|
||||
@ -441,57 +556,79 @@ int main(int argc, const char* argv[]) {
|
||||
control_frames.clear();
|
||||
};
|
||||
|
||||
auto load_image_and_update_size = [&](const std::string& path,
|
||||
sd_image_t& image,
|
||||
bool resize_image = true,
|
||||
int expected_channel = 3) -> bool {
|
||||
int expected_width = 0;
|
||||
int expected_height = 0;
|
||||
if (resize_image && gen_params.width_and_height_are_set()) {
|
||||
expected_width = gen_params.width;
|
||||
expected_height = gen_params.height;
|
||||
}
|
||||
|
||||
if (!load_sd_image_from_file(&image, path.c_str(), expected_width, expected_height, expected_channel)) {
|
||||
LOG_ERROR("load image from '%s' failed", path.c_str());
|
||||
release_all_resources();
|
||||
return false;
|
||||
}
|
||||
|
||||
gen_params.set_width_and_height_if_unset(image.width, image.height);
|
||||
return true;
|
||||
};
|
||||
|
||||
if (gen_params.init_image_path.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
init_image.data = load_image_from_file(gen_params.init_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (init_image.data == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.init_image_path.c_str());
|
||||
release_all_resources();
|
||||
if (!load_image_and_update_size(gen_params.init_image_path, init_image)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.end_image_path.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
end_image.data = load_image_from_file(gen_params.end_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (end_image.data == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.end_image_path.c_str());
|
||||
release_all_resources();
|
||||
if (!load_image_and_update_size(gen_params.init_image_path, end_image)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.ref_image_paths.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
for (auto& path : gen_params.ref_image_paths) {
|
||||
sd_image_t ref_image = {0, 0, 3, nullptr};
|
||||
if (!load_image_and_update_size(path, ref_image, false)) {
|
||||
return 1;
|
||||
}
|
||||
ref_images.push_back(ref_image);
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.mask_image_path.size() > 0) {
|
||||
int c = 0;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
mask_image.data = load_image_from_file(gen_params.mask_image_path.c_str(), width, height, gen_params.width, gen_params.height, 1);
|
||||
if (mask_image.data == nullptr) {
|
||||
if (!load_sd_image_from_file(&mask_image,
|
||||
gen_params.mask_image_path.c_str(),
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
1)) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.mask_image_path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
mask_image.data = (uint8_t*)malloc(gen_params.width * gen_params.height);
|
||||
memset(mask_image.data, 255, gen_params.width * gen_params.height);
|
||||
mask_image.data = (uint8_t*)malloc(gen_params.get_resolved_width() * gen_params.get_resolved_height());
|
||||
if (mask_image.data == nullptr) {
|
||||
LOG_ERROR("malloc mask image failed");
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
mask_image.width = gen_params.get_resolved_width();
|
||||
mask_image.height = gen_params.get_resolved_height();
|
||||
memset(mask_image.data, 255, gen_params.get_resolved_width() * gen_params.get_resolved_height());
|
||||
}
|
||||
|
||||
if (gen_params.control_image_path.size() > 0) {
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
control_image.data = load_image_from_file(gen_params.control_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (control_image.data == nullptr) {
|
||||
if (!load_sd_image_from_file(&control_image,
|
||||
gen_params.control_image_path.c_str(),
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height())) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.control_image_path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
@ -506,29 +643,11 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.ref_image_paths.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
for (auto& path : gen_params.ref_image_paths) {
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
uint8_t* image_buffer = load_image_from_file(path.c_str(), width, height);
|
||||
if (image_buffer == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
ref_images.push_back({(uint32_t)width,
|
||||
(uint32_t)height,
|
||||
3,
|
||||
image_buffer});
|
||||
}
|
||||
}
|
||||
|
||||
if (!gen_params.control_video_path.empty()) {
|
||||
if (!load_images_from_dir(gen_params.control_video_path,
|
||||
control_frames,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.video_frames,
|
||||
cli_params.verbose)) {
|
||||
release_all_resources();
|
||||
@ -602,8 +721,8 @@ int main(int argc, const char* argv[]) {
|
||||
gen_params.auto_resize_ref_image,
|
||||
gen_params.increase_ref_index,
|
||||
mask_image,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.sample_params,
|
||||
gen_params.strength,
|
||||
gen_params.seed,
|
||||
@ -633,8 +752,8 @@ int main(int argc, const char* argv[]) {
|
||||
end_image,
|
||||
control_frames.data(),
|
||||
(int)control_frames.size(),
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.sample_params,
|
||||
gen_params.high_noise_sample_params,
|
||||
gen_params.moe_boundary,
|
||||
@ -642,6 +761,7 @@ int main(int argc, const char* argv[]) {
|
||||
gen_params.seed,
|
||||
gen_params.video_frames,
|
||||
gen_params.vace_strength,
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
@ -687,67 +807,8 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
}
|
||||
|
||||
// create directory if not exists
|
||||
{
|
||||
const fs::path out_path = cli_params.output_path;
|
||||
if (const fs::path out_dir = out_path.parent_path(); !out_dir.empty()) {
|
||||
std::error_code ec;
|
||||
fs::create_directories(out_dir, ec); // OK if already exists
|
||||
if (ec) {
|
||||
LOG_ERROR("failed to create directory '%s': %s",
|
||||
out_dir.string().c_str(), ec.message().c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string base_path;
|
||||
std::string file_ext;
|
||||
std::string file_ext_lower;
|
||||
bool is_jpg;
|
||||
size_t last_dot_pos = cli_params.output_path.find_last_of(".");
|
||||
size_t last_slash_pos = std::min(cli_params.output_path.find_last_of("/"),
|
||||
cli_params.output_path.find_last_of("\\"));
|
||||
if (last_dot_pos != std::string::npos && (last_slash_pos == std::string::npos || last_dot_pos > last_slash_pos)) { // filename has extension
|
||||
base_path = cli_params.output_path.substr(0, last_dot_pos);
|
||||
file_ext = file_ext_lower = cli_params.output_path.substr(last_dot_pos);
|
||||
std::transform(file_ext.begin(), file_ext.end(), file_ext_lower.begin(), ::tolower);
|
||||
is_jpg = (file_ext_lower == ".jpg" || file_ext_lower == ".jpeg" || file_ext_lower == ".jpe");
|
||||
} else {
|
||||
base_path = cli_params.output_path;
|
||||
file_ext = file_ext_lower = "";
|
||||
is_jpg = false;
|
||||
}
|
||||
|
||||
if (cli_params.mode == VID_GEN && num_results > 1) {
|
||||
std::string vid_output_path = cli_params.output_path;
|
||||
if (file_ext_lower == ".png") {
|
||||
vid_output_path = base_path + ".avi";
|
||||
}
|
||||
create_mjpg_avi_from_sd_images(vid_output_path.c_str(), results, num_results, gen_params.fps);
|
||||
LOG_INFO("save result MJPG AVI video to '%s'\n", vid_output_path.c_str());
|
||||
} else {
|
||||
// appending ".png" to absent or unknown extension
|
||||
if (!is_jpg && file_ext_lower != ".png") {
|
||||
base_path += file_ext;
|
||||
file_ext = ".png";
|
||||
}
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
if (results[i].data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
int write_ok;
|
||||
std::string final_image_path = i > 0 ? base_path + "_" + std::to_string(i + 1) + file_ext : base_path + file_ext;
|
||||
if (is_jpg) {
|
||||
write_ok = stbi_write_jpg(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
|
||||
results[i].data, 90, get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + i).c_str());
|
||||
LOG_INFO("save result JPEG image to '%s' (%s)", final_image_path.c_str(), write_ok == 0 ? "failure" : "success");
|
||||
} else {
|
||||
write_ok = stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
|
||||
results[i].data, 0, get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + i).c_str());
|
||||
LOG_INFO("save result PNG image to '%s' (%s)", final_image_path.c_str(), write_ok == 0 ? "failure" : "success");
|
||||
}
|
||||
}
|
||||
if (!save_results(cli_params, ctx_params, gen_params, results, num_results)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
|
||||
@ -95,17 +95,28 @@ static void print_utf8(FILE* stream, const char* utf8) {
|
||||
? GetStdHandle(STD_ERROR_HANDLE)
|
||||
: GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, utf8, -1, NULL, 0);
|
||||
if (wlen <= 0)
|
||||
return;
|
||||
DWORD mode;
|
||||
BOOL is_console = GetConsoleMode(h, &mode);
|
||||
|
||||
wchar_t* wbuf = (wchar_t*)malloc(wlen * sizeof(wchar_t));
|
||||
MultiByteToWideChar(CP_UTF8, 0, utf8, -1, wbuf, wlen);
|
||||
if (is_console) {
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, utf8, -1, NULL, 0);
|
||||
if (wlen <= 0)
|
||||
return;
|
||||
|
||||
DWORD written;
|
||||
WriteConsoleW(h, wbuf, wlen - 1, &written, NULL);
|
||||
wchar_t* wbuf = (wchar_t*)malloc(wlen * sizeof(wchar_t));
|
||||
if (!wbuf)
|
||||
return;
|
||||
|
||||
free(wbuf);
|
||||
MultiByteToWideChar(CP_UTF8, 0, utf8, -1, wbuf, wlen);
|
||||
|
||||
DWORD written;
|
||||
WriteConsoleW(h, wbuf, wlen - 1, &written, NULL);
|
||||
|
||||
free(wbuf);
|
||||
} else {
|
||||
DWORD written;
|
||||
WriteFile(h, utf8, (DWORD)strlen(utf8), &written, NULL);
|
||||
}
|
||||
#else
|
||||
fputs(utf8, stream);
|
||||
#endif
|
||||
@ -434,7 +445,7 @@ struct SDContextParams {
|
||||
std::string photo_maker_path;
|
||||
sd_type_t wtype = SD_TYPE_COUNT;
|
||||
std::string tensor_type_rules;
|
||||
std::string lora_model_dir;
|
||||
std::string lora_model_dir = ".";
|
||||
|
||||
std::map<std::string, std::string> embedding_map;
|
||||
std::vector<sd_embedding_t> embedding_vec;
|
||||
@ -442,9 +453,11 @@ struct SDContextParams {
|
||||
rng_type_t rng_type = CUDA_RNG;
|
||||
rng_type_t sampler_rng_type = RNG_TYPE_COUNT;
|
||||
bool offload_params_to_cpu = false;
|
||||
bool enable_mmap = false;
|
||||
bool control_net_cpu = false;
|
||||
bool clip_on_cpu = false;
|
||||
bool vae_on_cpu = false;
|
||||
bool flash_attn = false;
|
||||
bool diffusion_flash_attn = false;
|
||||
bool diffusion_conv_direct = false;
|
||||
bool vae_conv_direct = false;
|
||||
@ -457,6 +470,8 @@ struct SDContextParams {
|
||||
bool chroma_use_t5_mask = false;
|
||||
int chroma_t5_mask_pad = 1;
|
||||
|
||||
bool qwen_image_zero_cond_t = false;
|
||||
|
||||
prediction_t prediction = PREDICTION_COUNT;
|
||||
lora_apply_mode_t lora_apply_mode = LORA_APPLY_AUTO;
|
||||
|
||||
@ -585,6 +600,10 @@ struct SDContextParams {
|
||||
"--offload-to-cpu",
|
||||
"place the weights in RAM to save VRAM, and automatically load them into VRAM when needed",
|
||||
true, &offload_params_to_cpu},
|
||||
{"",
|
||||
"--mmap",
|
||||
"whether to memory-map model",
|
||||
true, &enable_mmap},
|
||||
{"",
|
||||
"--control-net-cpu",
|
||||
"keep controlnet in cpu (for low vram)",
|
||||
@ -597,9 +616,13 @@ struct SDContextParams {
|
||||
"--vae-on-cpu",
|
||||
"keep vae in cpu (for low vram)",
|
||||
true, &vae_on_cpu},
|
||||
{"",
|
||||
"--fa",
|
||||
"use flash attention",
|
||||
true, &flash_attn},
|
||||
{"",
|
||||
"--diffusion-fa",
|
||||
"use flash attention in the diffusion model",
|
||||
"use flash attention in the diffusion model only",
|
||||
true, &diffusion_flash_attn},
|
||||
{"",
|
||||
"--diffusion-conv-direct",
|
||||
@ -625,6 +648,10 @@ struct SDContextParams {
|
||||
"--chroma-disable-dit-mask",
|
||||
"disable dit mask for chroma",
|
||||
false, &chroma_use_dit_mask},
|
||||
{"",
|
||||
"--qwen-image-zero-cond-t",
|
||||
"enable zero_cond_t for qwen image",
|
||||
true, &qwen_image_zero_cond_t},
|
||||
{"",
|
||||
"--chroma-enable-t5-mask",
|
||||
"enable t5 mask for chroma",
|
||||
@ -787,7 +814,7 @@ struct SDContextParams {
|
||||
}
|
||||
|
||||
void build_embedding_map() {
|
||||
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
|
||||
static const std::vector<std::string> valid_ext = {".gguf", ".safetensors", ".pt"};
|
||||
|
||||
if (!fs::exists(embedding_dir) || !fs::is_directory(embedding_dir)) {
|
||||
return;
|
||||
@ -878,9 +905,11 @@ struct SDContextParams {
|
||||
<< " sampler_rng_type: " << sd_rng_type_name(sampler_rng_type) << ",\n"
|
||||
<< " flow_shift: " << (std::isinf(flow_shift) ? "INF" : std::to_string(flow_shift)) << "\n"
|
||||
<< " offload_params_to_cpu: " << (offload_params_to_cpu ? "true" : "false") << ",\n"
|
||||
<< " enable_mmap: " << (enable_mmap ? "true" : "false") << ",\n"
|
||||
<< " control_net_cpu: " << (control_net_cpu ? "true" : "false") << ",\n"
|
||||
<< " clip_on_cpu: " << (clip_on_cpu ? "true" : "false") << ",\n"
|
||||
<< " vae_on_cpu: " << (vae_on_cpu ? "true" : "false") << ",\n"
|
||||
<< " flash_attn: " << (flash_attn ? "true" : "false") << ",\n"
|
||||
<< " diffusion_flash_attn: " << (diffusion_flash_attn ? "true" : "false") << ",\n"
|
||||
<< " diffusion_conv_direct: " << (diffusion_conv_direct ? "true" : "false") << ",\n"
|
||||
<< " vae_conv_direct: " << (vae_conv_direct ? "true" : "false") << ",\n"
|
||||
@ -888,6 +917,7 @@ struct SDContextParams {
|
||||
<< " circular_x: " << (circular_x ? "true" : "false") << ",\n"
|
||||
<< " circular_y: " << (circular_y ? "true" : "false") << ",\n"
|
||||
<< " chroma_use_dit_mask: " << (chroma_use_dit_mask ? "true" : "false") << ",\n"
|
||||
<< " qwen_image_zero_cond_t: " << (qwen_image_zero_cond_t ? "true" : "false") << ",\n"
|
||||
<< " chroma_use_t5_mask: " << (chroma_use_t5_mask ? "true" : "false") << ",\n"
|
||||
<< " chroma_t5_mask_pad: " << chroma_t5_mask_pad << ",\n"
|
||||
<< " prediction: " << sd_prediction_name(prediction) << ",\n"
|
||||
@ -940,9 +970,11 @@ struct SDContextParams {
|
||||
prediction,
|
||||
lora_apply_mode,
|
||||
offload_params_to_cpu,
|
||||
enable_mmap,
|
||||
clip_on_cpu,
|
||||
control_net_cpu,
|
||||
vae_on_cpu,
|
||||
flash_attn,
|
||||
diffusion_flash_attn,
|
||||
taesd_preview,
|
||||
diffusion_conv_direct,
|
||||
@ -953,6 +985,7 @@ struct SDContextParams {
|
||||
chroma_use_dit_mask,
|
||||
chroma_use_t5_mask,
|
||||
chroma_t5_mask_pad,
|
||||
qwen_image_zero_cond_t,
|
||||
flow_shift,
|
||||
};
|
||||
return sd_ctx_params;
|
||||
@ -998,8 +1031,8 @@ struct SDGenerationParams {
|
||||
std::string prompt_with_lora; // for metadata record only
|
||||
std::string negative_prompt;
|
||||
int clip_skip = -1; // <= 0 represents unspecified
|
||||
int width = 512;
|
||||
int height = 512;
|
||||
int width = -1;
|
||||
int height = -1;
|
||||
int batch_count = 1;
|
||||
std::string init_image_path;
|
||||
std::string end_image_path;
|
||||
@ -1360,10 +1393,10 @@ struct SDGenerationParams {
|
||||
if (!item.empty()) {
|
||||
try {
|
||||
custom_sigmas.push_back(std::stof(item));
|
||||
} catch (const std::invalid_argument& e) {
|
||||
} catch (const std::invalid_argument&) {
|
||||
LOG_ERROR("error: invalid float value '%s' in --sigmas", item.c_str());
|
||||
return -1;
|
||||
} catch (const std::out_of_range& e) {
|
||||
} catch (const std::out_of_range&) {
|
||||
LOG_ERROR("error: float value '%s' out of range in --sigmas", item.c_str());
|
||||
return -1;
|
||||
}
|
||||
@ -1452,17 +1485,17 @@ struct SDGenerationParams {
|
||||
on_seed_arg},
|
||||
{"",
|
||||
"--sampling-method",
|
||||
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd] "
|
||||
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s] "
|
||||
"(default: euler for Flux/SD3/Wan, euler_a otherwise)",
|
||||
on_sample_method_arg},
|
||||
{"",
|
||||
"--high-noise-sampling-method",
|
||||
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd]"
|
||||
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s]"
|
||||
" default: euler for Flux/SD3/Wan, euler_a otherwise",
|
||||
on_high_noise_sample_method_arg},
|
||||
{"",
|
||||
"--scheduler",
|
||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm], default: discrete",
|
||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm, bong_tangent], default: discrete",
|
||||
on_scheduler_arg},
|
||||
{"",
|
||||
"--sigmas",
|
||||
@ -1486,7 +1519,7 @@ struct SDGenerationParams {
|
||||
on_cache_mode_arg},
|
||||
{"",
|
||||
"--cache-option",
|
||||
"named cache params (key=value format, comma-separated):\n - easycache/ucache: threshold=,start=,end=,decay=,relative=,reset=\n - dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=\n Examples: \"threshold=0.25\" or \"threshold=1.5,reset=0\"",
|
||||
"named cache params (key=value format, comma-separated). easycache/ucache: threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples: \"threshold=0.25\" or \"threshold=1.5,reset=0\"",
|
||||
on_cache_option_arg},
|
||||
{"",
|
||||
"--cache-preset",
|
||||
@ -1568,10 +1601,30 @@ struct SDGenerationParams {
|
||||
load_if_exists("skip_layers", skip_layers);
|
||||
load_if_exists("high_noise_skip_layers", high_noise_skip_layers);
|
||||
|
||||
load_if_exists("steps", sample_params.sample_steps);
|
||||
load_if_exists("high_noise_steps", high_noise_sample_params.sample_steps);
|
||||
load_if_exists("cfg_scale", sample_params.guidance.txt_cfg);
|
||||
load_if_exists("img_cfg_scale", sample_params.guidance.img_cfg);
|
||||
load_if_exists("guidance", sample_params.guidance.distilled_guidance);
|
||||
|
||||
auto load_sampler_if_exists = [&](const char* key, enum sample_method_t& out) {
|
||||
if (j.contains(key) && j[key].is_string()) {
|
||||
enum sample_method_t tmp = str_to_sample_method(j[key].get<std::string>().c_str());
|
||||
if (tmp != SAMPLE_METHOD_COUNT) {
|
||||
out = tmp;
|
||||
}
|
||||
}
|
||||
};
|
||||
load_sampler_if_exists("sample_method", sample_params.sample_method);
|
||||
load_sampler_if_exists("high_noise_sample_method", high_noise_sample_params.sample_method);
|
||||
|
||||
if (j.contains("scheduler") && j["scheduler"].is_string()) {
|
||||
enum scheduler_t tmp = str_to_scheduler(j["scheduler"].get<std::string>().c_str());
|
||||
if (tmp != SCHEDULER_COUNT) {
|
||||
sample_params.scheduler = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1580,7 +1633,7 @@ struct SDGenerationParams {
|
||||
return;
|
||||
}
|
||||
static const std::regex re(R"(<lora:([^:>]+):([^>]+)>)");
|
||||
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
|
||||
static const std::vector<std::string> valid_ext = {".gguf", ".safetensors", ".pt"};
|
||||
std::smatch m;
|
||||
|
||||
std::string tmp = prompt;
|
||||
@ -1659,17 +1712,24 @@ struct SDGenerationParams {
|
||||
}
|
||||
}
|
||||
|
||||
bool width_and_height_are_set() const {
|
||||
return width > 0 && height > 0;
|
||||
}
|
||||
|
||||
void set_width_and_height_if_unset(int w, int h) {
|
||||
if (!width_and_height_are_set()) {
|
||||
LOG_INFO("set width x height to %d x %d", w, h);
|
||||
width = w;
|
||||
height = h;
|
||||
}
|
||||
}
|
||||
|
||||
int get_resolved_width() const { return (width > 0) ? width : 512; }
|
||||
|
||||
int get_resolved_height() const { return (height > 0) ? height : 512; }
|
||||
|
||||
bool process_and_check(SDMode mode, const std::string& lora_model_dir) {
|
||||
prompt_with_lora = prompt;
|
||||
if (width <= 0) {
|
||||
LOG_ERROR("error: the width must be greater than 0\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (height <= 0) {
|
||||
LOG_ERROR("error: the height must be greater than 0\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (sample_params.sample_steps <= 0) {
|
||||
LOG_ERROR("error: the sample_steps must be greater than 0\n");
|
||||
@ -2037,6 +2097,22 @@ uint8_t* load_image_from_file(const char* image_path,
|
||||
return load_image_common(false, image_path, 0, width, height, expected_width, expected_height, expected_channel);
|
||||
}
|
||||
|
||||
bool load_sd_image_from_file(sd_image_t* image,
|
||||
const char* image_path,
|
||||
int expected_width = 0,
|
||||
int expected_height = 0,
|
||||
int expected_channel = 3) {
|
||||
int width;
|
||||
int height;
|
||||
image->data = load_image_common(false, image_path, 0, width, height, expected_width, expected_height, expected_channel);
|
||||
if (image->data == nullptr) {
|
||||
return false;
|
||||
}
|
||||
image->width = width;
|
||||
image->height = height;
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t* load_image_from_memory(const char* image_bytes,
|
||||
int len,
|
||||
int& width,
|
||||
|
||||
@ -43,7 +43,9 @@ Context Options:
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--clip-on-cpu keep clip in cpu (for low vram)
|
||||
--vae-on-cpu keep vae in cpu (for low vram)
|
||||
--diffusion-fa use flash attention in the diffusion model
|
||||
--mmap whether to memory-map model
|
||||
--fa use flash attention
|
||||
--diffusion-fa use flash attention in the diffusion model only
|
||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||
--circular enable circular padding for convolutions
|
||||
@ -98,14 +100,14 @@ Default Generation Options:
|
||||
medium
|
||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||
--pm-style-strength <float>
|
||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||
@ -114,24 +116,20 @@ Default Generation Options:
|
||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||
kl_optimal, lcm], default: discrete
|
||||
kl_optimal, lcm, bong_tangent], default: discrete
|
||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||
-r, --ref-image reference image for Flux Kontext models (can be used multiple times)
|
||||
--cache-mode caching method: 'easycache' (DiT), 'ucache' (UNET), 'dbcache'/'taylorseer'/'cache-dit' (DiT block-level)
|
||||
--cache-option named cache params (key=value format, comma-separated):
|
||||
- easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=
|
||||
- dbcache/taylorseer/cache-dit:
|
||||
Fn=,Bn=,threshold=,warmup=
|
||||
Examples: "threshold=0.25" or
|
||||
"threshold=1.5,reset=0"
|
||||
--cache-option named cache params (key=value format, comma-separated). easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples:
|
||||
"threshold=0.25" or "threshold=1.5,reset=0"
|
||||
--cache-preset cache-dit preset: 'slow'/'s', 'medium'/'m', 'fast'/'f', 'ultra'/'u'
|
||||
--scm-mask SCM steps mask for cache-dit: comma-separated 0/1 (e.g., "1,1,1,0,0,1,0,0,1,0") - 1=compute, 0=can cache
|
||||
--scm-policy SCM policy: 'dynamic' (default) or 'static'
|
||||
|
||||
@ -44,7 +44,7 @@ inline bool is_base64(unsigned char c) {
|
||||
}
|
||||
|
||||
std::vector<uint8_t> base64_decode(const std::string& encoded_string) {
|
||||
int in_len = encoded_string.size();
|
||||
int in_len = static_cast<int>(encoded_string.size());
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
int in_ = 0;
|
||||
@ -86,28 +86,13 @@ std::vector<uint8_t> base64_decode(const std::string& encoded_string) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string iso_timestamp_now() {
|
||||
using namespace std::chrono;
|
||||
auto now = system_clock::now();
|
||||
std::time_t t = system_clock::to_time_t(now);
|
||||
std::tm tm{};
|
||||
#ifdef _MSC_VER
|
||||
gmtime_s(&tm, &t);
|
||||
#else
|
||||
gmtime_r(&t, &tm);
|
||||
#endif
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(&tm, "%Y-%m-%dT%H:%M:%SZ");
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
struct SDSvrParams {
|
||||
std::string listen_ip = "127.0.0.1";
|
||||
int listen_port = 1234;
|
||||
std::string serve_html_path;
|
||||
bool normal_exit = false;
|
||||
bool verbose = false;
|
||||
bool color = false;
|
||||
bool normal_exit = false;
|
||||
bool verbose = false;
|
||||
bool color = false;
|
||||
|
||||
ArgOptions get_options() {
|
||||
ArgOptions options;
|
||||
@ -202,12 +187,18 @@ void parse_args(int argc, const char** argv, SDSvrParams& svr_params, SDContextP
|
||||
exit(svr_params.normal_exit ? 0 : 1);
|
||||
}
|
||||
|
||||
const bool random_seed_requested = default_gen_params.seed < 0;
|
||||
|
||||
if (!svr_params.process_and_check() ||
|
||||
!ctx_params.process_and_check(IMG_GEN) ||
|
||||
!default_gen_params.process_and_check(IMG_GEN, ctx_params.lora_model_dir)) {
|
||||
print_usage(argc, argv, options_vec);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (random_seed_requested) {
|
||||
default_gen_params.seed = -1;
|
||||
}
|
||||
}
|
||||
|
||||
std::string extract_and_remove_sd_cpp_extra_args(std::string& text) {
|
||||
@ -398,7 +389,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
json out;
|
||||
out["created"] = iso_timestamp_now();
|
||||
out["created"] = static_cast<long long>(std::time(nullptr));
|
||||
out["data"] = json::array();
|
||||
out["output_format"] = output_format;
|
||||
|
||||
@ -414,6 +405,9 @@ int main(int argc, const char** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (gen_params.sample_params.sample_steps > 100)
|
||||
gen_params.sample_params.sample_steps = 100;
|
||||
|
||||
if (!gen_params.process_and_check(IMG_GEN, "")) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"invalid params"})", "application/json");
|
||||
@ -531,7 +525,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
std::vector<uint8_t> mask_bytes;
|
||||
if (req.form.has_field("mask")) {
|
||||
if (req.form.has_file("mask")) {
|
||||
auto file = req.form.get_file("mask");
|
||||
mask_bytes.assign(file.content.begin(), file.content.end());
|
||||
}
|
||||
@ -592,6 +586,9 @@ int main(int argc, const char** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (gen_params.sample_params.sample_steps > 100)
|
||||
gen_params.sample_params.sample_steps = 100;
|
||||
|
||||
if (!gen_params.process_and_check(IMG_GEN, "")) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"invalid params"})", "application/json");
|
||||
@ -611,7 +608,7 @@ int main(int argc, const char** argv) {
|
||||
int img_h = height;
|
||||
uint8_t* raw_pixels = load_image_from_memory(
|
||||
reinterpret_cast<const char*>(bytes.data()),
|
||||
bytes.size(),
|
||||
static_cast<int>(bytes.size()),
|
||||
img_w, img_h,
|
||||
width, height, 3);
|
||||
|
||||
@ -629,7 +626,7 @@ int main(int argc, const char** argv) {
|
||||
int mask_h = height;
|
||||
uint8_t* mask_raw = load_image_from_memory(
|
||||
reinterpret_cast<const char*>(mask_bytes.data()),
|
||||
mask_bytes.size(),
|
||||
static_cast<int>(mask_bytes.size()),
|
||||
mask_w, mask_h,
|
||||
width, height, 1);
|
||||
mask_image = {(uint32_t)mask_w, (uint32_t)mask_h, 1, mask_raw};
|
||||
@ -680,7 +677,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
json out;
|
||||
out["created"] = iso_timestamp_now();
|
||||
out["created"] = static_cast<long long>(std::time(nullptr));
|
||||
out["data"] = json::array();
|
||||
out["output_format"] = output_format;
|
||||
|
||||
@ -720,6 +717,331 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
});
|
||||
|
||||
// sdapi endpoints (AUTOMATIC1111 / Forge)
|
||||
|
||||
auto sdapi_any2img = [&](const httplib::Request& req, httplib::Response& res, bool img2img) {
|
||||
try {
|
||||
if (req.body.empty()) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"empty body"})", "application/json");
|
||||
return;
|
||||
}
|
||||
|
||||
json j = json::parse(req.body);
|
||||
|
||||
std::string prompt = j.value("prompt", "");
|
||||
std::string negative_prompt = j.value("negative_prompt", "");
|
||||
int width = j.value("width", 512);
|
||||
int height = j.value("height", 512);
|
||||
int steps = j.value("steps", -1);
|
||||
float cfg_scale = j.value("cfg_scale", 7.f);
|
||||
int64_t seed = j.value("seed", -1);
|
||||
int batch_size = j.value("batch_size", 1);
|
||||
int clip_skip = j.value("clip_skip", -1);
|
||||
std::string sampler_name = j.value("sampler_name", "");
|
||||
std::string scheduler_name = j.value("scheduler", "");
|
||||
|
||||
auto bad = [&](const std::string& msg) {
|
||||
res.status = 400;
|
||||
res.set_content("{\"error\":\"" + msg + "\"}", "application/json");
|
||||
return;
|
||||
};
|
||||
|
||||
if (width <= 0 || height <= 0) {
|
||||
return bad("width and height must be positive");
|
||||
}
|
||||
|
||||
if (steps < 1 || steps > 150) {
|
||||
return bad("steps must be in range [1, 150]");
|
||||
}
|
||||
|
||||
if (batch_size < 1 || batch_size > 8) {
|
||||
return bad("batch_size must be in range [1, 8]");
|
||||
}
|
||||
|
||||
if (cfg_scale < 0.f) {
|
||||
return bad("cfg_scale must be positive");
|
||||
}
|
||||
|
||||
if (prompt.empty()) {
|
||||
return bad("prompt required");
|
||||
}
|
||||
|
||||
auto get_sample_method = [](std::string name) -> enum sample_method_t {
|
||||
enum sample_method_t result = str_to_sample_method(name.c_str());
|
||||
if (result != SAMPLE_METHOD_COUNT) return result;
|
||||
// some applications use a hardcoded sampler list
|
||||
std::transform(name.begin(), name.end(), name.begin(),
|
||||
[](unsigned char c) { return std::tolower(c); });
|
||||
static const std::unordered_map<std::string_view, sample_method_t> hardcoded{
|
||||
{"euler a", EULER_A_SAMPLE_METHOD},
|
||||
{"k_euler_a", EULER_A_SAMPLE_METHOD},
|
||||
{"euler", EULER_SAMPLE_METHOD},
|
||||
{"k_euler", EULER_SAMPLE_METHOD},
|
||||
{"heun", HEUN_SAMPLE_METHOD},
|
||||
{"k_heun", HEUN_SAMPLE_METHOD},
|
||||
{"dpm2", DPM2_SAMPLE_METHOD},
|
||||
{"k_dpm_2", DPM2_SAMPLE_METHOD},
|
||||
{"lcm", LCM_SAMPLE_METHOD},
|
||||
{"ddim", DDIM_TRAILING_SAMPLE_METHOD},
|
||||
{"dpm++ 2m", DPMPP2M_SAMPLE_METHOD},
|
||||
{"k_dpmpp_2m", DPMPP2M_SAMPLE_METHOD},
|
||||
{"res multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||
{"k_res_multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||
{"res 2s", RES_2S_SAMPLE_METHOD},
|
||||
{"k_res_2s", RES_2S_SAMPLE_METHOD}};
|
||||
auto it = hardcoded.find(name);
|
||||
if (it != hardcoded.end()) return it->second;
|
||||
return SAMPLE_METHOD_COUNT;
|
||||
};
|
||||
|
||||
enum sample_method_t sample_method = get_sample_method(sampler_name);
|
||||
|
||||
enum scheduler_t scheduler = str_to_scheduler(scheduler_name.c_str());
|
||||
|
||||
// avoid excessive resource usage
|
||||
|
||||
SDGenerationParams gen_params = default_gen_params;
|
||||
gen_params.prompt = prompt;
|
||||
gen_params.negative_prompt = negative_prompt;
|
||||
gen_params.width = width;
|
||||
gen_params.height = height;
|
||||
gen_params.seed = seed;
|
||||
gen_params.sample_params.sample_steps = steps;
|
||||
gen_params.batch_count = batch_size;
|
||||
|
||||
if (clip_skip > 0) {
|
||||
gen_params.clip_skip = clip_skip;
|
||||
}
|
||||
|
||||
if (sample_method != SAMPLE_METHOD_COUNT) {
|
||||
gen_params.sample_params.sample_method = sample_method;
|
||||
}
|
||||
|
||||
if (scheduler != SCHEDULER_COUNT) {
|
||||
gen_params.sample_params.scheduler = scheduler;
|
||||
}
|
||||
|
||||
LOG_DEBUG("%s\n", gen_params.to_string().c_str());
|
||||
|
||||
sd_image_t init_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t control_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t mask_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 1, nullptr};
|
||||
std::vector<uint8_t> mask_data;
|
||||
std::vector<sd_image_t> pmid_images;
|
||||
std::vector<sd_image_t> ref_images;
|
||||
|
||||
if (img2img) {
|
||||
auto decode_image = [](sd_image_t& image, std::string encoded) -> bool {
|
||||
// remove data URI prefix if present ("data:image/png;base64,")
|
||||
auto comma_pos = encoded.find(',');
|
||||
if (comma_pos != std::string::npos) {
|
||||
encoded = encoded.substr(comma_pos + 1);
|
||||
}
|
||||
std::vector<uint8_t> img_data = base64_decode(encoded);
|
||||
if (!img_data.empty()) {
|
||||
int img_w = image.width;
|
||||
int img_h = image.height;
|
||||
uint8_t* raw_data = load_image_from_memory(
|
||||
(const char*)img_data.data(), (int)img_data.size(),
|
||||
img_w, img_h,
|
||||
image.width, image.height, image.channel);
|
||||
if (raw_data) {
|
||||
image = {(uint32_t)img_w, (uint32_t)img_h, image.channel, raw_data};
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
if (j.contains("init_images") && j["init_images"].is_array() && !j["init_images"].empty()) {
|
||||
std::string encoded = j["init_images"][0].get<std::string>();
|
||||
decode_image(init_image, encoded);
|
||||
}
|
||||
|
||||
if (j.contains("mask") && j["mask"].is_string()) {
|
||||
std::string encoded = j["mask"].get<std::string>();
|
||||
decode_image(mask_image, encoded);
|
||||
bool inpainting_mask_invert = j.value("inpainting_mask_invert", 0) != 0;
|
||||
if (inpainting_mask_invert && mask_image.data != nullptr) {
|
||||
for (uint32_t i = 0; i < mask_image.width * mask_image.height; i++) {
|
||||
mask_image.data[i] = 255 - mask_image.data[i];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask_data = std::vector<uint8_t>(width * height, 255);
|
||||
mask_image.width = width;
|
||||
mask_image.height = height;
|
||||
mask_image.channel = 1;
|
||||
mask_image.data = mask_data.data();
|
||||
}
|
||||
|
||||
if (j.contains("extra_images") && j["extra_images"].is_array()) {
|
||||
for (auto extra_image : j["extra_images"]) {
|
||||
std::string encoded = extra_image.get<std::string>();
|
||||
sd_image_t tmp_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
if (decode_image(tmp_image, encoded)) {
|
||||
ref_images.push_back(tmp_image);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float denoising_strength = j.value("denoising_strength", -1.f);
|
||||
if (denoising_strength >= 0.f) {
|
||||
denoising_strength = std::min(denoising_strength, 1.0f);
|
||||
gen_params.strength = denoising_strength;
|
||||
}
|
||||
}
|
||||
|
||||
sd_img_gen_params_t img_gen_params = {
|
||||
gen_params.lora_vec.data(),
|
||||
static_cast<uint32_t>(gen_params.lora_vec.size()),
|
||||
gen_params.prompt.c_str(),
|
||||
gen_params.negative_prompt.c_str(),
|
||||
gen_params.clip_skip,
|
||||
init_image,
|
||||
ref_images.data(),
|
||||
(int)ref_images.size(),
|
||||
gen_params.auto_resize_ref_image,
|
||||
gen_params.increase_ref_index,
|
||||
mask_image,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.sample_params,
|
||||
gen_params.strength,
|
||||
gen_params.seed,
|
||||
gen_params.batch_count,
|
||||
control_image,
|
||||
gen_params.control_strength,
|
||||
{
|
||||
pmid_images.data(),
|
||||
(int)pmid_images.size(),
|
||||
gen_params.pm_id_embed_path.c_str(),
|
||||
gen_params.pm_style_strength,
|
||||
}, // pm_params
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
sd_image_t* results = nullptr;
|
||||
int num_results = 0;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(sd_ctx_mutex);
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
num_results = gen_params.batch_count;
|
||||
}
|
||||
|
||||
json out;
|
||||
out["images"] = json::array();
|
||||
out["parameters"] = j; // TODO should return changed defaults
|
||||
out["info"] = "";
|
||||
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
if (results[i].data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto image_bytes = write_image_to_vector(ImageFormat::PNG,
|
||||
results[i].data,
|
||||
results[i].width,
|
||||
results[i].height,
|
||||
results[i].channel);
|
||||
|
||||
if (image_bytes.empty()) {
|
||||
LOG_ERROR("write image to mem failed");
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string b64 = base64_encode(image_bytes);
|
||||
out["images"].push_back(b64);
|
||||
}
|
||||
|
||||
res.set_content(out.dump(), "application/json");
|
||||
res.status = 200;
|
||||
|
||||
if (init_image.data) {
|
||||
stbi_image_free(init_image.data);
|
||||
}
|
||||
if (mask_image.data && mask_data.empty()) {
|
||||
stbi_image_free(mask_image.data);
|
||||
}
|
||||
for (auto ref_image : ref_images) {
|
||||
stbi_image_free(ref_image.data);
|
||||
}
|
||||
|
||||
} catch (const std::exception& e) {
|
||||
res.status = 500;
|
||||
json err;
|
||||
err["error"] = "server_error";
|
||||
err["message"] = e.what();
|
||||
res.set_content(err.dump(), "application/json");
|
||||
}
|
||||
};
|
||||
|
||||
svr.Post("/sdapi/v1/txt2img", [&](const httplib::Request& req, httplib::Response& res) {
|
||||
sdapi_any2img(req, res, false);
|
||||
});
|
||||
|
||||
svr.Post("/sdapi/v1/img2img", [&](const httplib::Request& req, httplib::Response& res) {
|
||||
sdapi_any2img(req, res, true);
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/samplers", [&](const httplib::Request&, httplib::Response& res) {
|
||||
std::vector<std::string> sampler_names;
|
||||
sampler_names.push_back("default");
|
||||
for (int i = 0; i < SAMPLE_METHOD_COUNT; i++) {
|
||||
sampler_names.push_back(sd_sample_method_name((sample_method_t)i));
|
||||
}
|
||||
json r = json::array();
|
||||
for (auto name : sampler_names) {
|
||||
json entry;
|
||||
entry["name"] = name;
|
||||
entry["aliases"] = json::array({name});
|
||||
entry["options"] = json::object();
|
||||
r.push_back(entry);
|
||||
}
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/schedulers", [&](const httplib::Request&, httplib::Response& res) {
|
||||
std::vector<std::string> scheduler_names;
|
||||
scheduler_names.push_back("default");
|
||||
for (int i = 0; i < SCHEDULER_COUNT; i++) {
|
||||
scheduler_names.push_back(sd_scheduler_name((scheduler_t)i));
|
||||
}
|
||||
json r = json::array();
|
||||
for (auto name : scheduler_names) {
|
||||
json entry;
|
||||
entry["name"] = name;
|
||||
entry["label"] = name;
|
||||
r.push_back(entry);
|
||||
}
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/sd-models", [&](const httplib::Request&, httplib::Response& res) {
|
||||
fs::path model_path = ctx_params.model_path;
|
||||
json entry;
|
||||
entry["title"] = model_path.stem();
|
||||
entry["model_name"] = model_path.stem();
|
||||
entry["filename"] = model_path.filename();
|
||||
entry["hash"] = "8888888888";
|
||||
entry["sha256"] = "8888888888888888888888888888888888888888888888888888888888888888";
|
||||
entry["config"] = nullptr;
|
||||
json r = json::array();
|
||||
r.push_back(entry);
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/options", [&](const httplib::Request&, httplib::Response& res) {
|
||||
fs::path model_path = ctx_params.model_path;
|
||||
json r;
|
||||
r["samples_format"] = "png";
|
||||
r["sd_model_checkpoint"] = model_path.stem();
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
LOG_INFO("listening on: %s:%d\n", svr_params.listen_ip.c_str(), svr_params.listen_port);
|
||||
svr.listen(svr_params.listen_ip, svr_params.listen_port);
|
||||
|
||||
|
||||
273
flux.hpp
@ -103,7 +103,7 @@ namespace Flux {
|
||||
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x);
|
||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv);
|
||||
auto qkv_vec = ggml_ext_chunk(ctx->ggml_ctx, qkv, 3, 0, true);
|
||||
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]);
|
||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]);
|
||||
@ -153,7 +153,7 @@ namespace Flux {
|
||||
if (use_mlp_silu_act) {
|
||||
x = ggml_ext_silu_act(ctx->ggml_ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
}
|
||||
x = mlp_2->forward(ctx, x);
|
||||
return x;
|
||||
@ -233,14 +233,17 @@ namespace Flux {
|
||||
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* shift,
|
||||
struct ggml_tensor* scale) {
|
||||
struct ggml_tensor* scale,
|
||||
bool skip_reshape = false) {
|
||||
// x: [N, L, C]
|
||||
// scale: [N, C]
|
||||
// shift: [N, C]
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
x = ggml_add(ctx, x, shift);
|
||||
if (!skip_reshape) {
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
|
||||
}
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
x = ggml_add(ctx, x, shift);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -260,7 +263,7 @@ namespace Flux {
|
||||
bool use_yak_mlp = false,
|
||||
bool use_mlp_silu_act = false)
|
||||
: idx(idx), prune_mod(prune_mod) {
|
||||
int64_t mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
int64_t mlp_hidden_dim = static_cast<int64_t>(hidden_size * mlp_ratio);
|
||||
|
||||
if (!prune_mod && !share_modulation) {
|
||||
blocks["img_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true));
|
||||
@ -373,26 +376,23 @@ namespace Flux {
|
||||
auto k = ggml_concat(ctx->ggml_ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
txt->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_txt_token, N, hidden_size]
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
||||
0); // [N, n_txt_token, hidden_size]
|
||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
img->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
txt->ne[1] * attn->nb[1]); // [N, n_img_token, hidden_size]
|
||||
|
||||
// calculate the img bloks
|
||||
img = ggml_add(ctx->ggml_ctx, img, ggml_mul(ctx->ggml_ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate));
|
||||
@ -439,7 +439,7 @@ namespace Flux {
|
||||
if (scale <= 0.f) {
|
||||
scale = 1 / sqrt((float)head_dim);
|
||||
}
|
||||
mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
mlp_hidden_dim = static_cast<int64_t>(hidden_size * mlp_ratio);
|
||||
mlp_mult_factor = 1;
|
||||
if (use_yak_mlp || use_mlp_silu_act) {
|
||||
mlp_mult_factor = 2;
|
||||
@ -489,43 +489,29 @@ namespace Flux {
|
||||
}
|
||||
|
||||
auto x_mod = Flux::modulate(ctx->ggml_ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale);
|
||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim]
|
||||
qkv_mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv_mlp, 2, 0, 1, 3)); // [hidden_size * 3 + mlp_hidden_dim, N, n_token]
|
||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim*mlp_mult_factor]
|
||||
|
||||
auto qkv = ggml_view_3d(ctx->ggml_ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
hidden_size * 3,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
0); // [hidden_size * 3 , N, n_token]
|
||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv, 1, 2, 0, 3)); // [N, n_token, hidden_size * 3]
|
||||
auto mlp = ggml_view_3d(ctx->ggml_ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
mlp_hidden_dim * mlp_mult_factor,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
qkv_mlp->nb[2] * hidden_size * 3); // [mlp_hidden_dim*mlp_mult_factor , N, n_token]
|
||||
mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, mlp, 1, 2, 0, 3)); // [N, n_token, mlp_hidden_dim*mlp_mult_factor]
|
||||
auto q = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], 0);
|
||||
auto k = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * qkv_mlp->nb[0]);
|
||||
auto v = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 2 * qkv_mlp->nb[0]);
|
||||
|
||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv); // q,k,v: [N, n_token, hidden_size]
|
||||
int64_t head_dim = hidden_size / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto v = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
||||
|
||||
q = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, q), head_dim, num_heads, q->ne[1], q->ne[2]); // [N, n_token, n_head, d_head]
|
||||
k = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, k), head_dim, num_heads, k->ne[1], k->ne[2]); // [N, n_token, n_head, d_head]
|
||||
v = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, v), head_dim, num_heads, v->ne[1], v->ne[2]); // [N, n_token, n_head, d_head]
|
||||
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
||||
|
||||
auto mlp = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, mlp_hidden_dim * mlp_mult_factor, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 3 * qkv_mlp->nb[0]);
|
||||
if (use_yak_mlp) {
|
||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp, false);
|
||||
} else if (use_mlp_silu_act) {
|
||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp);
|
||||
} else {
|
||||
mlp = ggml_gelu_inplace(ctx->ggml_ctx, mlp);
|
||||
mlp = ggml_ext_gelu(ctx->ggml_ctx, mlp, true);
|
||||
}
|
||||
auto attn_mlp = ggml_concat(ctx->ggml_ctx, attn, mlp, 0); // [N, n_token, hidden_size + mlp_hidden_dim]
|
||||
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
|
||||
@ -577,13 +563,10 @@ namespace Flux {
|
||||
} else {
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||
shift = m_vec[0]; // [N, hidden_size]
|
||||
scale = m_vec[1]; // [N, hidden_size]
|
||||
}
|
||||
|
||||
x = Flux::modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||
@ -741,38 +724,38 @@ namespace Flux {
|
||||
|
||||
struct ChromaRadianceParams {
|
||||
int64_t nerf_hidden_size = 64;
|
||||
int64_t nerf_mlp_ratio = 4;
|
||||
int64_t nerf_depth = 4;
|
||||
int64_t nerf_max_freqs = 8;
|
||||
int nerf_mlp_ratio = 4;
|
||||
int nerf_depth = 4;
|
||||
int nerf_max_freqs = 8;
|
||||
bool use_x0 = false;
|
||||
bool use_patch_size_32 = false;
|
||||
bool fake_patch_size_x2 = false;
|
||||
};
|
||||
|
||||
struct FluxParams {
|
||||
SDVersion version = VERSION_FLUX;
|
||||
bool is_chroma = false;
|
||||
int64_t patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 64;
|
||||
int64_t vec_in_dim = 768;
|
||||
int64_t context_in_dim = 4096;
|
||||
int64_t hidden_size = 3072;
|
||||
float mlp_ratio = 4.0f;
|
||||
int64_t num_heads = 24;
|
||||
int64_t depth = 19;
|
||||
int64_t depth_single_blocks = 38;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int64_t axes_dim_sum = 128;
|
||||
int theta = 10000;
|
||||
bool qkv_bias = true;
|
||||
bool guidance_embed = true;
|
||||
int64_t in_dim = 64;
|
||||
bool disable_bias = false;
|
||||
bool share_modulation = false;
|
||||
bool semantic_txt_norm = false;
|
||||
bool use_yak_mlp = false;
|
||||
bool use_mlp_silu_act = false;
|
||||
float ref_index_scale = 1.f;
|
||||
SDVersion version = VERSION_FLUX;
|
||||
bool is_chroma = false;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 64;
|
||||
int64_t vec_in_dim = 768;
|
||||
int64_t context_in_dim = 4096;
|
||||
int64_t hidden_size = 3072;
|
||||
float mlp_ratio = 4.0f;
|
||||
int num_heads = 24;
|
||||
int depth = 19;
|
||||
int depth_single_blocks = 38;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int axes_dim_sum = 128;
|
||||
int theta = 10000;
|
||||
bool qkv_bias = true;
|
||||
bool guidance_embed = true;
|
||||
int64_t in_dim = 64;
|
||||
bool disable_bias = false;
|
||||
bool share_modulation = false;
|
||||
bool semantic_txt_norm = false;
|
||||
bool use_yak_mlp = false;
|
||||
bool use_mlp_silu_act = false;
|
||||
float ref_index_scale = 1.f;
|
||||
ChromaRadianceParams chroma_radiance_params;
|
||||
};
|
||||
|
||||
@ -783,8 +766,11 @@ namespace Flux {
|
||||
Flux(FluxParams params)
|
||||
: params(params) {
|
||||
if (params.version == VERSION_CHROMA_RADIANCE) {
|
||||
std::pair<int, int> kernel_size = {16, 16};
|
||||
std::pair<int, int> stride = kernel_size;
|
||||
std::pair<int, int> kernel_size = {params.patch_size, params.patch_size};
|
||||
if (params.chroma_radiance_params.fake_patch_size_x2) {
|
||||
kernel_size = {params.patch_size / 2, params.patch_size / 2};
|
||||
}
|
||||
std::pair<int, int> stride = kernel_size;
|
||||
|
||||
blocks["img_in_patch"] = std::make_shared<Conv2d>(params.in_channels,
|
||||
params.hidden_size,
|
||||
@ -966,7 +952,7 @@ namespace Flux {
|
||||
vec = approx->forward(ctx, vec); // [344, N, hidden_size]
|
||||
|
||||
if (y != nullptr) {
|
||||
txt_img_mask = ggml_pad(ctx->ggml_ctx, y, img->ne[1], 0, 0, 0);
|
||||
txt_img_mask = ggml_pad(ctx->ggml_ctx, y, static_cast<int>(img->ne[1]), 0, 0, 0);
|
||||
}
|
||||
} else {
|
||||
auto time_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["time_in"]);
|
||||
@ -1028,16 +1014,14 @@ namespace Flux {
|
||||
txt_img = block->forward(ctx, txt_img, vec, pe, txt_img_mask, ss_mods);
|
||||
}
|
||||
|
||||
txt_img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_img, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
img = ggml_view_3d(ctx->ggml_ctx,
|
||||
txt_img,
|
||||
txt_img->ne[0],
|
||||
txt_img->ne[1],
|
||||
img->ne[1],
|
||||
txt_img->nb[1],
|
||||
txt_img->nb[2],
|
||||
txt_img->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
img = ggml_view_3d(ctx->ggml_ctx,
|
||||
txt_img,
|
||||
txt_img->ne[0],
|
||||
img->ne[1],
|
||||
txt_img->ne[2],
|
||||
txt_img->nb[1],
|
||||
txt_img->nb[2],
|
||||
txt->ne[1] * txt_img->nb[1]); // [N, n_img_token, hidden_size]
|
||||
|
||||
if (final_layer) {
|
||||
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
|
||||
@ -1069,17 +1053,17 @@ namespace Flux {
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
|
||||
auto img = pad_to_patch_size(ctx, x);
|
||||
auto orig_img = img;
|
||||
|
||||
if (params.chroma_radiance_params.use_patch_size_32) {
|
||||
if (params.chroma_radiance_params.fake_patch_size_x2) {
|
||||
// It's supposed to be using GGML_SCALE_MODE_NEAREST, but this seems more stable
|
||||
// Maybe the implementation of nearest-neighbor interpolation in ggml behaves differently than the one in PyTorch?
|
||||
// img = F.interpolate(img, size=(H//2, W//2), mode="nearest")
|
||||
@ -1143,15 +1127,15 @@ namespace Flux {
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
|
||||
auto img = process_img(ctx, x);
|
||||
uint64_t img_tokens = img->ne[1];
|
||||
auto img = process_img(ctx, x);
|
||||
int64_t img_tokens = img->ne[1];
|
||||
|
||||
if (params.version == VERSION_FLUX_FILL) {
|
||||
GGML_ASSERT(c_concat != nullptr);
|
||||
@ -1190,9 +1174,8 @@ namespace Flux {
|
||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
||||
|
||||
if (out->ne[1] > img_tokens) {
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
||||
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [N, h*w, C * patch_size * patch_size]
|
||||
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], img_tokens, out->ne[2], out->nb[1], out->nb[2], 0);
|
||||
out = ggml_cont(ctx->ggml_ctx, out);
|
||||
}
|
||||
|
||||
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
||||
@ -1285,13 +1268,9 @@ namespace Flux {
|
||||
} else if (version == VERSION_OVIS_IMAGE) {
|
||||
flux_params.semantic_txt_norm = true;
|
||||
flux_params.use_yak_mlp = true;
|
||||
flux_params.context_in_dim = 2048;
|
||||
flux_params.vec_in_dim = 0;
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
flux_params.context_in_dim = 15360;
|
||||
flux_params.in_channels = 128;
|
||||
flux_params.hidden_size = 6144;
|
||||
flux_params.num_heads = 48;
|
||||
flux_params.patch_size = 1;
|
||||
flux_params.out_channels = 128;
|
||||
flux_params.mlp_ratio = 3.f;
|
||||
@ -1304,12 +1283,13 @@ namespace Flux {
|
||||
flux_params.ref_index_scale = 10.f;
|
||||
flux_params.use_mlp_silu_act = true;
|
||||
}
|
||||
int64_t head_dim = 0;
|
||||
int64_t actual_radiance_patch_size = -1;
|
||||
for (auto pair : tensor_storage_map) {
|
||||
std::string tensor_name = pair.first;
|
||||
if (!starts_with(tensor_name, prefix))
|
||||
continue;
|
||||
if (tensor_name.find("guidance_in.in_layer.weight") != std::string::npos) {
|
||||
// not schnell
|
||||
flux_params.guidance_embed = true;
|
||||
}
|
||||
if (tensor_name.find("__x0__") != std::string::npos) {
|
||||
@ -1317,9 +1297,12 @@ namespace Flux {
|
||||
flux_params.chroma_radiance_params.use_x0 = true;
|
||||
}
|
||||
if (tensor_name.find("__32x32__") != std::string::npos) {
|
||||
LOG_DEBUG("using patch size 32 prediction");
|
||||
flux_params.chroma_radiance_params.use_patch_size_32 = true;
|
||||
flux_params.patch_size = 32;
|
||||
LOG_DEBUG("using patch size 32");
|
||||
flux_params.patch_size = 32;
|
||||
}
|
||||
if (tensor_name.find("img_in_patch.weight") != std::string::npos) {
|
||||
actual_radiance_patch_size = pair.second.ne[0];
|
||||
LOG_DEBUG("actual radiance patch size: %d", actual_radiance_patch_size);
|
||||
}
|
||||
if (tensor_name.find("distilled_guidance_layer.in_proj.weight") != std::string::npos) {
|
||||
// Chroma
|
||||
@ -1341,13 +1324,35 @@ namespace Flux {
|
||||
flux_params.depth_single_blocks = block_depth + 1;
|
||||
}
|
||||
}
|
||||
if (ends_with(tensor_name, "txt_in.weight")) {
|
||||
flux_params.context_in_dim = pair.second.ne[0];
|
||||
flux_params.hidden_size = pair.second.ne[1];
|
||||
}
|
||||
if (ends_with(tensor_name, "single_blocks.0.norm.key_norm.scale")) {
|
||||
head_dim = pair.second.ne[0];
|
||||
}
|
||||
if (ends_with(tensor_name, "double_blocks.0.txt_attn.norm.key_norm.scale")) {
|
||||
head_dim = pair.second.ne[0];
|
||||
}
|
||||
}
|
||||
if (actual_radiance_patch_size > 0 && actual_radiance_patch_size != flux_params.patch_size) {
|
||||
GGML_ASSERT(flux_params.patch_size == 2 * actual_radiance_patch_size);
|
||||
LOG_DEBUG("using fake x2 patch size");
|
||||
flux_params.chroma_radiance_params.fake_patch_size_x2 = true;
|
||||
}
|
||||
|
||||
LOG_INFO("Flux blocks: %d double, %d single", flux_params.depth, flux_params.depth_single_blocks);
|
||||
flux_params.num_heads = static_cast<int>(flux_params.hidden_size / head_dim);
|
||||
|
||||
LOG_INFO("flux: depth = %d, depth_single_blocks = %d, guidance_embed = %s, context_in_dim = %" PRId64
|
||||
", hidden_size = %" PRId64 ", num_heads = %d",
|
||||
flux_params.depth,
|
||||
flux_params.depth_single_blocks,
|
||||
flux_params.guidance_embed ? "true" : "false",
|
||||
flux_params.context_in_dim,
|
||||
flux_params.hidden_size,
|
||||
flux_params.num_heads);
|
||||
if (flux_params.is_chroma) {
|
||||
LOG_INFO("Using pruned modulation (Chroma)");
|
||||
} else if (!flux_params.guidance_embed) {
|
||||
LOG_INFO("Flux guidance is disabled (Schnell mode)");
|
||||
}
|
||||
|
||||
flux = Flux(flux_params);
|
||||
@ -1462,11 +1467,11 @@ namespace Flux {
|
||||
txt_arange_dims = {1, 2};
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_flux_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_flux_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
flux_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
txt_arange_dims,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
@ -1475,7 +1480,7 @@ namespace Flux {
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
flux_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / flux_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, flux_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -1484,10 +1489,10 @@ namespace Flux {
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
|
||||
if (version == VERSION_CHROMA_RADIANCE) {
|
||||
int64_t patch_size = flux_params.patch_size;
|
||||
int64_t nerf_max_freqs = flux_params.chroma_radiance_params.nerf_max_freqs;
|
||||
dct_vec = fetch_dct_pos(patch_size, nerf_max_freqs);
|
||||
dct = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, nerf_max_freqs * nerf_max_freqs, patch_size * patch_size);
|
||||
int patch_size = flux_params.patch_size;
|
||||
int nerf_max_freqs = flux_params.chroma_radiance_params.nerf_max_freqs;
|
||||
dct_vec = fetch_dct_pos(patch_size, nerf_max_freqs);
|
||||
dct = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, nerf_max_freqs * nerf_max_freqs, patch_size * patch_size);
|
||||
// dct->data = dct_vec.data();
|
||||
// print_ggml_tensor(dct);
|
||||
// dct->data = nullptr;
|
||||
@ -1574,12 +1579,12 @@ namespace Flux {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, y, guidance, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("flux test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("flux test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
2
ggml
@ -1 +1 @@
|
||||
Subproject commit 3e9f2ba3b934c20b26873b3c60dbf41b116978ff
|
||||
Subproject commit a8db410a252c8c8f2d120c6f2e7133ebe032f35d
|
||||
210
ggml_extend.hpp
@ -98,10 +98,10 @@ static_assert(GGML_MAX_NAME >= 128, "GGML_MAX_NAME must be at least 128");
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_mul_n_mode(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int mode = 0) {
|
||||
// reshape A
|
||||
// swap 0th and nth axis
|
||||
a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0));
|
||||
int ne1 = a->ne[1];
|
||||
int ne2 = a->ne[2];
|
||||
int ne3 = a->ne[3];
|
||||
a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0));
|
||||
int64_t ne1 = a->ne[1];
|
||||
int64_t ne2 = a->ne[2];
|
||||
int64_t ne3 = a->ne[3];
|
||||
// make 2D
|
||||
a = ggml_cont(ctx, ggml_reshape_2d(ctx, a, a->ne[0], (ne3 * ne2 * ne1)));
|
||||
|
||||
@ -167,12 +167,12 @@ __STATIC_INLINE__ void ggml_ext_im_set_randn_f32(struct ggml_tensor* tensor, std
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void ggml_ext_tensor_set_f32(struct ggml_tensor* tensor, float value, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ void ggml_ext_tensor_set_f32(struct ggml_tensor* tensor, float value, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||||
*(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]) = value;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
if (tensor->buffer != nullptr) {
|
||||
float value;
|
||||
ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(float));
|
||||
@ -182,9 +182,9 @@ __STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int i
|
||||
return *(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
if (tensor->buffer != nullptr) {
|
||||
float value;
|
||||
int value;
|
||||
ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(int));
|
||||
return value;
|
||||
}
|
||||
@ -192,12 +192,12 @@ __STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int i0,
|
||||
return *(int*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ ggml_fp16_t ggml_ext_tensor_get_f16(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ ggml_fp16_t ggml_ext_tensor_get_f16(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
return *(ggml_fp16_t*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int ic, bool scale = true) {
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int64_t iw, int64_t ih, int64_t ic, bool scale = true) {
|
||||
float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
@ -205,7 +205,7 @@ __STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int i
|
||||
return value;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_f32_t image, int iw, int ih, int ic, bool scale = true) {
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_f32_t image, int64_t iw, int64_t ih, int64_t ic, bool scale = true) {
|
||||
float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
@ -450,8 +450,8 @@ __STATIC_INLINE__ void ggml_ext_tensor_apply_mask(struct ggml_tensor* image_data
|
||||
int64_t width = output->ne[0];
|
||||
int64_t height = output->ne[1];
|
||||
int64_t channels = output->ne[2];
|
||||
float rescale_mx = mask->ne[0] / output->ne[0];
|
||||
float rescale_my = mask->ne[1] / output->ne[1];
|
||||
float rescale_mx = 1.f * mask->ne[0] / output->ne[0];
|
||||
float rescale_my = 1.f * mask->ne[1] / output->ne[1];
|
||||
GGML_ASSERT(output->type == GGML_TYPE_F32);
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
@ -685,9 +685,10 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_torch_permute(struct ggml_context
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int64_t dim,
|
||||
int dim,
|
||||
int64_t start,
|
||||
int64_t end) {
|
||||
int64_t end,
|
||||
bool cont = true) {
|
||||
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||
if (x->ne[dim] == 1) {
|
||||
return x;
|
||||
@ -702,27 +703,15 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
||||
GGML_ASSERT(start >= 0 && start < x->ne[dim]);
|
||||
GGML_ASSERT(end > start && end <= x->ne[dim]);
|
||||
|
||||
int perm[4] = {0, 1, 2, 3};
|
||||
for (int i = dim; i < 3; ++i)
|
||||
perm[i] = perm[i + 1];
|
||||
perm[3] = dim;
|
||||
int64_t slice_size = end - start;
|
||||
int64_t slice_ne[4] = {x->ne[0], x->ne[1], x->ne[2], x->ne[3]};
|
||||
slice_ne[dim] = slice_size;
|
||||
|
||||
int inv_perm[4];
|
||||
for (int i = 0; i < 4; ++i)
|
||||
inv_perm[perm[i]] = i;
|
||||
x = ggml_view_4d(ctx, x,
|
||||
slice_ne[0], slice_ne[1], slice_ne[2], slice_ne[3],
|
||||
x->nb[1], x->nb[2], x->nb[3], start * x->nb[dim]);
|
||||
|
||||
if (dim != 3) {
|
||||
x = ggml_ext_torch_permute(ctx, x, perm[0], perm[1], perm[2], perm[3]);
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
|
||||
x = ggml_view_4d(
|
||||
ctx, x,
|
||||
x->ne[0], x->ne[1], x->ne[2], end - start,
|
||||
x->nb[1], x->nb[2], x->nb[3], x->nb[3] * start);
|
||||
|
||||
if (dim != 3) {
|
||||
x = ggml_ext_torch_permute(ctx, x, inv_perm[0], inv_perm[1], inv_perm[2], inv_perm[3]);
|
||||
if (cont) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
|
||||
@ -785,7 +774,7 @@ __STATIC_INLINE__ void sd_tiling_calc_tiles(int& num_tiles_dim,
|
||||
int small_dim,
|
||||
int tile_size,
|
||||
const float tile_overlap_factor) {
|
||||
int tile_overlap = (tile_size * tile_overlap_factor);
|
||||
int tile_overlap = static_cast<int>(tile_size * tile_overlap_factor);
|
||||
int non_tile_overlap = tile_size - tile_overlap;
|
||||
|
||||
num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap;
|
||||
@ -960,6 +949,49 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_group_norm_32(struct ggml_context
|
||||
return ggml_group_norm(ctx, a, 32, eps);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_scale(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
float factor,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_scale_inplace(ctx, x, factor);
|
||||
} else {
|
||||
x = ggml_scale(ctx, x, factor);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_gelu_inplace(ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu(ctx, x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu_quick(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_gelu_quick_inplace(ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu_quick(ctx, x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* w,
|
||||
@ -967,7 +999,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
bool force_prec_f32 = false,
|
||||
float scale = 1.f) {
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, scale);
|
||||
x = ggml_ext_scale(ctx, x, scale);
|
||||
}
|
||||
if (x->ne[2] * x->ne[3] > 1024) {
|
||||
// workaround: avoid ggml cuda error
|
||||
@ -986,7 +1018,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
}
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||
}
|
||||
if (b != nullptr) {
|
||||
x = ggml_add_inplace(ctx, x, b);
|
||||
@ -1055,7 +1087,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx,
|
||||
bool circular_y = false,
|
||||
float scale = 1.f) {
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, scale);
|
||||
x = ggml_ext_scale(ctx, x, scale);
|
||||
}
|
||||
if (w->ne[2] != x->ne[2] && ggml_n_dims(w) == 2) {
|
||||
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], w->ne[1]);
|
||||
@ -1073,7 +1105,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx,
|
||||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||
}
|
||||
if (b != nullptr) {
|
||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||||
@ -1171,7 +1203,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_full(struct ggml_context* ctx,
|
||||
int64_t ne2,
|
||||
int64_t ne3) {
|
||||
auto one = ggml_get_tensor(ctx, "ggml_runner_build_in_tensor:one");
|
||||
auto t = ggml_scale(ctx, one, value); // [1,]
|
||||
auto t = ggml_ext_scale(ctx, one, value); // [1,]
|
||||
t = ggml_repeat_4d(ctx, t, ne0, ne1, ne2, ne3); // [ne0, ne1, ne2, ne3]
|
||||
return t;
|
||||
}
|
||||
@ -1208,35 +1240,11 @@ __STATIC_INLINE__ ggml_tensor* ggml_ext_cast_f32(ggml_context* ctx, ggml_tensor*
|
||||
} else {
|
||||
out = ggml_mul_mat(ctx, out, one);
|
||||
}
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
#endif
|
||||
return out;
|
||||
}
|
||||
|
||||
// q: [N * n_head, n_token, d_head]
|
||||
// k: [N * n_head, n_k, d_head]
|
||||
// v: [N * n_head, d_head, n_k]
|
||||
// return: [N * n_head, n_token, d_head]
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention(struct ggml_context* ctx,
|
||||
struct ggml_tensor* q,
|
||||
struct ggml_tensor* k,
|
||||
struct ggml_tensor* v,
|
||||
bool mask = false) {
|
||||
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUDA) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL)
|
||||
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head]
|
||||
#else
|
||||
float d_head = (float)q->ne[0];
|
||||
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
|
||||
if (mask) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head]
|
||||
#endif
|
||||
return kqv;
|
||||
}
|
||||
|
||||
// q: [N, L_q, C(n_head*d_head)] or [N*n_head, L_q, d_head]
|
||||
// k: [N, L_k, n_kv_head*d_head] or [N*n_kv_head, L_k, d_head]
|
||||
// v: [N, L_k, n_kv_head*d_head] or [N, L_k, n_kv_head, d_head]
|
||||
@ -1249,7 +1257,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
struct ggml_tensor* v,
|
||||
int64_t n_head,
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
bool diag_mask_inf = false,
|
||||
bool skip_reshape = false,
|
||||
bool flash_attn = false,
|
||||
float kv_scale = 1.0f) { // avoid overflow
|
||||
@ -1295,7 +1302,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0);
|
||||
}
|
||||
if (kv_scale != 1.0f) {
|
||||
k_in = ggml_scale(ctx, k_in, kv_scale);
|
||||
k_in = ggml_ext_scale(ctx, k_in, kv_scale);
|
||||
}
|
||||
k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16);
|
||||
|
||||
@ -1305,7 +1312,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0);
|
||||
}
|
||||
if (kv_scale != 1.0f) {
|
||||
v_in = ggml_scale(ctx, v_in, kv_scale);
|
||||
v_in = ggml_ext_scale(ctx, v_in, kv_scale);
|
||||
}
|
||||
v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16);
|
||||
|
||||
@ -1337,7 +1344,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale / kv_scale, 0, 0);
|
||||
ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32);
|
||||
if (kv_scale != 1.0f) {
|
||||
out = ggml_scale(ctx, out, 1.0f / kv_scale);
|
||||
out = ggml_ext_scale(ctx, out, 1.0f / kv_scale);
|
||||
}
|
||||
return out;
|
||||
};
|
||||
@ -1346,7 +1353,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
// LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
|
||||
bool can_use_flash_attn = true;
|
||||
if (can_use_flash_attn && L_k % 256 != 0) {
|
||||
kv_pad = GGML_PAD(L_k, 256) - L_k;
|
||||
kv_pad = GGML_PAD(L_k, 256) - static_cast<int>(L_k);
|
||||
}
|
||||
|
||||
if (mask != nullptr) {
|
||||
@ -1372,13 +1379,11 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_kv_head * N); // [N * n_kv_head, d_head, L_k]
|
||||
|
||||
auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
if (mask) {
|
||||
kq = ggml_add_inplace(ctx, kq, mask);
|
||||
}
|
||||
if (diag_mask_inf) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
|
||||
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||||
@ -1546,7 +1551,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_timestep_embedding(
|
||||
int dim,
|
||||
int max_period = 10000,
|
||||
float time_factor = 1.0f) {
|
||||
timesteps = ggml_scale(ctx, timesteps, time_factor);
|
||||
timesteps = ggml_ext_scale(ctx, timesteps, time_factor);
|
||||
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
||||
}
|
||||
|
||||
@ -2361,53 +2366,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class Conv3dnx1x1 : public UnaryBlock {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
int64_t out_channels;
|
||||
int64_t kernel_size;
|
||||
int64_t stride;
|
||||
int64_t padding;
|
||||
int64_t dilation;
|
||||
bool bias;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = GGML_TYPE_F16;
|
||||
params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d
|
||||
if (bias) {
|
||||
enum ggml_type wtype = GGML_TYPE_F32;
|
||||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Conv3dnx1x1(int64_t in_channels,
|
||||
int64_t out_channels,
|
||||
int64_t kernel_size,
|
||||
int64_t stride = 1,
|
||||
int64_t padding = 0,
|
||||
int64_t dilation = 1,
|
||||
bool bias = true)
|
||||
: in_channels(in_channels),
|
||||
out_channels(out_channels),
|
||||
kernel_size(kernel_size),
|
||||
stride(stride),
|
||||
padding(padding),
|
||||
dilation(dilation),
|
||||
bias(bias) {}
|
||||
|
||||
// x: [N, IC, ID, IH*IW]
|
||||
// result: [N, OC, OD, OH*OW]
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
struct ggml_tensor* b = nullptr;
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
return ggml_ext_conv_3d_nx1x1(ctx->ggml_ctx, x, w, b, stride, padding, dilation);
|
||||
}
|
||||
};
|
||||
|
||||
class Conv3d : public UnaryBlock {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
@ -2523,7 +2481,7 @@ public:
|
||||
|
||||
class GroupNorm : public GGMLBlock {
|
||||
protected:
|
||||
int64_t num_groups;
|
||||
int num_groups;
|
||||
int64_t num_channels;
|
||||
float eps;
|
||||
bool affine;
|
||||
@ -2540,7 +2498,7 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
GroupNorm(int64_t num_groups,
|
||||
GroupNorm(int num_groups,
|
||||
int64_t num_channels,
|
||||
float eps = 1e-05f,
|
||||
bool affine = true)
|
||||
@ -2642,7 +2600,7 @@ public:
|
||||
// x: [N, n_token, embed_dim]
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool mask = false) {
|
||||
struct ggml_tensor* mask = nullptr) {
|
||||
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);
|
||||
|
||||
ggml_tensor* q;
|
||||
@ -2665,7 +2623,7 @@ public:
|
||||
v = v_proj->forward(ctx, x);
|
||||
}
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, mask); // [N, n_token, embed_dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, mask, false); // [N, n_token, embed_dim]
|
||||
|
||||
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
|
||||
return x;
|
||||
|
||||
@ -151,7 +151,7 @@ private:
|
||||
}
|
||||
|
||||
if (n_dims > GGML_MAX_DIMS) {
|
||||
for (int i = GGML_MAX_DIMS; i < n_dims; i++) {
|
||||
for (uint32_t i = GGML_MAX_DIMS; i < n_dims; i++) {
|
||||
info.shape[GGML_MAX_DIMS - 1] *= info.shape[i]; // stack to last dim;
|
||||
}
|
||||
info.shape.resize(GGML_MAX_DIMS);
|
||||
|
||||
@ -166,12 +166,12 @@ float sd_latent_rgb_bias[3] = {-0.017478f, -0.055834f, -0.105825f};
|
||||
void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const float (*latent_rgb_proj)[3], const float latent_rgb_bias[3], int patch_size) {
|
||||
size_t buffer_head = 0;
|
||||
|
||||
uint32_t latent_width = latents->ne[0];
|
||||
uint32_t latent_height = latents->ne[1];
|
||||
uint32_t dim = latents->ne[ggml_n_dims(latents) - 1];
|
||||
uint32_t latent_width = static_cast<uint32_t>(latents->ne[0]);
|
||||
uint32_t latent_height = static_cast<uint32_t>(latents->ne[1]);
|
||||
uint32_t dim = static_cast<uint32_t>(latents->ne[ggml_n_dims(latents) - 1]);
|
||||
uint32_t frames = 1;
|
||||
if (ggml_n_dims(latents) == 4) {
|
||||
frames = latents->ne[2];
|
||||
frames = static_cast<uint32_t>(latents->ne[2]);
|
||||
}
|
||||
|
||||
uint32_t rgb_width = latent_width * patch_size;
|
||||
@ -179,9 +179,9 @@ void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const fl
|
||||
|
||||
uint32_t unpatched_dim = dim / (patch_size * patch_size);
|
||||
|
||||
for (int k = 0; k < frames; k++) {
|
||||
for (int rgb_x = 0; rgb_x < rgb_width; rgb_x++) {
|
||||
for (int rgb_y = 0; rgb_y < rgb_height; rgb_y++) {
|
||||
for (uint32_t k = 0; k < frames; k++) {
|
||||
for (uint32_t rgb_x = 0; rgb_x < rgb_width; rgb_x++) {
|
||||
for (uint32_t rgb_y = 0; rgb_y < rgb_height; rgb_y++) {
|
||||
int latent_x = rgb_x / patch_size;
|
||||
int latent_y = rgb_y / patch_size;
|
||||
|
||||
@ -197,7 +197,7 @@ void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const fl
|
||||
|
||||
float r = 0, g = 0, b = 0;
|
||||
if (latent_rgb_proj != nullptr) {
|
||||
for (int d = 0; d < unpatched_dim; d++) {
|
||||
for (uint32_t d = 0; d < unpatched_dim; d++) {
|
||||
float value = *(float*)((char*)latents->data + latent_id + (d * patch_size * patch_size + channel_offset) * latents->nb[ggml_n_dims(latents) - 1]);
|
||||
r += value * latent_rgb_proj[d][0];
|
||||
g += value * latent_rgb_proj[d][1];
|
||||
|
||||
163
llm.hpp
@ -195,14 +195,14 @@ namespace LLM {
|
||||
tokens.insert(tokens.begin(), BOS_TOKEN_ID);
|
||||
}
|
||||
if (max_length > 0 && padding) {
|
||||
size_t n = std::ceil(tokens.size() * 1.0 / max_length);
|
||||
size_t n = static_cast<size_t>(std::ceil(tokens.size() * 1.f / max_length));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
size_t length = max_length * n;
|
||||
LOG_DEBUG("token length: %llu", length);
|
||||
tokens.insert(tokens.end(), length - tokens.size(), PAD_TOKEN_ID);
|
||||
weights.insert(weights.end(), length - weights.size(), 1.0);
|
||||
weights.insert(weights.end(), length - weights.size(), 1.f);
|
||||
}
|
||||
}
|
||||
|
||||
@ -377,7 +377,7 @@ namespace LLM {
|
||||
|
||||
try {
|
||||
vocab = nlohmann::json::parse(vocab_utf8_str);
|
||||
} catch (const nlohmann::json::parse_error& e) {
|
||||
} catch (const nlohmann::json::parse_error&) {
|
||||
GGML_ABORT("invalid vocab json str");
|
||||
}
|
||||
for (const auto& [key, value] : vocab.items()) {
|
||||
@ -386,7 +386,7 @@ namespace LLM {
|
||||
encoder[token] = i;
|
||||
decoder[i] = token;
|
||||
}
|
||||
encoder_len = vocab.size();
|
||||
encoder_len = static_cast<int>(vocab.size());
|
||||
LOG_DEBUG("vocab size: %d", encoder_len);
|
||||
|
||||
auto byte_unicode_pairs = bytes_to_unicode();
|
||||
@ -485,16 +485,16 @@ namespace LLM {
|
||||
};
|
||||
|
||||
struct LLMVisionParams {
|
||||
int64_t num_layers = 32;
|
||||
int num_layers = 32;
|
||||
int64_t hidden_size = 1280;
|
||||
int64_t intermediate_size = 3420;
|
||||
int64_t num_heads = 16;
|
||||
int num_heads = 16;
|
||||
int64_t in_channels = 3;
|
||||
int64_t out_hidden_size = 3584;
|
||||
int64_t temporal_patch_size = 2;
|
||||
int64_t patch_size = 14;
|
||||
int64_t spatial_merge_size = 2;
|
||||
int64_t window_size = 112;
|
||||
int temporal_patch_size = 2;
|
||||
int patch_size = 14;
|
||||
int spatial_merge_size = 2;
|
||||
int window_size = 112;
|
||||
std::set<int> fullatt_block_indexes = {7, 15, 23, 31};
|
||||
};
|
||||
|
||||
@ -503,9 +503,9 @@ namespace LLM {
|
||||
int64_t num_layers = 28;
|
||||
int64_t hidden_size = 3584;
|
||||
int64_t intermediate_size = 18944;
|
||||
int64_t num_heads = 28;
|
||||
int64_t num_kv_heads = 4;
|
||||
int64_t head_dim = 128;
|
||||
int num_heads = 28;
|
||||
int num_kv_heads = 4;
|
||||
int head_dim = 128;
|
||||
bool qkv_bias = true;
|
||||
bool qk_norm = false;
|
||||
int64_t vocab_size = 152064;
|
||||
@ -638,7 +638,7 @@ namespace LLM {
|
||||
x = ln_q->forward(ctx, x);
|
||||
x = ggml_reshape_2d(ctx->ggml_ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
|
||||
x = mlp_0->forward(ctx, x);
|
||||
x = ggml_gelu(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x);
|
||||
x = mlp_2->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
@ -647,15 +647,15 @@ namespace LLM {
|
||||
struct VisionAttention : public GGMLBlock {
|
||||
protected:
|
||||
bool llama_cpp_style;
|
||||
int64_t head_dim;
|
||||
int64_t num_heads;
|
||||
int head_dim;
|
||||
int num_heads;
|
||||
|
||||
public:
|
||||
VisionAttention(bool llama_cpp_style,
|
||||
int64_t hidden_size,
|
||||
int64_t num_heads)
|
||||
int num_heads)
|
||||
: llama_cpp_style(llama_cpp_style), num_heads(num_heads) {
|
||||
head_dim = hidden_size / num_heads;
|
||||
head_dim = static_cast<int>(hidden_size / num_heads);
|
||||
GGML_ASSERT(num_heads * head_dim == hidden_size);
|
||||
if (llama_cpp_style) {
|
||||
blocks["q_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
|
||||
@ -709,7 +709,7 @@ namespace LLM {
|
||||
VisionBlock(bool llama_cpp_style,
|
||||
int64_t hidden_size,
|
||||
int64_t intermediate_size,
|
||||
int64_t num_heads,
|
||||
int num_heads,
|
||||
float eps = 1e-6f) {
|
||||
blocks["attn"] = std::shared_ptr<GGMLBlock>(new VisionAttention(llama_cpp_style, hidden_size, num_heads));
|
||||
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new MLP(hidden_size, intermediate_size, true));
|
||||
@ -743,22 +743,22 @@ namespace LLM {
|
||||
|
||||
struct VisionModel : public GGMLBlock {
|
||||
protected:
|
||||
int64_t num_layers;
|
||||
int64_t spatial_merge_size;
|
||||
int num_layers;
|
||||
int spatial_merge_size;
|
||||
std::set<int> fullatt_block_indexes;
|
||||
|
||||
public:
|
||||
VisionModel(bool llama_cpp_style,
|
||||
int64_t num_layers,
|
||||
int num_layers,
|
||||
int64_t in_channels,
|
||||
int64_t hidden_size,
|
||||
int64_t out_hidden_size,
|
||||
int64_t intermediate_size,
|
||||
int64_t num_heads,
|
||||
int64_t spatial_merge_size,
|
||||
int64_t patch_size,
|
||||
int64_t temporal_patch_size,
|
||||
int64_t window_size,
|
||||
int num_heads,
|
||||
int spatial_merge_size,
|
||||
int patch_size,
|
||||
int temporal_patch_size,
|
||||
int window_size,
|
||||
std::set<int> fullatt_block_indexes = {7, 15, 23, 31},
|
||||
float eps = 1e-6f)
|
||||
: num_layers(num_layers), fullatt_block_indexes(std::move(fullatt_block_indexes)), spatial_merge_size(spatial_merge_size) {
|
||||
@ -817,7 +817,7 @@ namespace LLM {
|
||||
struct Attention : public GGMLBlock {
|
||||
protected:
|
||||
LLMArch arch;
|
||||
int64_t head_dim;
|
||||
int head_dim;
|
||||
int64_t num_heads;
|
||||
int64_t num_kv_heads;
|
||||
bool qk_norm;
|
||||
@ -837,7 +837,8 @@ namespace LLM {
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* input_pos) {
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask = nullptr) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
int64_t n_token = x->ne[1];
|
||||
int64_t N = x->ne[2];
|
||||
@ -880,7 +881,7 @@ namespace LLM {
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 2, 1, 3)); // [N, num_kv_heads, n_token, head_dim]
|
||||
k = ggml_reshape_3d(ctx->ggml_ctx, k, k->ne[0], k->ne[1], k->ne[2] * k->ne[3]); // [N*num_kv_heads, n_token, head_dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, true, true, false); // [N, n_token, hidden_size]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, attention_mask, true, false); // [N, n_token, hidden_size]
|
||||
|
||||
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
return x;
|
||||
@ -898,7 +899,8 @@ namespace LLM {
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* input_pos) {
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask = nullptr) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
auto self_attn = std::dynamic_pointer_cast<Attention>(blocks["self_attn"]);
|
||||
auto mlp = std::dynamic_pointer_cast<MLP>(blocks["mlp"]);
|
||||
@ -907,7 +909,7 @@ namespace LLM {
|
||||
|
||||
auto residual = x;
|
||||
x = input_layernorm->forward(ctx, x);
|
||||
x = self_attn->forward(ctx, x, input_pos);
|
||||
x = self_attn->forward(ctx, x, input_pos, attention_mask);
|
||||
x = ggml_add_inplace(ctx->ggml_ctx, x, residual);
|
||||
|
||||
residual = x;
|
||||
@ -936,6 +938,7 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
// input_ids: [N, n_token]
|
||||
@ -990,7 +993,7 @@ namespace LLM {
|
||||
for (int i = 0; i < num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<TransformerBlock>(blocks["layers." + std::to_string(i)]);
|
||||
|
||||
x = block->forward(ctx, x, input_pos);
|
||||
x = block->forward(ctx, x, input_pos, attention_mask);
|
||||
if (out_layers.find(i + 1) != out_layers.end()) {
|
||||
intermediate_outputs.push_back(x);
|
||||
}
|
||||
@ -1036,12 +1039,13 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
// input_ids: [N, n_token]
|
||||
auto model = std::dynamic_pointer_cast<TextModel>(blocks["model"]);
|
||||
|
||||
auto x = model->forward(ctx, input_ids, input_pos, image_embeds, out_layers);
|
||||
auto x = model->forward(ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -1063,6 +1067,7 @@ namespace LLM {
|
||||
LLM model;
|
||||
|
||||
std::vector<int> input_pos_vec;
|
||||
std::vector<float> attention_mask_vec;
|
||||
std::vector<float> window_mask_vec;
|
||||
std::vector<int> window_index_vec;
|
||||
std::vector<int> window_inverse_index_vec;
|
||||
@ -1157,9 +1162,10 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
auto hidden_states = model.forward(ctx, input_ids, input_pos, image_embeds, out_layers); // [N, n_token, hidden_size]
|
||||
auto hidden_states = model.forward(ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers); // [N, n_token, hidden_size]
|
||||
return hidden_states;
|
||||
}
|
||||
|
||||
@ -1174,6 +1180,7 @@ namespace LLM {
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
@ -1205,9 +1212,26 @@ namespace LLM {
|
||||
input_pos_vec.size());
|
||||
set_backend_tensor_data(input_pos, input_pos_vec.data());
|
||||
|
||||
if (attention_mask != nullptr) {
|
||||
attention_mask = to_backend(attention_mask);
|
||||
} else {
|
||||
attention_mask_vec.resize(n_tokens * n_tokens);
|
||||
for (int i0 = 0; i0 < n_tokens; i0++) {
|
||||
for (int i1 = 0; i1 < n_tokens; i1++) {
|
||||
float value = 0.f;
|
||||
if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
attention_mask_vec[i1 * n_tokens + i0] = value;
|
||||
}
|
||||
}
|
||||
attention_mask = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
set_backend_tensor_data(attention_mask, attention_mask_vec.data());
|
||||
}
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, input_pos, image_embeds, out_layers);
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers);
|
||||
|
||||
ggml_build_forward_expand(gf, hidden_states);
|
||||
|
||||
@ -1216,22 +1240,23 @@ namespace LLM {
|
||||
|
||||
bool compute(const int n_threads,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers,
|
||||
ggml_tensor** output,
|
||||
ggml_context* output_ctx = nullptr) {
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(input_ids, image_embeds, out_layers);
|
||||
return build_graph(input_ids, attention_mask, image_embeds, out_layers);
|
||||
};
|
||||
return GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
|
||||
}
|
||||
|
||||
int64_t get_num_image_tokens(int64_t t, int64_t h, int64_t w) {
|
||||
int grid_t = 1;
|
||||
int grid_h = h / params.vision.patch_size;
|
||||
int grid_w = w / params.vision.patch_size;
|
||||
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
int64_t grid_t = 1;
|
||||
int64_t grid_h = h / params.vision.patch_size;
|
||||
int64_t grid_w = w / params.vision.patch_size;
|
||||
int64_t llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int64_t llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
return grid_t * grid_h * grid_w;
|
||||
}
|
||||
|
||||
@ -1269,8 +1294,8 @@ namespace LLM {
|
||||
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
|
||||
|
||||
int grid_t = 1;
|
||||
int grid_h = image->ne[1] / params.vision.patch_size;
|
||||
int grid_w = image->ne[0] / params.vision.patch_size;
|
||||
int grid_h = static_cast<int>(image->ne[1]) / params.vision.patch_size;
|
||||
int grid_w = static_cast<int>(image->ne[0]) / params.vision.patch_size;
|
||||
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
int vit_merger_window_size = params.vision.window_size / params.vision.patch_size / params.vision.spatial_merge_size;
|
||||
@ -1358,14 +1383,14 @@ namespace LLM {
|
||||
set_backend_tensor_data(window_mask, window_mask_vec.data());
|
||||
|
||||
// pe
|
||||
int head_dim = params.vision.hidden_size / params.vision.num_heads;
|
||||
int head_dim = static_cast<int>(params.vision.hidden_size / params.vision.num_heads);
|
||||
pe_vec = Rope::gen_qwen2vl_pe(grid_h,
|
||||
grid_w,
|
||||
params.vision.spatial_merge_size,
|
||||
window_inverse_index_vec,
|
||||
10000.f,
|
||||
10000,
|
||||
{head_dim / 2, head_dim / 2});
|
||||
int pos_len = pe_vec.size() / head_dim / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / head_dim / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, head_dim / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -1485,13 +1510,13 @@ namespace LLM {
|
||||
print_ggml_tensor(image, false, "image");
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.encode_image(8, image, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out, false, "image_embed");
|
||||
image_embed = out;
|
||||
LOG_DEBUG("llm encode_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm encode_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
|
||||
std::string placeholder = "<|image_pad|>";
|
||||
@ -1524,12 +1549,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, image_embeds, {}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, image_embeds, {}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_vit) {
|
||||
// auto image = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 280, 280, 3);
|
||||
// ggml_set_f32(image, 0.f);
|
||||
@ -1537,16 +1562,16 @@ namespace LLM {
|
||||
print_ggml_tensor(image, false, "image");
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.encode_image(8, image, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out, false, "out");
|
||||
|
||||
// auto ref_out = load_tensor_from_file(work_ctx, "qwen2vl.bin");
|
||||
// ggml_ext_tensor_diff(ref_out, out, 0.01f);
|
||||
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_mistral) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
@ -1564,12 +1589,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {10, 20, 30}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {10, 20, 30}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_qwen3) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>user\n";
|
||||
@ -1587,12 +1612,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {35}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {35}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n";
|
||||
@ -1610,12 +1635,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
10
lora.hpp
@ -195,7 +195,7 @@ struct LoraModel : public GGMLRunner {
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -235,7 +235,7 @@ struct LoraModel : public GGMLRunner {
|
||||
float scale_value = 1.0f;
|
||||
scale_value *= multiplier;
|
||||
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -340,7 +340,7 @@ struct LoraModel : public GGMLRunner {
|
||||
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
|
||||
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
|
||||
auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
@ -456,7 +456,7 @@ struct LoraModel : public GGMLRunner {
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -634,7 +634,7 @@ struct LoraModel : public GGMLRunner {
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
|
||||
auto curr_out_diff = ggml_scale_inplace(ctx, lx, scale_value);
|
||||
auto curr_out_diff = ggml_ext_scale(ctx, lx, scale_value, true);
|
||||
|
||||
if (out_diff == nullptr) {
|
||||
out_diff = curr_out_diff;
|
||||
|
||||
109
mmdit.hpp
@ -33,7 +33,7 @@ public:
|
||||
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
|
||||
|
||||
x = fc1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = fc2->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
@ -97,12 +97,12 @@ public:
|
||||
struct TimestepEmbedder : public GGMLBlock {
|
||||
// Embeds scalar timesteps into vector representations.
|
||||
protected:
|
||||
int64_t frequency_embedding_size;
|
||||
int frequency_embedding_size;
|
||||
|
||||
public:
|
||||
TimestepEmbedder(int64_t hidden_size,
|
||||
int64_t frequency_embedding_size = 256,
|
||||
int64_t out_channels = 0)
|
||||
int frequency_embedding_size = 256,
|
||||
int64_t out_channels = 0)
|
||||
: frequency_embedding_size(frequency_embedding_size) {
|
||||
if (out_channels <= 0) {
|
||||
out_channels = hidden_size;
|
||||
@ -167,11 +167,11 @@ public:
|
||||
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
|
||||
}
|
||||
if (qk_norm == "rms") {
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6f));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6f));
|
||||
} else if (qk_norm == "ln") {
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6f));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6f));
|
||||
}
|
||||
}
|
||||
|
||||
@ -211,8 +211,8 @@ public:
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
auto qkv = pre_attention(ctx, x);
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
}
|
||||
};
|
||||
@ -284,23 +284,19 @@ public:
|
||||
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
int64_t n_mods = 9;
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
||||
int n_mods = 9;
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
||||
|
||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
||||
|
||||
auto shift_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 6); // [N, hidden_size]
|
||||
auto scale_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 7); // [N, hidden_size]
|
||||
auto gate_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 8); // [N, hidden_size]
|
||||
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||
auto shift_msa2 = m_vec[6]; // [N, hidden_size]
|
||||
auto scale_msa2 = m_vec[7]; // [N, hidden_size]
|
||||
auto gate_msa2 = m_vec[8]; // [N, hidden_size]
|
||||
|
||||
auto x_norm = norm1->forward(ctx, x);
|
||||
|
||||
@ -322,22 +318,20 @@ public:
|
||||
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
int64_t n_mods = 6;
|
||||
int n_mods = 6;
|
||||
if (pre_only) {
|
||||
n_mods = 2;
|
||||
}
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||
if (!pre_only) {
|
||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
||||
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||
|
||||
auto attn_in = modulate(ctx->ggml_ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
|
||||
|
||||
@ -439,8 +433,8 @@ public:
|
||||
auto qkv2 = std::get<1>(qkv_intermediates);
|
||||
auto intermediates = std::get<2>(qkv_intermediates);
|
||||
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention_x(ctx,
|
||||
attn_out,
|
||||
attn2_out,
|
||||
@ -456,7 +450,7 @@ public:
|
||||
auto qkv = qkv_intermediates.first;
|
||||
auto intermediates = qkv_intermediates.second;
|
||||
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx,
|
||||
attn_out,
|
||||
intermediates[0],
|
||||
@ -500,26 +494,24 @@ block_mixing(GGMLRunnerContext* ctx,
|
||||
qkv.push_back(ggml_concat(ctx->ggml_ctx, context_qkv[i], x_qkv[i], 1));
|
||||
}
|
||||
|
||||
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
|
||||
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
||||
|
||||
auto context_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
context->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_context, N, hidden_size]
|
||||
context_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, context_attn, 0, 2, 1, 3)); // [N, n_context, hidden_size]
|
||||
0); // [N, n_context, hidden_size]
|
||||
auto x_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
x->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * context->ne[1]); // [n_token, N, hidden_size]
|
||||
x_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x_attn, 0, 2, 1, 3)); // [N, n_token, hidden_size]
|
||||
context->ne[1] * attn->nb[1]); // [N, n_token, hidden_size]
|
||||
|
||||
if (!context_block->pre_only) {
|
||||
context = context_block->post_attention(ctx,
|
||||
@ -534,7 +526,7 @@ block_mixing(GGMLRunnerContext* ctx,
|
||||
}
|
||||
|
||||
if (x_block->self_attn) {
|
||||
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
||||
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
||||
|
||||
x = x_block->post_attention_x(ctx,
|
||||
x_attn,
|
||||
@ -604,13 +596,10 @@ public:
|
||||
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||
auto shift = m_vec[0]; // [N, hidden_size]
|
||||
auto scale = m_vec[1]; // [N, hidden_size]
|
||||
|
||||
x = modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||
x = linear->forward(ctx, x);
|
||||
@ -623,7 +612,7 @@ struct MMDiT : public GGMLBlock {
|
||||
// Diffusion model with a Transformer backbone.
|
||||
protected:
|
||||
int64_t input_size = -1;
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 16;
|
||||
int64_t d_self = -1; // >=0 for MMdiT-X
|
||||
int64_t depth = 24;
|
||||
@ -943,12 +932,12 @@ struct MMDiTRunner : public GGMLRunner {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, y, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("mmdit test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("mmdit test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
67
model.cpp
@ -376,7 +376,11 @@ bool ModelLoader::init_from_file(const std::string& file_path, const std::string
|
||||
LOG_INFO("load %s using checkpoint format", file_path.c_str());
|
||||
return init_from_ckpt_file(file_path, prefix);
|
||||
} else {
|
||||
LOG_WARN("unknown format %s", file_path.c_str());
|
||||
if (file_exists(file_path)) {
|
||||
LOG_WARN("unknown format %s", file_path.c_str());
|
||||
} else {
|
||||
LOG_WARN("file %s not found", file_path.c_str());
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -436,7 +440,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s
|
||||
name,
|
||||
gguf_tensor_info.type,
|
||||
gguf_tensor_info.shape.data(),
|
||||
gguf_tensor_info.shape.size(),
|
||||
static_cast<int>(gguf_tensor_info.shape.size()),
|
||||
file_index,
|
||||
data_offset + gguf_tensor_info.offset);
|
||||
|
||||
@ -448,7 +452,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s
|
||||
return true;
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf_);
|
||||
int n_tensors = static_cast<int>(gguf_get_n_tensors(ctx_gguf_));
|
||||
|
||||
size_t total_size = 0;
|
||||
size_t data_offset = gguf_get_data_offset(ctx_gguf_);
|
||||
@ -1034,10 +1038,14 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
|
||||
bool is_xl = false;
|
||||
bool is_flux = false;
|
||||
bool is_flux2 = false;
|
||||
bool has_single_block_47 = false;
|
||||
bool is_wan = false;
|
||||
int64_t patch_embedding_channels = 0;
|
||||
bool has_img_emb = false;
|
||||
bool has_middle_block_1 = false;
|
||||
bool has_output_block_311 = false;
|
||||
bool has_output_block_71 = false;
|
||||
|
||||
for (auto& [name, tensor_storage] : tensor_storage_map) {
|
||||
if (!(is_xl)) {
|
||||
@ -1054,7 +1062,10 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_QWEN_IMAGE;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_stream_modulation_img.lin.weight") != std::string::npos) {
|
||||
return VERSION_FLUX2;
|
||||
is_flux2 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("single_blocks.47.linear1.weight") != std::string::npos) {
|
||||
has_single_block_47 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_blocks.0.img_mlp.gate_proj.weight") != std::string::npos) {
|
||||
return VERSION_OVIS_IMAGE;
|
||||
@ -1094,6 +1105,12 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
tensor_storage.name.find("unet.mid_block.resnets.1.") != std::string::npos) {
|
||||
has_middle_block_1 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.output_blocks.3.1.transformer_blocks.1") != std::string::npos) {
|
||||
has_output_block_311 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.output_blocks.7.1") != std::string::npos) {
|
||||
has_output_block_71 = true;
|
||||
}
|
||||
if (tensor_storage.name == "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight" ||
|
||||
tensor_storage.name == "cond_stage_model.model.token_embedding.weight" ||
|
||||
tensor_storage.name == "text_model.embeddings.token_embedding.weight" ||
|
||||
@ -1129,12 +1146,15 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_SDXL_PIX2PIX;
|
||||
}
|
||||
if (!has_middle_block_1) {
|
||||
if (!has_output_block_311) {
|
||||
return VERSION_SDXL_VEGA;
|
||||
}
|
||||
return VERSION_SDXL_SSD1B;
|
||||
}
|
||||
return VERSION_SDXL;
|
||||
}
|
||||
|
||||
if (is_flux) {
|
||||
if (is_flux && !is_flux2) {
|
||||
if (input_block_weight.ne[0] == 384) {
|
||||
return VERSION_FLUX_FILL;
|
||||
}
|
||||
@ -1147,6 +1167,13 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_FLUX;
|
||||
}
|
||||
|
||||
if (is_flux2) {
|
||||
if (has_single_block_47) {
|
||||
return VERSION_FLUX2;
|
||||
}
|
||||
return VERSION_FLUX2_KLEIN;
|
||||
}
|
||||
|
||||
if (token_embedding_weight.ne[0] == 768) {
|
||||
if (is_inpaint) {
|
||||
return VERSION_SD1_INPAINT;
|
||||
@ -1155,6 +1182,9 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_SD1_PIX2PIX;
|
||||
}
|
||||
if (!has_middle_block_1) {
|
||||
if (!has_output_block_71) {
|
||||
return VERSION_SDXS;
|
||||
}
|
||||
return VERSION_SD1_TINY_UNET;
|
||||
}
|
||||
return VERSION_SD1;
|
||||
@ -1340,7 +1370,7 @@ std::string ModelLoader::load_umt5_tokenizer_json() {
|
||||
return json_str;
|
||||
}
|
||||
|
||||
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads_p) {
|
||||
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads_p, bool enable_mmap) {
|
||||
int64_t process_time_ms = 0;
|
||||
std::atomic<int64_t> read_time_ms(0);
|
||||
std::atomic<int64_t> memcpy_time_ms(0);
|
||||
@ -1390,6 +1420,15 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<MmapWrapper> mmapped;
|
||||
if (enable_mmap && !is_zip) {
|
||||
LOG_DEBUG("using mmap for I/O");
|
||||
mmapped = MmapWrapper::create(file_path);
|
||||
if (!mmapped) {
|
||||
LOG_WARN("failed to memory-map '%s'", file_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
int n_threads = is_zip ? 1 : std::min(num_threads_to_use, (int)file_tensors.size());
|
||||
if (n_threads < 1) {
|
||||
n_threads = 1;
|
||||
@ -1411,7 +1450,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
failed = true;
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
} else if (!mmapped) {
|
||||
file.open(file_path, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
LOG_ERROR("failed to open '%s'", file_path.c_str());
|
||||
@ -1464,6 +1503,11 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
zip_entry_noallocread(zip, (void*)buf, n);
|
||||
}
|
||||
zip_entry_close(zip);
|
||||
} else if (mmapped) {
|
||||
if (!mmapped->copy_data(buf, n, tensor_storage.offset)) {
|
||||
LOG_ERROR("read tensor data failed: '%s'", file_path.c_str());
|
||||
failed = true;
|
||||
}
|
||||
} else {
|
||||
file.seekg(tensor_storage.offset);
|
||||
file.read(buf, n);
|
||||
@ -1556,7 +1600,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
break;
|
||||
}
|
||||
size_t curr_num = total_tensors_processed + current_idx;
|
||||
pretty_progress(curr_num, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (curr_num + 1e-6f));
|
||||
pretty_progress(static_cast<int>(curr_num), static_cast<int>(total_tensors_to_process), (ggml_time_ms() - t_start) / 1000.0f / (curr_num + 1e-6f));
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
||||
}
|
||||
|
||||
@ -1569,7 +1613,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
break;
|
||||
}
|
||||
total_tensors_processed += file_tensors.size();
|
||||
pretty_progress(total_tensors_processed, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (total_tensors_processed + 1e-6f));
|
||||
pretty_progress(static_cast<int>(total_tensors_processed), static_cast<int>(total_tensors_to_process), (ggml_time_ms() - t_start) / 1000.0f / (total_tensors_processed + 1e-6f));
|
||||
if (total_tensors_processed < total_tensors_to_process) {
|
||||
printf("\n");
|
||||
}
|
||||
@ -1588,7 +1632,8 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
|
||||
bool ModelLoader::load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
|
||||
std::set<std::string> ignore_tensors,
|
||||
int n_threads) {
|
||||
int n_threads,
|
||||
bool enable_mmap) {
|
||||
std::set<std::string> tensor_names_in_file;
|
||||
std::mutex tensor_names_mutex;
|
||||
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
|
||||
@ -1631,7 +1676,7 @@ bool ModelLoader::load_tensors(std::map<std::string, struct ggml_tensor*>& tenso
|
||||
return true;
|
||||
};
|
||||
|
||||
bool success = load_tensors(on_new_tensor_cb, n_threads);
|
||||
bool success = load_tensors(on_new_tensor_cb, n_threads, enable_mmap);
|
||||
if (!success) {
|
||||
LOG_ERROR("load tensors from file failed");
|
||||
return false;
|
||||
|
||||
14
model.h
@ -28,9 +28,11 @@ enum SDVersion {
|
||||
VERSION_SD2,
|
||||
VERSION_SD2_INPAINT,
|
||||
VERSION_SD2_TINY_UNET,
|
||||
VERSION_SDXS,
|
||||
VERSION_SDXL,
|
||||
VERSION_SDXL_INPAINT,
|
||||
VERSION_SDXL_PIX2PIX,
|
||||
VERSION_SDXL_VEGA,
|
||||
VERSION_SDXL_SSD1B,
|
||||
VERSION_SVD,
|
||||
VERSION_SD3,
|
||||
@ -44,13 +46,14 @@ enum SDVersion {
|
||||
VERSION_WAN2_2_TI2V,
|
||||
VERSION_QWEN_IMAGE,
|
||||
VERSION_FLUX2,
|
||||
VERSION_FLUX2_KLEIN,
|
||||
VERSION_Z_IMAGE,
|
||||
VERSION_OVIS_IMAGE,
|
||||
VERSION_COUNT,
|
||||
};
|
||||
|
||||
static inline bool sd_version_is_sd1(SDVersion version) {
|
||||
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX || version == VERSION_SD1_TINY_UNET) {
|
||||
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX || version == VERSION_SD1_TINY_UNET || version == VERSION_SDXS) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -64,7 +67,7 @@ static inline bool sd_version_is_sd2(SDVersion version) {
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_sdxl(SDVersion version) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX || version == VERSION_SDXL_SSD1B) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX || version == VERSION_SDXL_SSD1B || version == VERSION_SDXL_VEGA) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -99,7 +102,7 @@ static inline bool sd_version_is_flux(SDVersion version) {
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_flux2(SDVersion version) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
if (version == VERSION_FLUX2 || version == VERSION_FLUX2_KLEIN) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -310,10 +313,11 @@ public:
|
||||
std::map<ggml_type, uint32_t> get_vae_wtype_stat();
|
||||
String2TensorStorage& get_tensor_storage_map() { return tensor_storage_map; }
|
||||
void set_wtype_override(ggml_type wtype, std::string tensor_type_rules = "");
|
||||
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads = 0);
|
||||
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads = 0, bool use_mmap = false);
|
||||
bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
|
||||
std::set<std::string> ignore_tensors = {},
|
||||
int n_threads = 0);
|
||||
int n_threads = 0,
|
||||
bool use_mmap = false);
|
||||
|
||||
std::vector<std::string> get_tensor_names() const {
|
||||
std::vector<std::string> names;
|
||||
|
||||
@ -842,6 +842,7 @@ std::string convert_sep_to_dot(std::string name) {
|
||||
"conv_in",
|
||||
"conv_out",
|
||||
"lora_down",
|
||||
"lora_mid",
|
||||
"lora_up",
|
||||
"diff_b",
|
||||
"hada_w1_a",
|
||||
@ -997,10 +998,13 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
if (is_lora) {
|
||||
std::map<std::string, std::string> lora_suffix_map = {
|
||||
{".lora_down.weight", ".weight.lora_down"},
|
||||
{".lora_mid.weight", ".weight.lora_mid"},
|
||||
{".lora_up.weight", ".weight.lora_up"},
|
||||
{".lora.down.weight", ".weight.lora_down"},
|
||||
{".lora.mid.weight", ".weight.lora_mid"},
|
||||
{".lora.up.weight", ".weight.lora_up"},
|
||||
{"_lora.down.weight", ".weight.lora_down"},
|
||||
{"_lora.mid.weight", ".weight.lora_mid"},
|
||||
{"_lora.up.weight", ".weight.lora_up"},
|
||||
{".lora_A.weight", ".weight.lora_down"},
|
||||
{".lora_B.weight", ".weight.lora_up"},
|
||||
|
||||
8
pmid.hpp
@ -33,7 +33,7 @@ public:
|
||||
x = layer_norm->forward(ctx, x);
|
||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
|
||||
x = fc1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = fc2->forward(ctx, x);
|
||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
|
||||
if (use_residue)
|
||||
@ -72,7 +72,7 @@ struct PerceiverAttention : public GGMLBlock {
|
||||
int heads; // = heads
|
||||
public:
|
||||
PerceiverAttention(int dim, int dim_h = 64, int h = 8)
|
||||
: scale(powf(dim_h, -0.5)), dim_head(dim_h), heads(h) {
|
||||
: scale(powf(static_cast<float>(dim_h), -0.5f)), dim_head(dim_h), heads(h) {
|
||||
int inner_dim = dim_head * heads;
|
||||
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
|
||||
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
|
||||
@ -129,8 +129,8 @@ public:
|
||||
k = reshape_tensor(ctx->ggml_ctx, k, heads);
|
||||
v = reshape_tensor(ctx->ggml_ctx, v, heads);
|
||||
scale = 1.f / sqrt(sqrt((float)dim_head));
|
||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, scale);
|
||||
q = ggml_scale_inplace(ctx->ggml_ctx, q, scale);
|
||||
k = ggml_ext_scale(ctx->ggml_ctx, k, scale, true);
|
||||
q = ggml_ext_scale(ctx->ggml_ctx, q, scale, true);
|
||||
// auto weight = ggml_mul_mat(ctx, q, k);
|
||||
auto weight = ggml_mul_mat(ctx->ggml_ctx, k, q); // NOTE order of mul is opposite to pytorch
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
#define __PREPROCESSING_HPP__
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#define M_PI_ 3.14159265358979323846
|
||||
#define M_PI_ 3.14159265358979323846f
|
||||
|
||||
void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) {
|
||||
struct ggml_init_params params;
|
||||
@ -20,13 +20,13 @@ void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml
|
||||
}
|
||||
|
||||
void gaussian_kernel(struct ggml_tensor* kernel) {
|
||||
int ks_mid = kernel->ne[0] / 2;
|
||||
int ks_mid = static_cast<int>(kernel->ne[0] / 2);
|
||||
float sigma = 1.4f;
|
||||
float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f));
|
||||
for (int y = 0; y < kernel->ne[0]; y++) {
|
||||
float gx = -ks_mid + y;
|
||||
float gx = static_cast<float>(-ks_mid + y);
|
||||
for (int x = 0; x < kernel->ne[1]; x++) {
|
||||
float gy = -ks_mid + x;
|
||||
float gy = static_cast<float>(-ks_mid + x);
|
||||
float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal;
|
||||
ggml_ext_tensor_set_f32(kernel, k_, x, y);
|
||||
}
|
||||
@ -46,7 +46,7 @@ void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) {
|
||||
}
|
||||
|
||||
void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
int n_elements = static_cast<int>(ggml_nelements(h));
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
@ -56,7 +56,7 @@ void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor
|
||||
}
|
||||
|
||||
void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
int n_elements = static_cast<int>(ggml_nelements(h));
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
@ -66,7 +66,7 @@ void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tens
|
||||
}
|
||||
|
||||
void normalize_tensor(struct ggml_tensor* g) {
|
||||
int n_elements = ggml_nelements(g);
|
||||
int n_elements = static_cast<int>(ggml_nelements(g));
|
||||
float* dg = (float*)g->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
@ -118,7 +118,7 @@ void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struc
|
||||
}
|
||||
|
||||
void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) {
|
||||
int n_elements = ggml_nelements(img);
|
||||
int n_elements = static_cast<int>(ggml_nelements(img));
|
||||
float* imd = (float*)img->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
@ -209,8 +209,8 @@ bool preprocess_canny(sd_image_t img, float high_threshold, float low_threshold,
|
||||
non_max_supression(image_gray, G, tetha);
|
||||
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
|
||||
// to RGB channels
|
||||
for (int iy = 0; iy < img.height; iy++) {
|
||||
for (int ix = 0; ix < img.width; ix++) {
|
||||
for (uint32_t iy = 0; iy < img.height; iy++) {
|
||||
for (uint32_t ix = 0; ix < img.width; ix++) {
|
||||
float gray = ggml_ext_tensor_get_f32(image_gray, ix, iy);
|
||||
gray = inverse ? 1.0f - gray : gray;
|
||||
ggml_ext_tensor_set_f32(image, gray, ix, iy);
|
||||
|
||||
161
qwen_image.hpp
@ -162,26 +162,25 @@ namespace Qwen {
|
||||
auto k = ggml_concat(ctx->ggml_ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
txt->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_txt_token, N, hidden_size]
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
||||
0); // [N, n_txt_token, n_head*d_head]
|
||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
img->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
txt->ne[1] * attn->nb[1]); // [N, n_img_token, n_head*d_head]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, img_attn_out);
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, txt_attn_out);
|
||||
|
||||
img_attn_out = to_out_0->forward(ctx, img_attn_out);
|
||||
txt_attn_out = to_add_out->forward(ctx, txt_attn_out);
|
||||
@ -191,11 +190,16 @@ namespace Qwen {
|
||||
};
|
||||
|
||||
class QwenImageTransformerBlock : public GGMLBlock {
|
||||
protected:
|
||||
bool zero_cond_t;
|
||||
|
||||
public:
|
||||
QwenImageTransformerBlock(int64_t dim,
|
||||
int64_t num_attention_heads,
|
||||
int64_t attention_head_dim,
|
||||
float eps = 1e-6) {
|
||||
float eps = 1e-6,
|
||||
bool zero_cond_t = false)
|
||||
: zero_cond_t(zero_cond_t) {
|
||||
// img_mod.0 is nn.SiLU()
|
||||
blocks["img_mod.1"] = std::shared_ptr<GGMLBlock>(new Linear(dim, 6 * dim, true));
|
||||
|
||||
@ -208,7 +212,7 @@ namespace Qwen {
|
||||
|
||||
blocks["txt_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim, eps, false));
|
||||
blocks["txt_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim, eps, false));
|
||||
blocks["txt_mlp"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim, 4, FeedForward::Activation::GELU));
|
||||
blocks["txt_mlp"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim, 4, FeedForward::Activation::GELU, true));
|
||||
|
||||
blocks["attn"] = std::shared_ptr<GGMLBlock>(new QwenImageAttention(dim,
|
||||
attention_head_dim,
|
||||
@ -220,11 +224,37 @@ namespace Qwen {
|
||||
eps));
|
||||
}
|
||||
|
||||
std::vector<ggml_tensor*> get_mod_params_vec(ggml_context* ctx, ggml_tensor* mod_params, ggml_tensor* index = nullptr) {
|
||||
// index: [N, n_img_token]
|
||||
// mod_params: [N, hidden_size * 12]
|
||||
if (index == nullptr) {
|
||||
return ggml_ext_chunk(ctx, mod_params, 6, 0);
|
||||
}
|
||||
mod_params = ggml_reshape_1d(ctx, mod_params, ggml_nelements(mod_params));
|
||||
auto mod_params_vec = ggml_ext_chunk(ctx, mod_params, 12, 0);
|
||||
index = ggml_reshape_3d(ctx, index, 1, index->ne[0], index->ne[1]); // [N, n_img_token, 1]
|
||||
index = ggml_repeat_4d(ctx, index, mod_params_vec[0]->ne[0], index->ne[1], index->ne[2], index->ne[3]); // [N, n_img_token, hidden_size]
|
||||
std::vector<ggml_tensor*> mod_results;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
auto mod_0 = mod_params_vec[i];
|
||||
auto mod_1 = mod_params_vec[i + 6];
|
||||
|
||||
// mod_result = torch.where(index == 0, mod_0, mod_1)
|
||||
// mod_result = (1 - index)*mod_0 + index*mod_1
|
||||
mod_0 = ggml_sub(ctx, ggml_repeat(ctx, mod_0, index), ggml_mul(ctx, index, mod_0)); // [N, n_img_token, hidden_size]
|
||||
mod_1 = ggml_mul(ctx, index, mod_1); // [N, n_img_token, hidden_size]
|
||||
auto mod_result = ggml_add(ctx, mod_0, mod_1);
|
||||
mod_results.push_back(mod_result);
|
||||
}
|
||||
return mod_results;
|
||||
}
|
||||
|
||||
virtual std::pair<ggml_tensor*, ggml_tensor*> forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* img,
|
||||
struct ggml_tensor* txt,
|
||||
struct ggml_tensor* t_emb,
|
||||
struct ggml_tensor* pe) {
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
// img: [N, n_img_token, hidden_size]
|
||||
// txt: [N, n_txt_token, hidden_size]
|
||||
// pe: [n_img_token + n_txt_token, d_head/2, 2, 2]
|
||||
@ -244,14 +274,18 @@ namespace Qwen {
|
||||
|
||||
auto img_mod_params = ggml_silu(ctx->ggml_ctx, t_emb);
|
||||
img_mod_params = img_mod_1->forward(ctx, img_mod_params);
|
||||
auto img_mod_param_vec = ggml_ext_chunk(ctx->ggml_ctx, img_mod_params, 6, 0);
|
||||
auto img_mod_param_vec = get_mod_params_vec(ctx->ggml_ctx, img_mod_params, modulate_index);
|
||||
|
||||
if (zero_cond_t) {
|
||||
t_emb = ggml_ext_chunk(ctx->ggml_ctx, t_emb, 2, 1)[0];
|
||||
}
|
||||
|
||||
auto txt_mod_params = ggml_silu(ctx->ggml_ctx, t_emb);
|
||||
txt_mod_params = txt_mod_1->forward(ctx, txt_mod_params);
|
||||
auto txt_mod_param_vec = ggml_ext_chunk(ctx->ggml_ctx, txt_mod_params, 6, 0);
|
||||
auto txt_mod_param_vec = get_mod_params_vec(ctx->ggml_ctx, txt_mod_params);
|
||||
|
||||
auto img_normed = img_norm1->forward(ctx, img);
|
||||
auto img_modulated = Flux::modulate(ctx->ggml_ctx, img_normed, img_mod_param_vec[0], img_mod_param_vec[1]);
|
||||
auto img_modulated = Flux::modulate(ctx->ggml_ctx, img_normed, img_mod_param_vec[0], img_mod_param_vec[1], modulate_index != nullptr);
|
||||
auto img_gate1 = img_mod_param_vec[2];
|
||||
|
||||
auto txt_normed = txt_norm1->forward(ctx, txt);
|
||||
@ -264,7 +298,7 @@ namespace Qwen {
|
||||
txt = ggml_add(ctx->ggml_ctx, txt, ggml_mul(ctx->ggml_ctx, txt_attn_output, txt_gate1));
|
||||
|
||||
auto img_normed2 = img_norm2->forward(ctx, img);
|
||||
auto img_modulated2 = Flux::modulate(ctx->ggml_ctx, img_normed2, img_mod_param_vec[3], img_mod_param_vec[4]);
|
||||
auto img_modulated2 = Flux::modulate(ctx->ggml_ctx, img_normed2, img_mod_param_vec[3], img_mod_param_vec[4], modulate_index != nullptr);
|
||||
auto img_gate2 = img_mod_param_vec[5];
|
||||
|
||||
auto txt_normed2 = txt_norm2->forward(ctx, txt);
|
||||
@ -315,16 +349,17 @@ namespace Qwen {
|
||||
};
|
||||
|
||||
struct QwenImageParams {
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 16;
|
||||
int64_t num_layers = 60;
|
||||
int num_layers = 60;
|
||||
int64_t attention_head_dim = 128;
|
||||
int64_t num_attention_heads = 24;
|
||||
int64_t joint_attention_dim = 3584;
|
||||
float theta = 10000;
|
||||
int theta = 10000;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int64_t axes_dim_sum = 128;
|
||||
int axes_dim_sum = 128;
|
||||
bool zero_cond_t = false;
|
||||
};
|
||||
|
||||
class QwenImageModel : public GGMLBlock {
|
||||
@ -346,7 +381,8 @@ namespace Qwen {
|
||||
auto block = std::shared_ptr<GGMLBlock>(new QwenImageTransformerBlock(inner_dim,
|
||||
params.num_attention_heads,
|
||||
params.attention_head_dim,
|
||||
1e-6f));
|
||||
1e-6f,
|
||||
params.zero_cond_t));
|
||||
blocks["transformer_blocks." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
@ -421,7 +457,8 @@ namespace Qwen {
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe) {
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
auto time_text_embed = std::dynamic_pointer_cast<QwenTimestepProjEmbeddings>(blocks["time_text_embed"]);
|
||||
auto txt_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["txt_norm"]);
|
||||
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]);
|
||||
@ -430,18 +467,26 @@ namespace Qwen {
|
||||
auto proj_out = std::dynamic_pointer_cast<Linear>(blocks["proj_out"]);
|
||||
|
||||
auto t_emb = time_text_embed->forward(ctx, timestep);
|
||||
auto img = img_in->forward(ctx, x);
|
||||
auto txt = txt_norm->forward(ctx, context);
|
||||
txt = txt_in->forward(ctx, txt);
|
||||
if (params.zero_cond_t) {
|
||||
auto t_emb_0 = time_text_embed->forward(ctx, ggml_ext_zeros(ctx->ggml_ctx, timestep->ne[0], timestep->ne[1], timestep->ne[2], timestep->ne[3]));
|
||||
t_emb = ggml_concat(ctx->ggml_ctx, t_emb, t_emb_0, 1);
|
||||
}
|
||||
auto img = img_in->forward(ctx, x);
|
||||
auto txt = txt_norm->forward(ctx, context);
|
||||
txt = txt_in->forward(ctx, txt);
|
||||
|
||||
for (int i = 0; i < params.num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<QwenImageTransformerBlock>(blocks["transformer_blocks." + std::to_string(i)]);
|
||||
|
||||
auto result = block->forward(ctx, img, txt, t_emb, pe);
|
||||
auto result = block->forward(ctx, img, txt, t_emb, pe, modulate_index);
|
||||
img = result.first;
|
||||
txt = result.second;
|
||||
}
|
||||
|
||||
if (params.zero_cond_t) {
|
||||
t_emb = ggml_ext_chunk(ctx->ggml_ctx, t_emb, 2, 1)[0];
|
||||
}
|
||||
|
||||
img = norm_out->forward(ctx, img, t_emb);
|
||||
img = proj_out->forward(ctx, img);
|
||||
|
||||
@ -453,7 +498,8 @@ namespace Qwen {
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe,
|
||||
std::vector<ggml_tensor*> ref_latents = {}) {
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
// Forward pass of DiT.
|
||||
// x: [N, C, H, W]
|
||||
// timestep: [N,]
|
||||
@ -466,8 +512,8 @@ namespace Qwen {
|
||||
int64_t C = x->ne[2];
|
||||
int64_t N = x->ne[3];
|
||||
|
||||
auto img = process_img(ctx, x);
|
||||
uint64_t img_tokens = img->ne[1];
|
||||
auto img = process_img(ctx, x);
|
||||
int64_t img_tokens = img->ne[1];
|
||||
|
||||
if (ref_latents.size() > 0) {
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
@ -479,7 +525,7 @@ namespace Qwen {
|
||||
int64_t h_len = ((H + (params.patch_size / 2)) / params.patch_size);
|
||||
int64_t w_len = ((W + (params.patch_size / 2)) / params.patch_size);
|
||||
|
||||
auto out = forward_orig(ctx, img, timestep, context, pe); // [N, h_len*w_len, ph*pw*C]
|
||||
auto out = forward_orig(ctx, img, timestep, context, pe, modulate_index); // [N, h_len*w_len, ph*pw*C]
|
||||
|
||||
if (out->ne[1] > img_tokens) {
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
||||
@ -502,19 +548,25 @@ namespace Qwen {
|
||||
QwenImageParams qwen_image_params;
|
||||
QwenImageModel qwen_image;
|
||||
std::vector<float> pe_vec;
|
||||
std::vector<float> modulate_index_vec;
|
||||
SDVersion version;
|
||||
|
||||
QwenImageRunner(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "",
|
||||
SDVersion version = VERSION_QWEN_IMAGE)
|
||||
SDVersion version = VERSION_QWEN_IMAGE,
|
||||
bool zero_cond_t = false)
|
||||
: GGMLRunner(backend, offload_params_to_cpu) {
|
||||
qwen_image_params.num_layers = 0;
|
||||
qwen_image_params.num_layers = 0;
|
||||
qwen_image_params.zero_cond_t = zero_cond_t;
|
||||
for (auto pair : tensor_storage_map) {
|
||||
std::string tensor_name = pair.first;
|
||||
if (tensor_name.find(prefix) == std::string::npos)
|
||||
continue;
|
||||
if (tensor_name.find("__index_timestep_zero__") != std::string::npos) {
|
||||
qwen_image_params.zero_cond_t = true;
|
||||
}
|
||||
size_t pos = tensor_name.find("transformer_blocks.");
|
||||
if (pos != std::string::npos) {
|
||||
tensor_name = tensor_name.substr(pos); // remove prefix
|
||||
@ -529,6 +581,9 @@ namespace Qwen {
|
||||
}
|
||||
}
|
||||
LOG_INFO("qwen_image_params.num_layers: %ld", qwen_image_params.num_layers);
|
||||
if (qwen_image_params.zero_cond_t) {
|
||||
LOG_INFO("use zero_cond_t");
|
||||
}
|
||||
qwen_image = QwenImageModel(qwen_image_params);
|
||||
qwen_image.init(params_ctx, tensor_storage_map, prefix);
|
||||
}
|
||||
@ -557,18 +612,18 @@ namespace Qwen {
|
||||
ref_latents[i] = to_backend(ref_latents[i]);
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_qwen_image_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_qwen_image_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
qwen_image_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
qwen_image_params.theta,
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
qwen_image_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / qwen_image_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / qwen_image_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, qwen_image_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -576,6 +631,31 @@ namespace Qwen {
|
||||
// pe->data = nullptr;
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
|
||||
ggml_tensor* modulate_index = nullptr;
|
||||
if (qwen_image_params.zero_cond_t) {
|
||||
modulate_index_vec.clear();
|
||||
|
||||
int64_t h_len = ((x->ne[1] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t w_len = ((x->ne[0] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t num_img_tokens = h_len * w_len;
|
||||
|
||||
modulate_index_vec.insert(modulate_index_vec.end(), num_img_tokens, 0.f);
|
||||
int64_t num_ref_img_tokens = 0;
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
int64_t h_len = ((ref->ne[1] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t w_len = ((ref->ne[0] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
|
||||
num_ref_img_tokens += h_len * w_len;
|
||||
}
|
||||
|
||||
if (num_ref_img_tokens > 0) {
|
||||
modulate_index_vec.insert(modulate_index_vec.end(), num_ref_img_tokens, 1.f);
|
||||
}
|
||||
|
||||
modulate_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_F32, modulate_index_vec.size());
|
||||
set_backend_tensor_data(modulate_index, modulate_index_vec.data());
|
||||
}
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* out = qwen_image.forward(&runner_ctx,
|
||||
@ -583,7 +663,8 @@ namespace Qwen {
|
||||
timesteps,
|
||||
context,
|
||||
pe,
|
||||
ref_latents);
|
||||
ref_latents,
|
||||
modulate_index);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
@ -633,12 +714,12 @@ namespace Qwen {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("qwen_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("qwen_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -90,7 +90,7 @@ class MT19937RNG : public RNG {
|
||||
float u1 = 1.0f - data[j];
|
||||
float u2 = data[j + 8];
|
||||
float r = std::sqrt(-2.0f * std::log(u1));
|
||||
float theta = 2.0f * 3.14159265358979323846 * u2;
|
||||
float theta = 2.0f * 3.14159265358979323846f * u2;
|
||||
data[j] = r * std::cos(theta) * std + mean;
|
||||
data[j + 8] = r * std::sin(theta) * std + mean;
|
||||
}
|
||||
|
||||
62
rope.hpp
@ -22,11 +22,11 @@ namespace Rope {
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) {
|
||||
int rows = mat.size();
|
||||
int cols = mat[0].size();
|
||||
size_t rows = mat.size();
|
||||
size_t cols = mat[0].size();
|
||||
std::vector<std::vector<float>> transposed(cols, std::vector<float>(rows));
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
for (size_t i = 0; i < rows; ++i) {
|
||||
for (size_t j = 0; j < cols; ++j) {
|
||||
transposed[j][i] = mat[i][j];
|
||||
}
|
||||
}
|
||||
@ -52,13 +52,13 @@ namespace Rope {
|
||||
|
||||
std::vector<float> omega(half_dim);
|
||||
for (int i = 0; i < half_dim; ++i) {
|
||||
omega[i] = 1.0f / std::pow(theta, scale[i]);
|
||||
omega[i] = 1.0f / ::powf(1.f * theta, scale[i]);
|
||||
}
|
||||
|
||||
int pos_size = pos.size();
|
||||
size_t pos_size = pos.size();
|
||||
std::vector<std::vector<float>> out(pos_size, std::vector<float>(half_dim));
|
||||
for (int i = 0; i < pos_size; ++i) {
|
||||
for (int j = 0; j < half_dim; ++j) {
|
||||
for (size_t i = 0; i < pos_size; ++i) {
|
||||
for (size_t j = 0; j < half_dim; ++j) {
|
||||
float angle = pos[i] * omega[j];
|
||||
if (!axis_wrap_dims.empty()) {
|
||||
size_t wrap_size = axis_wrap_dims.size();
|
||||
@ -99,7 +99,7 @@ namespace Rope {
|
||||
for (int dim = 0; dim < axes_dim_num; dim++) {
|
||||
if (arange_dims.find(dim) != arange_dims.end()) {
|
||||
for (int i = 0; i < bs * context_len; i++) {
|
||||
txt_ids[i][dim] = (i % context_len);
|
||||
txt_ids[i][dim] = 1.f * (i % context_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -128,12 +128,12 @@ namespace Rope {
|
||||
w_start -= w_len / 2;
|
||||
}
|
||||
|
||||
std::vector<float> row_ids = linspace<float>(h_start, h_start + h_len - 1, h_len);
|
||||
std::vector<float> col_ids = linspace<float>(w_start, w_start + w_len - 1, w_len);
|
||||
std::vector<float> row_ids = linspace<float>(1.f * h_start, 1.f * h_start + h_len - 1, h_len);
|
||||
std::vector<float> col_ids = linspace<float>(1.f * w_start, 1.f * w_start + w_len - 1, w_len);
|
||||
|
||||
for (int i = 0; i < h_len; ++i) {
|
||||
for (int j = 0; j < w_len; ++j) {
|
||||
img_ids[i * w_len + j][0] = index;
|
||||
img_ids[i * w_len + j][0] = 1.f * index;
|
||||
img_ids[i * w_len + j][1] = row_ids[i];
|
||||
img_ids[i * w_len + j][2] = col_ids[j];
|
||||
}
|
||||
@ -172,7 +172,7 @@ namespace Rope {
|
||||
const std::vector<std::vector<int>>& wrap_dims = {}) {
|
||||
std::vector<std::vector<float>> trans_ids = transpose(ids);
|
||||
size_t pos_len = ids.size() / bs;
|
||||
int num_axes = axes_dim.size();
|
||||
size_t num_axes = axes_dim.size();
|
||||
// for (int i = 0; i < pos_len; i++) {
|
||||
// std::cout << trans_ids[0][i] << " " << trans_ids[1][i] << " " << trans_ids[2][i] << std::endl;
|
||||
// }
|
||||
@ -182,8 +182,8 @@ namespace Rope {
|
||||
emb_dim += d / 2;
|
||||
|
||||
std::vector<std::vector<float>> emb(bs * pos_len, std::vector<float>(emb_dim * 2 * 2, 0.0));
|
||||
int offset = 0;
|
||||
for (int i = 0; i < num_axes; ++i) {
|
||||
size_t offset = 0;
|
||||
for (size_t i = 0; i < num_axes; ++i) {
|
||||
std::vector<int> axis_wrap_dims;
|
||||
if (!wrap_dims.empty() && i < (int)wrap_dims.size()) {
|
||||
axis_wrap_dims = wrap_dims[i];
|
||||
@ -211,12 +211,12 @@ namespace Rope {
|
||||
float ref_index_scale,
|
||||
bool scale_rope) {
|
||||
std::vector<std::vector<float>> ids;
|
||||
uint64_t curr_h_offset = 0;
|
||||
uint64_t curr_w_offset = 0;
|
||||
int index = 1;
|
||||
int curr_h_offset = 0;
|
||||
int curr_w_offset = 0;
|
||||
int index = 1;
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
uint64_t h_offset = 0;
|
||||
uint64_t w_offset = 0;
|
||||
int h_offset = 0;
|
||||
int w_offset = 0;
|
||||
if (!increase_ref_index) {
|
||||
if (ref->ne[1] + curr_h_offset > ref->ne[0] + curr_w_offset) {
|
||||
w_offset = curr_w_offset;
|
||||
@ -226,8 +226,8 @@ namespace Rope {
|
||||
scale_rope = false;
|
||||
}
|
||||
|
||||
auto ref_ids = gen_flux_img_ids(ref->ne[1],
|
||||
ref->ne[0],
|
||||
auto ref_ids = gen_flux_img_ids(static_cast<int>(ref->ne[1]),
|
||||
static_cast<int>(ref->ne[0]),
|
||||
patch_size,
|
||||
bs,
|
||||
axes_dim_num,
|
||||
@ -241,8 +241,8 @@ namespace Rope {
|
||||
index++;
|
||||
}
|
||||
|
||||
curr_h_offset = std::max(curr_h_offset, ref->ne[1] + h_offset);
|
||||
curr_w_offset = std::max(curr_w_offset, ref->ne[0] + w_offset);
|
||||
curr_h_offset = std::max(curr_h_offset, static_cast<int>(ref->ne[1]) + h_offset);
|
||||
curr_w_offset = std::max(curr_w_offset, static_cast<int>(ref->ne[0]) + w_offset);
|
||||
}
|
||||
return ids;
|
||||
}
|
||||
@ -345,7 +345,7 @@ namespace Rope {
|
||||
int h_len = (h + (patch_size / 2)) / patch_size;
|
||||
int w_len = (w + (patch_size / 2)) / patch_size;
|
||||
int txt_id_start = std::max(h_len, w_len);
|
||||
auto txt_ids = linspace<float>(txt_id_start, context_len + txt_id_start, context_len);
|
||||
auto txt_ids = linspace<float>(1.f * txt_id_start, 1.f * context_len + txt_id_start, context_len);
|
||||
std::vector<std::vector<float>> txt_ids_repeated(bs * context_len, std::vector<float>(3));
|
||||
for (int i = 0; i < bs; ++i) {
|
||||
for (int j = 0; j < txt_ids.size(); ++j) {
|
||||
@ -440,9 +440,9 @@ namespace Rope {
|
||||
|
||||
std::vector<std::vector<float>> vid_ids(t_len * h_len * w_len, std::vector<float>(3, 0.0));
|
||||
|
||||
std::vector<float> t_ids = linspace<float>(t_offset, t_len - 1 + t_offset, t_len);
|
||||
std::vector<float> h_ids = linspace<float>(h_offset, h_len - 1 + h_offset, h_len);
|
||||
std::vector<float> w_ids = linspace<float>(w_offset, w_len - 1 + w_offset, w_len);
|
||||
std::vector<float> t_ids = linspace<float>(1.f * t_offset, 1.f * t_len - 1 + t_offset, t_len);
|
||||
std::vector<float> h_ids = linspace<float>(1.f * h_offset, 1.f * h_len - 1 + h_offset, h_len);
|
||||
std::vector<float> w_ids = linspace<float>(1.f * w_offset, 1.f * w_len - 1 + w_offset, w_len);
|
||||
|
||||
for (int i = 0; i < t_len; ++i) {
|
||||
for (int j = 0; j < h_len; ++j) {
|
||||
@ -493,8 +493,8 @@ namespace Rope {
|
||||
|
||||
GGML_ASSERT(i < grid_h * grid_w);
|
||||
|
||||
ids[i][0] = ih + iy;
|
||||
ids[i][1] = iw + ix;
|
||||
ids[i][0] = static_cast<float>(ih + iy);
|
||||
ids[i][1] = static_cast<float>(iw + ix);
|
||||
index++;
|
||||
}
|
||||
}
|
||||
@ -642,7 +642,7 @@ namespace Rope {
|
||||
q = apply_rope(ctx->ggml_ctx, q, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||
k = apply_rope(ctx->ggml_ctx, k, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||
|
||||
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, false, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
||||
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
||||
return x;
|
||||
}
|
||||
}; // namespace Rope
|
||||
|
||||
@ -31,9 +31,11 @@ const char* model_version_to_str[] = {
|
||||
"SD 2.x",
|
||||
"SD 2.x Inpaint",
|
||||
"SD 2.x Tiny UNet",
|
||||
"SDXS",
|
||||
"SDXL",
|
||||
"SDXL Inpaint",
|
||||
"SDXL Instruct-Pix2Pix",
|
||||
"SDXL (Vega)",
|
||||
"SDXL (SSD1B)",
|
||||
"SVD",
|
||||
"SD3.x",
|
||||
@ -47,6 +49,7 @@ const char* model_version_to_str[] = {
|
||||
"Wan 2.2 TI2V",
|
||||
"Qwen Image",
|
||||
"Flux.2",
|
||||
"Flux.2 klein",
|
||||
"Z-Image",
|
||||
"Ovis Image",
|
||||
};
|
||||
@ -64,6 +67,8 @@ const char* sampling_methods_str[] = {
|
||||
"LCM",
|
||||
"DDIM \"trailing\"",
|
||||
"TCD",
|
||||
"Res Multistep",
|
||||
"Res 2s",
|
||||
};
|
||||
|
||||
/*================================================== Helper Functions ================================================*/
|
||||
@ -129,7 +134,7 @@ public:
|
||||
bool use_tiny_autoencoder = false;
|
||||
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0, 0};
|
||||
bool offload_params_to_cpu = false;
|
||||
bool stacked_id = false;
|
||||
bool use_pmid = false;
|
||||
|
||||
bool is_using_v_parameterization = false;
|
||||
bool is_using_edm_v_parameterization = false;
|
||||
@ -407,6 +412,11 @@ public:
|
||||
vae_decode_only = false;
|
||||
}
|
||||
|
||||
bool tae_preview_only = sd_ctx_params->tae_preview_only;
|
||||
if (version == VERSION_SDXS) {
|
||||
tae_preview_only = false;
|
||||
}
|
||||
|
||||
if (sd_ctx_params->circular_x || sd_ctx_params->circular_y) {
|
||||
LOG_INFO("Using circular padding for convolutions");
|
||||
}
|
||||
@ -435,7 +445,7 @@ public:
|
||||
}
|
||||
}
|
||||
if (is_chroma) {
|
||||
if (sd_ctx_params->diffusion_flash_attn && sd_ctx_params->chroma_use_dit_mask) {
|
||||
if ((sd_ctx_params->flash_attn || sd_ctx_params->diffusion_flash_attn) && sd_ctx_params->chroma_use_dit_mask) {
|
||||
LOG_WARN(
|
||||
"!!!It looks like you are using Chroma with flash attention. "
|
||||
"This is currently unsupported. "
|
||||
@ -520,7 +530,8 @@ public:
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"model.diffusion_model",
|
||||
version);
|
||||
version,
|
||||
sd_ctx_params->qwen_image_zero_cond_t);
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
cond_stage_model = std::make_shared<LLMEmbedder>(clip_backend,
|
||||
offload_params_to_cpu,
|
||||
@ -533,7 +544,7 @@ public:
|
||||
version);
|
||||
} else { // SD1.x SD2.x SDXL
|
||||
std::map<std::string, std::string> embbeding_map;
|
||||
for (int i = 0; i < sd_ctx_params->embedding_count; i++) {
|
||||
for (uint32_t i = 0; i < sd_ctx_params->embedding_count; i++) {
|
||||
embbeding_map.emplace(SAFE_STR(sd_ctx_params->embeddings[i].name), SAFE_STR(sd_ctx_params->embeddings[i].path));
|
||||
}
|
||||
if (strstr(SAFE_STR(sd_ctx_params->photo_maker_path), "v2")) {
|
||||
@ -560,14 +571,6 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
if (sd_ctx_params->diffusion_flash_attn) {
|
||||
LOG_INFO("Using flash attention in the diffusion model");
|
||||
diffusion_model->set_flash_attn_enabled(true);
|
||||
if (high_noise_diffusion_model) {
|
||||
high_noise_diffusion_model->set_flash_attn_enabled(true);
|
||||
}
|
||||
}
|
||||
|
||||
cond_stage_model->alloc_params_buffer();
|
||||
cond_stage_model->get_param_tensors(tensors);
|
||||
|
||||
@ -590,8 +593,8 @@ public:
|
||||
vae_backend = backend;
|
||||
}
|
||||
|
||||
if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) {
|
||||
if (!use_tiny_autoencoder) {
|
||||
if (!(use_tiny_autoencoder || version == VERSION_SDXS) || tae_preview_only) {
|
||||
if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) {
|
||||
first_stage_model = std::make_shared<WAN::WanVAERunner>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
@ -600,57 +603,59 @@ public:
|
||||
version);
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
} else if (version == VERSION_CHROMA_RADIANCE) {
|
||||
first_stage_model = std::make_shared<FakeVAE>(vae_backend,
|
||||
offload_params_to_cpu);
|
||||
} else {
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"first_stage_model",
|
||||
vae_decode_only,
|
||||
false,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the vae model");
|
||||
first_stage_model->set_conv2d_direct_enabled(true);
|
||||
}
|
||||
if (sd_version_is_sdxl(version) &&
|
||||
(strlen(SAFE_STR(sd_ctx_params->vae_path)) == 0 || sd_ctx_params->force_sdxl_vae_conv_scale)) {
|
||||
float vae_conv_2d_scale = 1.f / 32.f;
|
||||
LOG_WARN(
|
||||
"No VAE specified with --vae or --force-sdxl-vae-conv-scale flag set, "
|
||||
"using Conv2D scale %.3f",
|
||||
vae_conv_2d_scale);
|
||||
first_stage_model->set_conv2d_scale(vae_conv_2d_scale);
|
||||
}
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
}
|
||||
}
|
||||
if (use_tiny_autoencoder || version == VERSION_SDXS) {
|
||||
if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) {
|
||||
tae_first_stage = std::make_shared<TinyVideoAutoEncoder>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"decoder",
|
||||
vae_decode_only,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the tae model");
|
||||
tae_first_stage->set_conv2d_direct_enabled(true);
|
||||
} else {
|
||||
tae_first_stage = std::make_shared<TinyImageAutoEncoder>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"decoder.layers",
|
||||
vae_decode_only,
|
||||
version);
|
||||
if (version == VERSION_SDXS) {
|
||||
tae_first_stage->alloc_params_buffer();
|
||||
tae_first_stage->get_param_tensors(tensors, "first_stage_model");
|
||||
}
|
||||
}
|
||||
} else if (version == VERSION_CHROMA_RADIANCE) {
|
||||
first_stage_model = std::make_shared<FakeVAE>(vae_backend,
|
||||
offload_params_to_cpu);
|
||||
} else if (!use_tiny_autoencoder || sd_ctx_params->tae_preview_only) {
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"first_stage_model",
|
||||
vae_decode_only,
|
||||
false,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the vae model");
|
||||
first_stage_model->set_conv2d_direct_enabled(true);
|
||||
}
|
||||
if (version == VERSION_SDXL &&
|
||||
(strlen(SAFE_STR(sd_ctx_params->vae_path)) == 0 || sd_ctx_params->force_sdxl_vae_conv_scale)) {
|
||||
float vae_conv_2d_scale = 1.f / 32.f;
|
||||
LOG_WARN(
|
||||
"No VAE specified with --vae or --force-sdxl-vae-conv-scale flag set, "
|
||||
"using Conv2D scale %.3f",
|
||||
vae_conv_2d_scale);
|
||||
first_stage_model->set_conv2d_scale(vae_conv_2d_scale);
|
||||
}
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
} else if (use_tiny_autoencoder) {
|
||||
tae_first_stage = std::make_shared<TinyImageAutoEncoder>(vae_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"decoder.layers",
|
||||
vae_decode_only,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the tae model");
|
||||
tae_first_stage->set_conv2d_direct_enabled(true);
|
||||
}
|
||||
}
|
||||
// first_stage_model->get_param_tensors(tensors, "first_stage_model.");
|
||||
|
||||
if (strlen(SAFE_STR(sd_ctx_params->control_net_path)) > 0) {
|
||||
ggml_backend_t controlnet_backend = nullptr;
|
||||
@ -701,10 +706,10 @@ public:
|
||||
if (!model_loader.init_from_file_and_convert_name(sd_ctx_params->photo_maker_path, "pmid.")) {
|
||||
LOG_WARN("loading stacked ID embedding from '%s' failed", sd_ctx_params->photo_maker_path);
|
||||
} else {
|
||||
stacked_id = true;
|
||||
use_pmid = true;
|
||||
}
|
||||
}
|
||||
if (stacked_id) {
|
||||
if (use_pmid) {
|
||||
if (!pmid_model->alloc_params_buffer()) {
|
||||
LOG_ERROR(" pmid model params buffer allocation failed");
|
||||
return false;
|
||||
@ -712,6 +717,28 @@ public:
|
||||
pmid_model->get_param_tensors(tensors, "pmid");
|
||||
}
|
||||
|
||||
if (sd_ctx_params->flash_attn) {
|
||||
LOG_INFO("Using flash attention");
|
||||
cond_stage_model->set_flash_attention_enabled(true);
|
||||
if (clip_vision) {
|
||||
clip_vision->set_flash_attention_enabled(true);
|
||||
}
|
||||
if (first_stage_model) {
|
||||
first_stage_model->set_flash_attention_enabled(true);
|
||||
}
|
||||
if (tae_first_stage) {
|
||||
tae_first_stage->set_flash_attention_enabled(true);
|
||||
}
|
||||
}
|
||||
|
||||
if (sd_ctx_params->flash_attn || sd_ctx_params->diffusion_flash_attn) {
|
||||
LOG_INFO("Using flash attention in the diffusion model");
|
||||
diffusion_model->set_flash_attention_enabled(true);
|
||||
if (high_noise_diffusion_model) {
|
||||
high_noise_diffusion_model->set_flash_attention_enabled(true);
|
||||
}
|
||||
}
|
||||
|
||||
diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
||||
if (high_noise_diffusion_model) {
|
||||
high_noise_diffusion_model->set_circular_axes(sd_ctx_params->circular_x, sd_ctx_params->circular_y);
|
||||
@ -745,11 +772,12 @@ public:
|
||||
if (use_tiny_autoencoder) {
|
||||
ignore_tensors.insert("first_stage_model.");
|
||||
}
|
||||
if (stacked_id) {
|
||||
if (use_pmid) {
|
||||
ignore_tensors.insert("pmid.unet.");
|
||||
}
|
||||
ignore_tensors.insert("model.diffusion_model.__x0__");
|
||||
ignore_tensors.insert("model.diffusion_model.__32x32__");
|
||||
ignore_tensors.insert("model.diffusion_model.__index_timestep_zero__");
|
||||
|
||||
if (vae_decode_only) {
|
||||
ignore_tensors.insert("first_stage_model.encoder");
|
||||
@ -765,7 +793,7 @@ public:
|
||||
if (version == VERSION_SVD) {
|
||||
ignore_tensors.insert("conditioner.embedders.3");
|
||||
}
|
||||
bool success = model_loader.load_tensors(tensors, ignore_tensors, n_threads);
|
||||
bool success = model_loader.load_tensors(tensors, ignore_tensors, n_threads, sd_ctx_params->enable_mmap);
|
||||
if (!success) {
|
||||
LOG_ERROR("load tensors from model loader failed");
|
||||
ggml_free(ctx);
|
||||
@ -781,14 +809,15 @@ public:
|
||||
unet_params_mem_size += high_noise_diffusion_model->get_params_buffer_size();
|
||||
}
|
||||
size_t vae_params_mem_size = 0;
|
||||
if (!use_tiny_autoencoder || sd_ctx_params->tae_preview_only) {
|
||||
if (!(use_tiny_autoencoder || version == VERSION_SDXS) || tae_preview_only) {
|
||||
vae_params_mem_size = first_stage_model->get_params_buffer_size();
|
||||
}
|
||||
if (use_tiny_autoencoder) {
|
||||
if (!tae_first_stage->load_from_file(taesd_path, n_threads)) {
|
||||
if (use_tiny_autoencoder || version == VERSION_SDXS) {
|
||||
if (use_tiny_autoencoder && !tae_first_stage->load_from_file(taesd_path, n_threads)) {
|
||||
return false;
|
||||
}
|
||||
vae_params_mem_size = tae_first_stage->get_params_buffer_size();
|
||||
use_tiny_autoencoder = true; // now the processing is identical for VERSION_SDXS
|
||||
vae_params_mem_size = tae_first_stage->get_params_buffer_size();
|
||||
}
|
||||
size_t control_net_params_mem_size = 0;
|
||||
if (control_net) {
|
||||
@ -798,7 +827,7 @@ public:
|
||||
control_net_params_mem_size = control_net->get_params_buffer_size();
|
||||
}
|
||||
size_t pmid_params_mem_size = 0;
|
||||
if (stacked_id) {
|
||||
if (use_pmid) {
|
||||
pmid_params_mem_size = pmid_model->get_params_buffer_size();
|
||||
}
|
||||
|
||||
@ -944,7 +973,7 @@ public:
|
||||
}
|
||||
|
||||
ggml_free(ctx);
|
||||
use_tiny_autoencoder = use_tiny_autoencoder && !sd_ctx_params->tae_preview_only;
|
||||
use_tiny_autoencoder = use_tiny_autoencoder && !tae_preview_only;
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1190,7 +1219,7 @@ public:
|
||||
|
||||
void apply_loras(const sd_lora_t* loras, uint32_t lora_count) {
|
||||
std::unordered_map<std::string, float> lora_f2m;
|
||||
for (int i = 0; i < lora_count; i++) {
|
||||
for (uint32_t i = 0; i < lora_count; i++) {
|
||||
std::string lora_id = SAFE_STR(loras[i].path);
|
||||
if (loras[i].is_high_noise) {
|
||||
lora_id = "|high_noise|" + lora_id;
|
||||
@ -1210,14 +1239,89 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tensor* id_encoder(ggml_context* work_ctx,
|
||||
ggml_tensor* init_img,
|
||||
ggml_tensor* prompts_embeds,
|
||||
ggml_tensor* id_embeds,
|
||||
std::vector<bool>& class_tokens_mask) {
|
||||
ggml_tensor* res = nullptr;
|
||||
pmid_model->compute(n_threads, init_img, prompts_embeds, id_embeds, class_tokens_mask, &res, work_ctx);
|
||||
return res;
|
||||
SDCondition get_pmid_conditon(ggml_context* work_ctx,
|
||||
sd_pm_params_t pm_params,
|
||||
ConditionerParams& condition_params) {
|
||||
SDCondition id_cond;
|
||||
if (use_pmid) {
|
||||
if (!pmid_lora->applied) {
|
||||
int64_t t0 = ggml_time_ms();
|
||||
pmid_lora->apply(tensors, version, n_threads);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
pmid_lora->applied = true;
|
||||
LOG_INFO("pmid_lora apply completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
if (free_params_immediately) {
|
||||
pmid_lora->free_params_buffer();
|
||||
}
|
||||
}
|
||||
// preprocess input id images
|
||||
bool pmv2 = pmid_model->get_version() == PM_VERSION_2;
|
||||
if (pm_params.id_images_count > 0) {
|
||||
int clip_image_size = 224;
|
||||
pmid_model->style_strength = pm_params.style_strength;
|
||||
|
||||
auto id_image_tensor = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, clip_image_size, clip_image_size, 3, pm_params.id_images_count);
|
||||
|
||||
std::vector<sd_image_f32_t> processed_id_images;
|
||||
for (int i = 0; i < pm_params.id_images_count; i++) {
|
||||
sd_image_f32_t id_image = sd_image_t_to_sd_image_f32_t(pm_params.id_images[i]);
|
||||
sd_image_f32_t processed_id_image = clip_preprocess(id_image, clip_image_size, clip_image_size);
|
||||
free(id_image.data);
|
||||
id_image.data = nullptr;
|
||||
processed_id_images.push_back(processed_id_image);
|
||||
}
|
||||
|
||||
ggml_ext_tensor_iter(id_image_tensor, [&](ggml_tensor* id_image_tensor, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = sd_image_get_f32(processed_id_images[i3], i0, i1, i2, false);
|
||||
ggml_ext_tensor_set_f32(id_image_tensor, value, i0, i1, i2, i3);
|
||||
});
|
||||
|
||||
for (auto& image : processed_id_images) {
|
||||
free(image.data);
|
||||
image.data = nullptr;
|
||||
}
|
||||
processed_id_images.clear();
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
condition_params.num_input_imgs = pm_params.id_images_count;
|
||||
auto cond_tup = cond_stage_model->get_learned_condition_with_trigger(work_ctx,
|
||||
n_threads,
|
||||
condition_params);
|
||||
id_cond = std::get<0>(cond_tup);
|
||||
auto class_tokens_mask = std::get<1>(cond_tup);
|
||||
struct ggml_tensor* id_embeds = nullptr;
|
||||
if (pmv2 && pm_params.id_embed_path != nullptr) {
|
||||
id_embeds = load_tensor_from_file(work_ctx, pm_params.id_embed_path);
|
||||
}
|
||||
if (pmv2 && id_embeds == nullptr) {
|
||||
LOG_WARN("Provided PhotoMaker images, but NO valid ID embeds file for PM v2");
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
use_pmid = false;
|
||||
} else {
|
||||
if (pmv2 && pm_params.id_images_count != id_embeds->ne[1]) {
|
||||
LOG_WARN("PhotoMaker image count (%d) does NOT match ID embeds (%d). You should run face_detect.py again.", pm_params.id_images_count, id_embeds->ne[1]);
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
use_pmid = false;
|
||||
} else {
|
||||
ggml_tensor* res = nullptr;
|
||||
pmid_model->compute(n_threads, id_image_tensor, id_cond.c_crossattn, id_embeds, class_tokens_mask, &res, work_ctx);
|
||||
id_cond.c_crossattn = res;
|
||||
int64_t t1 = ggml_time_ms();
|
||||
LOG_INFO("Photomaker ID Stacking, taking %" PRId64 " ms", t1 - t0);
|
||||
if (free_params_immediately) {
|
||||
pmid_model->free_params_buffer();
|
||||
}
|
||||
// Encode input prompt without the trigger word for delayed conditioning
|
||||
condition_params.text = cond_stage_model->remove_trigger_from_prompt(work_ctx, condition_params.text);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_WARN("Provided PhotoMaker model file, but NO input ID images");
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
use_pmid = false;
|
||||
}
|
||||
}
|
||||
return id_cond;
|
||||
}
|
||||
|
||||
ggml_tensor* get_clip_vision_output(ggml_context* work_ctx,
|
||||
@ -1367,12 +1471,12 @@ public:
|
||||
void* step_callback_data,
|
||||
bool is_noisy) {
|
||||
const uint32_t channel = 3;
|
||||
uint32_t width = latents->ne[0];
|
||||
uint32_t height = latents->ne[1];
|
||||
uint32_t dim = latents->ne[ggml_n_dims(latents) - 1];
|
||||
uint32_t width = static_cast<uint32_t>(latents->ne[0]);
|
||||
uint32_t height = static_cast<uint32_t>(latents->ne[1]);
|
||||
uint32_t dim = static_cast<uint32_t>(latents->ne[ggml_n_dims(latents) - 1]);
|
||||
|
||||
if (preview_mode == PREVIEW_PROJ) {
|
||||
int64_t patch_sz = 1;
|
||||
int patch_sz = 1;
|
||||
const float(*latent_rgb_proj)[channel] = nullptr;
|
||||
float* latent_rgb_bias = nullptr;
|
||||
|
||||
@ -1432,7 +1536,7 @@ public:
|
||||
|
||||
uint32_t frames = 1;
|
||||
if (ggml_n_dims(latents) == 4) {
|
||||
frames = latents->ne[2];
|
||||
frames = static_cast<uint32_t>(latents->ne[2]);
|
||||
}
|
||||
|
||||
uint32_t img_width = width * patch_sz;
|
||||
@ -1442,7 +1546,7 @@ public:
|
||||
|
||||
preview_latent_video(data, latents, latent_rgb_proj, latent_rgb_bias, patch_sz);
|
||||
sd_image_t* images = (sd_image_t*)malloc(frames * sizeof(sd_image_t));
|
||||
for (int i = 0; i < frames; i++) {
|
||||
for (uint32_t i = 0; i < frames; i++) {
|
||||
images[i] = {img_width, img_height, channel, data + i * img_width * img_height * channel};
|
||||
}
|
||||
step_callback(step, frames, images, is_noisy, step_callback_data);
|
||||
@ -1487,22 +1591,22 @@ public:
|
||||
ggml_ext_tensor_clamp_inplace(result, 0.0f, 1.0f);
|
||||
uint32_t frames = 1;
|
||||
if (ggml_n_dims(latents) == 4) {
|
||||
frames = result->ne[2];
|
||||
frames = static_cast<uint32_t>(result->ne[2]);
|
||||
}
|
||||
|
||||
sd_image_t* images = (sd_image_t*)malloc(frames * sizeof(sd_image_t));
|
||||
// print_ggml_tensor(result,true);
|
||||
for (size_t i = 0; i < frames; i++) {
|
||||
images[i].width = result->ne[0];
|
||||
images[i].height = result->ne[1];
|
||||
images[i].width = static_cast<uint32_t>(result->ne[0]);
|
||||
images[i].height = static_cast<uint32_t>(result->ne[1]);
|
||||
images[i].channel = 3;
|
||||
images[i].data = ggml_tensor_to_sd_image(result, i, ggml_n_dims(latents) == 4);
|
||||
images[i].data = ggml_tensor_to_sd_image(result, static_cast<int>(i), ggml_n_dims(latents) == 4);
|
||||
}
|
||||
|
||||
step_callback(step, frames, images, is_noisy, step_callback_data);
|
||||
|
||||
ggml_ext_tensor_scale_inplace(result, 0);
|
||||
for (int i = 0; i < frames; i++) {
|
||||
for (uint32_t i = 0; i < frames; i++) {
|
||||
free(images[i].data);
|
||||
}
|
||||
|
||||
@ -1724,7 +1828,7 @@ public:
|
||||
int64_t H = x->ne[1] * get_vae_scale_factor();
|
||||
if (ggml_n_dims(x) == 4) {
|
||||
// assuming video mode (if batch processing gets implemented this will break)
|
||||
int T = x->ne[2];
|
||||
int64_t T = x->ne[2];
|
||||
if (sd_version_is_wan(version)) {
|
||||
T = ((T - 1) * 4) + 1;
|
||||
}
|
||||
@ -2001,7 +2105,7 @@ public:
|
||||
img_cond_data = (float*)out_img_cond->data;
|
||||
}
|
||||
|
||||
int step_count = sigmas.size();
|
||||
int step_count = static_cast<int>(sigmas.size());
|
||||
bool is_skiplayer_step = has_skiplayer && step > (int)(guidance.slg.layer_start * step_count) && step < (int)(guidance.slg.layer_end * step_count);
|
||||
float* skip_layer_data = has_skiplayer ? (float*)out_skip->data : nullptr;
|
||||
if (is_skiplayer_step) {
|
||||
@ -2373,11 +2477,11 @@ public:
|
||||
int& tile_size_y,
|
||||
float& tile_overlap,
|
||||
const sd_tiling_params_t& params,
|
||||
int latent_x,
|
||||
int latent_y,
|
||||
int64_t latent_x,
|
||||
int64_t latent_y,
|
||||
float encoding_factor = 1.0f) {
|
||||
tile_overlap = std::max(std::min(params.target_overlap, 0.5f), 0.0f);
|
||||
auto get_tile_size = [&](int requested_size, float factor, int latent_size) {
|
||||
auto get_tile_size = [&](int requested_size, float factor, int64_t latent_size) {
|
||||
const int default_tile_size = 32;
|
||||
const int min_tile_dimension = 4;
|
||||
int tile_size = default_tile_size;
|
||||
@ -2386,12 +2490,12 @@ public:
|
||||
if (factor > 0.f) {
|
||||
if (factor > 1.0)
|
||||
factor = 1 / (factor - factor * tile_overlap + tile_overlap);
|
||||
tile_size = std::round(latent_size * factor);
|
||||
tile_size = static_cast<int>(std::round(latent_size * factor));
|
||||
} else if (requested_size >= min_tile_dimension) {
|
||||
tile_size = requested_size;
|
||||
}
|
||||
tile_size *= encoding_factor;
|
||||
return std::max(std::min(tile_size, latent_size), min_tile_dimension);
|
||||
tile_size = static_cast<int>(tile_size * encoding_factor);
|
||||
return std::max(std::min(tile_size, static_cast<int>(latent_size)), min_tile_dimension);
|
||||
};
|
||||
|
||||
tile_size_x = get_tile_size(params.tile_size_x, params.rel_size_x, latent_x);
|
||||
@ -2402,21 +2506,26 @@ public:
|
||||
int64_t t0 = ggml_time_ms();
|
||||
ggml_tensor* result = nullptr;
|
||||
const int vae_scale_factor = get_vae_scale_factor();
|
||||
int W = x->ne[0] / vae_scale_factor;
|
||||
int H = x->ne[1] / vae_scale_factor;
|
||||
int C = get_latent_channel();
|
||||
int64_t W = x->ne[0] / vae_scale_factor;
|
||||
int64_t H = x->ne[1] / vae_scale_factor;
|
||||
int64_t C = get_latent_channel();
|
||||
if (vae_tiling_params.enabled && !encode_video) {
|
||||
// TODO wan2.2 vae support?
|
||||
int ne2;
|
||||
int ne3;
|
||||
int64_t ne2;
|
||||
int64_t ne3;
|
||||
if (sd_version_is_qwen_image(version)) {
|
||||
ne2 = 1;
|
||||
ne3 = C * x->ne[3];
|
||||
} else {
|
||||
if (!use_tiny_autoencoder) {
|
||||
C *= 2;
|
||||
int64_t out_channels = C;
|
||||
bool encode_outputs_mu = use_tiny_autoencoder ||
|
||||
sd_version_is_wan(version) ||
|
||||
sd_version_is_flux2(version) ||
|
||||
version == VERSION_CHROMA_RADIANCE;
|
||||
if (!encode_outputs_mu) {
|
||||
out_channels *= 2;
|
||||
}
|
||||
ne2 = C;
|
||||
ne2 = out_channels;
|
||||
ne3 = x->ne[3];
|
||||
}
|
||||
result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, ne2, ne3);
|
||||
@ -2532,7 +2641,7 @@ public:
|
||||
int64_t C = 3;
|
||||
ggml_tensor* result = nullptr;
|
||||
if (decode_video) {
|
||||
int T = x->ne[2];
|
||||
int64_t T = x->ne[2];
|
||||
if (sd_version_is_wan(version)) {
|
||||
T = ((T - 1) * 4) + 1;
|
||||
}
|
||||
@ -2557,7 +2666,7 @@ public:
|
||||
}
|
||||
process_latent_out(x);
|
||||
// x = load_tensor_from_file(work_ctx, "wan_vae_z.bin");
|
||||
if (vae_tiling_params.enabled && !decode_video) {
|
||||
if (vae_tiling_params.enabled) {
|
||||
float tile_overlap;
|
||||
int tile_size_x, tile_size_y;
|
||||
get_tile_sizes(tile_size_x, tile_size_y, tile_overlap, vae_tiling_params, x->ne[0], x->ne[1]);
|
||||
@ -2575,7 +2684,7 @@ public:
|
||||
first_stage_model->free_compute_buffer();
|
||||
process_vae_output_tensor(result);
|
||||
} else {
|
||||
if (vae_tiling_params.enabled && !decode_video) {
|
||||
if (vae_tiling_params.enabled) {
|
||||
// split latent in 64x64 tiles and compute in several steps
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
tae_first_stage->compute(n_threads, in, true, &out);
|
||||
@ -2650,6 +2759,8 @@ const char* sample_method_to_str[] = {
|
||||
"lcm",
|
||||
"ddim_trailing",
|
||||
"tcd",
|
||||
"res_multistep",
|
||||
"res_2s",
|
||||
};
|
||||
|
||||
const char* sd_sample_method_name(enum sample_method_t sample_method) {
|
||||
@ -2679,6 +2790,7 @@ const char* scheduler_to_str[] = {
|
||||
"smoothstep",
|
||||
"kl_optimal",
|
||||
"lcm",
|
||||
"bong_tangent",
|
||||
};
|
||||
|
||||
const char* sd_scheduler_name(enum scheduler_t scheduler) {
|
||||
@ -2799,6 +2911,7 @@ void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
||||
sd_ctx_params->prediction = PREDICTION_COUNT;
|
||||
sd_ctx_params->lora_apply_mode = LORA_APPLY_AUTO;
|
||||
sd_ctx_params->offload_params_to_cpu = false;
|
||||
sd_ctx_params->enable_mmap = false;
|
||||
sd_ctx_params->keep_clip_on_cpu = false;
|
||||
sd_ctx_params->keep_control_net_on_cpu = false;
|
||||
sd_ctx_params->keep_vae_on_cpu = false;
|
||||
@ -2843,6 +2956,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
||||
"keep_clip_on_cpu: %s\n"
|
||||
"keep_control_net_on_cpu: %s\n"
|
||||
"keep_vae_on_cpu: %s\n"
|
||||
"flash_attn: %s\n"
|
||||
"diffusion_flash_attn: %s\n"
|
||||
"circular_x: %s\n"
|
||||
"circular_y: %s\n"
|
||||
@ -2874,6 +2988,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
||||
BOOL_STR(sd_ctx_params->keep_clip_on_cpu),
|
||||
BOOL_STR(sd_ctx_params->keep_control_net_on_cpu),
|
||||
BOOL_STR(sd_ctx_params->keep_vae_on_cpu),
|
||||
BOOL_STR(sd_ctx_params->flash_attn),
|
||||
BOOL_STR(sd_ctx_params->diffusion_flash_attn),
|
||||
BOOL_STR(sd_ctx_params->circular_x),
|
||||
BOOL_STR(sd_ctx_params->circular_y),
|
||||
@ -2970,6 +3085,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
|
||||
"sample_params: %s\n"
|
||||
"strength: %.2f\n"
|
||||
"seed: %" PRId64
|
||||
"\n"
|
||||
"batch_count: %d\n"
|
||||
"ref_images_count: %d\n"
|
||||
"auto_resize_ref_image: %s\n"
|
||||
@ -3022,6 +3138,7 @@ void sd_vid_gen_params_init(sd_vid_gen_params_t* sd_vid_gen_params) {
|
||||
sd_vid_gen_params->video_frames = 6;
|
||||
sd_vid_gen_params->moe_boundary = 0.875f;
|
||||
sd_vid_gen_params->vace_strength = 1.f;
|
||||
sd_vid_gen_params->vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
||||
sd_cache_params_init(&sd_vid_gen_params->cache);
|
||||
}
|
||||
|
||||
@ -3116,114 +3233,22 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
guidance.img_cfg = guidance.txt_cfg;
|
||||
}
|
||||
|
||||
// for (auto v : sigmas) {
|
||||
// std::cout << v << " ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
|
||||
int sample_steps = sigmas.size() - 1;
|
||||
int sample_steps = static_cast<int>(sigmas.size() - 1);
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
|
||||
// Photo Maker
|
||||
std::string prompt_text_only;
|
||||
ggml_tensor* init_img = nullptr;
|
||||
SDCondition id_cond;
|
||||
std::vector<bool> class_tokens_mask;
|
||||
|
||||
ConditionerParams condition_params;
|
||||
condition_params.text = prompt;
|
||||
condition_params.clip_skip = clip_skip;
|
||||
condition_params.width = width;
|
||||
condition_params.height = height;
|
||||
condition_params.ref_images = ref_images;
|
||||
condition_params.adm_in_channels = sd_ctx->sd->diffusion_model->get_adm_in_channels();
|
||||
condition_params.adm_in_channels = static_cast<int>(sd_ctx->sd->diffusion_model->get_adm_in_channels());
|
||||
|
||||
if (sd_ctx->sd->stacked_id) {
|
||||
if (!sd_ctx->sd->pmid_lora->applied) {
|
||||
int64_t t0 = ggml_time_ms();
|
||||
sd_ctx->sd->pmid_lora->apply(sd_ctx->sd->tensors, sd_ctx->sd->version, sd_ctx->sd->n_threads);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
sd_ctx->sd->pmid_lora->applied = true;
|
||||
LOG_INFO("pmid_lora apply completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
if (sd_ctx->sd->free_params_immediately) {
|
||||
sd_ctx->sd->pmid_lora->free_params_buffer();
|
||||
}
|
||||
}
|
||||
// preprocess input id images
|
||||
bool pmv2 = sd_ctx->sd->pmid_model->get_version() == PM_VERSION_2;
|
||||
if (pm_params.id_images_count > 0) {
|
||||
int clip_image_size = 224;
|
||||
sd_ctx->sd->pmid_model->style_strength = pm_params.style_strength;
|
||||
|
||||
init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, clip_image_size, clip_image_size, 3, pm_params.id_images_count);
|
||||
|
||||
std::vector<sd_image_f32_t> processed_id_images;
|
||||
for (int i = 0; i < pm_params.id_images_count; i++) {
|
||||
sd_image_f32_t id_image = sd_image_t_to_sd_image_f32_t(pm_params.id_images[i]);
|
||||
sd_image_f32_t processed_id_image = clip_preprocess(id_image, clip_image_size, clip_image_size);
|
||||
free(id_image.data);
|
||||
id_image.data = nullptr;
|
||||
processed_id_images.push_back(processed_id_image);
|
||||
}
|
||||
|
||||
ggml_ext_tensor_iter(init_img, [&](ggml_tensor* init_img, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = sd_image_get_f32(processed_id_images[i3], i0, i1, i2, false);
|
||||
ggml_ext_tensor_set_f32(init_img, value, i0, i1, i2, i3);
|
||||
});
|
||||
|
||||
for (auto& image : processed_id_images) {
|
||||
free(image.data);
|
||||
image.data = nullptr;
|
||||
}
|
||||
processed_id_images.clear();
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
condition_params.text = prompt;
|
||||
condition_params.num_input_imgs = pm_params.id_images_count;
|
||||
auto cond_tup = sd_ctx->sd->cond_stage_model->get_learned_condition_with_trigger(work_ctx,
|
||||
sd_ctx->sd->n_threads,
|
||||
condition_params);
|
||||
id_cond = std::get<0>(cond_tup);
|
||||
class_tokens_mask = std::get<1>(cond_tup); //
|
||||
struct ggml_tensor* id_embeds = nullptr;
|
||||
if (pmv2 && pm_params.id_embed_path != nullptr) {
|
||||
id_embeds = load_tensor_from_file(work_ctx, pm_params.id_embed_path);
|
||||
// print_ggml_tensor(id_embeds, true, "id_embeds:");
|
||||
}
|
||||
if (pmv2 && id_embeds == nullptr) {
|
||||
LOG_WARN("Provided PhotoMaker images, but NO valid ID embeds file for PM v2");
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
sd_ctx->sd->stacked_id = false;
|
||||
} else {
|
||||
if (pmv2 && pm_params.id_images_count != id_embeds->ne[1]) {
|
||||
LOG_WARN("PhotoMaker image count (%d) does NOT match ID embeds (%d). You should run face_detect.py again.", pm_params.id_images_count, id_embeds->ne[1]);
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
sd_ctx->sd->stacked_id = false;
|
||||
} else {
|
||||
id_cond.c_crossattn = sd_ctx->sd->id_encoder(work_ctx, init_img, id_cond.c_crossattn, id_embeds, class_tokens_mask);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
LOG_INFO("Photomaker ID Stacking, taking %" PRId64 " ms", t1 - t0);
|
||||
if (sd_ctx->sd->free_params_immediately) {
|
||||
sd_ctx->sd->pmid_model->free_params_buffer();
|
||||
}
|
||||
// Encode input prompt without the trigger word for delayed conditioning
|
||||
prompt_text_only = sd_ctx->sd->cond_stage_model->remove_trigger_from_prompt(work_ctx, prompt);
|
||||
// printf("%s || %s \n", prompt.c_str(), prompt_text_only.c_str());
|
||||
prompt = prompt_text_only; //
|
||||
if (sample_steps < 50) {
|
||||
LOG_WARN("It's recommended to use >= 50 steps for photo maker!");
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_WARN("Provided PhotoMaker model file, but NO input ID images");
|
||||
LOG_WARN("Turn off PhotoMaker");
|
||||
sd_ctx->sd->stacked_id = false;
|
||||
}
|
||||
}
|
||||
// Photo Maker
|
||||
SDCondition id_cond = sd_ctx->sd->get_pmid_conditon(work_ctx, pm_params, condition_params);
|
||||
|
||||
// Get learned condition
|
||||
condition_params.text = prompt;
|
||||
condition_params.zero_out_masked = false;
|
||||
SDCondition cond = sd_ctx->sd->cond_stage_model->get_learned_condition(work_ctx,
|
||||
sd_ctx->sd->n_threads,
|
||||
@ -3363,7 +3388,7 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
ggml_ext_im_set_randn_f32(noise, sd_ctx->sd->rng);
|
||||
|
||||
int start_merge_step = -1;
|
||||
if (sd_ctx->sd->stacked_id) {
|
||||
if (sd_ctx->sd->use_pmid) {
|
||||
start_merge_step = int(sd_ctx->sd->pmid_model->style_strength / 100.f * sample_steps);
|
||||
// if (start_merge_step > 30)
|
||||
// start_merge_step = 30;
|
||||
@ -3743,6 +3768,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
if (sd_ctx == nullptr || sd_vid_gen_params == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
sd_ctx->sd->vae_tiling_params = sd_vid_gen_params->vae_tiling_params;
|
||||
|
||||
std::string prompt = SAFE_STR(sd_vid_gen_params->prompt);
|
||||
std::string negative_prompt = SAFE_STR(sd_vid_gen_params->negative_prompt);
|
||||
@ -3814,7 +3840,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
// timesteps ∝ sigmas for Flow models (like wan2.2 a14b)
|
||||
for (size_t i = 0; i < sigmas.size(); ++i) {
|
||||
if (sigmas[i] < sd_vid_gen_params->moe_boundary) {
|
||||
high_noise_sample_steps = i;
|
||||
high_noise_sample_steps = static_cast<int>(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -3992,7 +4018,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
int64_t length = inactive->ne[2];
|
||||
if (ref_image_latent) {
|
||||
length += 1;
|
||||
frames = (length - 1) * 4 + 1;
|
||||
frames = static_cast<int>((length - 1) * 4 + 1);
|
||||
ref_image_num = 1;
|
||||
}
|
||||
vace_context = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, inactive->ne[0], inactive->ne[1], length, 96); // [b*96, t, h/vae_scale_factor, w/vae_scale_factor]
|
||||
@ -4058,7 +4084,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
|
||||
int W = width / vae_scale_factor;
|
||||
int H = height / vae_scale_factor;
|
||||
int T = init_latent->ne[2];
|
||||
int T = static_cast<int>(init_latent->ne[2]);
|
||||
int C = sd_ctx->sd->get_latent_channel();
|
||||
|
||||
struct ggml_tensor* final_latent;
|
||||
@ -4177,13 +4203,13 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
ggml_free(work_ctx);
|
||||
return nullptr;
|
||||
}
|
||||
*num_frames_out = vid->ne[2];
|
||||
*num_frames_out = static_cast<int>(vid->ne[2]);
|
||||
|
||||
for (size_t i = 0; i < vid->ne[2]; i++) {
|
||||
result_images[i].width = vid->ne[0];
|
||||
result_images[i].height = vid->ne[1];
|
||||
for (int64_t i = 0; i < vid->ne[2]; i++) {
|
||||
result_images[i].width = static_cast<uint32_t>(vid->ne[0]);
|
||||
result_images[i].height = static_cast<uint32_t>(vid->ne[1]);
|
||||
result_images[i].channel = 3;
|
||||
result_images[i].data = ggml_tensor_to_sd_image(vid, i, true);
|
||||
result_images[i].data = ggml_tensor_to_sd_image(vid, static_cast<int>(i), true);
|
||||
}
|
||||
ggml_free(work_ctx);
|
||||
|
||||
|
||||
@ -48,6 +48,8 @@ enum sample_method_t {
|
||||
LCM_SAMPLE_METHOD,
|
||||
DDIM_TRAILING_SAMPLE_METHOD,
|
||||
TCD_SAMPLE_METHOD,
|
||||
RES_MULTISTEP_SAMPLE_METHOD,
|
||||
RES_2S_SAMPLE_METHOD,
|
||||
SAMPLE_METHOD_COUNT
|
||||
};
|
||||
|
||||
@ -62,6 +64,7 @@ enum scheduler_t {
|
||||
SMOOTHSTEP_SCHEDULER,
|
||||
KL_OPTIMAL_SCHEDULER,
|
||||
LCM_SCHEDULER,
|
||||
BONG_TANGENT_SCHEDULER,
|
||||
SCHEDULER_COUNT
|
||||
};
|
||||
|
||||
@ -182,9 +185,11 @@ typedef struct {
|
||||
enum prediction_t prediction;
|
||||
enum lora_apply_mode_t lora_apply_mode;
|
||||
bool offload_params_to_cpu;
|
||||
bool enable_mmap;
|
||||
bool keep_clip_on_cpu;
|
||||
bool keep_control_net_on_cpu;
|
||||
bool keep_vae_on_cpu;
|
||||
bool flash_attn;
|
||||
bool diffusion_flash_attn;
|
||||
bool tae_preview_only;
|
||||
bool diffusion_conv_direct;
|
||||
@ -195,6 +200,7 @@ typedef struct {
|
||||
bool chroma_use_dit_mask;
|
||||
bool chroma_use_t5_mask;
|
||||
int chroma_t5_mask_pad;
|
||||
bool qwen_image_zero_cond_t;
|
||||
float flow_shift;
|
||||
} sd_ctx_params_t;
|
||||
|
||||
@ -317,6 +323,7 @@ typedef struct {
|
||||
int64_t seed;
|
||||
int video_frames;
|
||||
float vace_strength;
|
||||
sd_tiling_params_t vae_tiling_params;
|
||||
sd_cache_params_t cache;
|
||||
} sd_vid_gen_params_t;
|
||||
|
||||
|
||||
26
t5.hpp
@ -96,7 +96,7 @@ protected:
|
||||
|
||||
try {
|
||||
data = nlohmann::json::parse(json_str);
|
||||
} catch (const nlohmann::json::parse_error& e) {
|
||||
} catch (const nlohmann::json::parse_error&) {
|
||||
status_ = INVLIAD_JSON;
|
||||
return;
|
||||
}
|
||||
@ -168,9 +168,9 @@ protected:
|
||||
kMaxTrieResultsSize);
|
||||
trie_results_size_ = 0;
|
||||
for (const auto& p : *pieces) {
|
||||
const int num_nodes = trie_->commonPrefixSearch(
|
||||
const size_t num_nodes = trie_->commonPrefixSearch(
|
||||
p.first.data(), results.data(), results.size(), p.first.size());
|
||||
trie_results_size_ = std::max(trie_results_size_, num_nodes);
|
||||
trie_results_size_ = std::max(trie_results_size_, static_cast<int>(num_nodes));
|
||||
}
|
||||
|
||||
if (trie_results_size_ == 0)
|
||||
@ -268,7 +268,7 @@ protected:
|
||||
-1; // The starting position (in utf-8) of this node. The entire best
|
||||
// path can be constructed by backtracking along this link.
|
||||
};
|
||||
const int size = normalized.size();
|
||||
const int size = static_cast<int>(normalized.size());
|
||||
const float unk_score = min_score() - kUnkPenalty;
|
||||
// The ends are exclusive.
|
||||
std::vector<BestPathNode> best_path_ends_at(size + 1);
|
||||
@ -281,7 +281,7 @@ protected:
|
||||
best_path_ends_at[starts_at].best_path_score;
|
||||
bool has_single_node = false;
|
||||
const int mblen =
|
||||
std::min<int>(OneCharLen(normalized.data() + starts_at),
|
||||
std::min<int>(static_cast<int>(OneCharLen(normalized.data() + starts_at)),
|
||||
size - starts_at);
|
||||
while (key_pos < size) {
|
||||
const int ret =
|
||||
@ -302,7 +302,7 @@ protected:
|
||||
score + best_path_score_till_here;
|
||||
if (target_node.starts_at == -1 ||
|
||||
candidate_best_path_score > target_node.best_path_score) {
|
||||
target_node.best_path_score = candidate_best_path_score;
|
||||
target_node.best_path_score = static_cast<float>(candidate_best_path_score);
|
||||
target_node.starts_at = starts_at;
|
||||
target_node.id = ret;
|
||||
}
|
||||
@ -394,7 +394,7 @@ public:
|
||||
bool padding = false) {
|
||||
if (max_length > 0 && padding) {
|
||||
size_t orig_token_num = tokens.size() - 1;
|
||||
size_t n = std::ceil(orig_token_num * 1.0 / (max_length - 1));
|
||||
size_t n = static_cast<size_t>(std::ceil(orig_token_num * 1.0 / (max_length - 1)));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
@ -515,7 +515,7 @@ public:
|
||||
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
|
||||
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
|
||||
|
||||
auto hidden_gelu = ggml_gelu_inplace(ctx->ggml_ctx, wi_0->forward(ctx, x));
|
||||
auto hidden_gelu = ggml_ext_gelu(ctx->ggml_ctx, wi_0->forward(ctx, x), true);
|
||||
auto hidden_linear = wi_1->forward(ctx, x);
|
||||
x = ggml_mul_inplace(ctx->ggml_ctx, hidden_gelu, hidden_linear);
|
||||
x = wo->forward(ctx, x);
|
||||
@ -608,7 +608,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, sqrt(d_head));
|
||||
k = ggml_ext_scale(ctx->ggml_ctx, k, ::sqrtf(static_cast<float>(d_head)), true);
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
|
||||
|
||||
@ -797,7 +797,7 @@ struct T5Runner : public GGMLRunner {
|
||||
input_ids = to_backend(input_ids);
|
||||
attention_mask = to_backend(attention_mask);
|
||||
|
||||
relative_position_bucket_vec = compute_relative_position_bucket(input_ids->ne[0], input_ids->ne[0]);
|
||||
relative_position_bucket_vec = compute_relative_position_bucket(static_cast<int>(input_ids->ne[0]), static_cast<int>(input_ids->ne[0]));
|
||||
|
||||
// for (int i = 0; i < relative_position_bucket_vec.size(); i++) {
|
||||
// if (i % 77 == 0) {
|
||||
@ -984,12 +984,12 @@ struct T5Embedder {
|
||||
auto attention_mask = vector_to_ggml_tensor(work_ctx, masks);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, attention_mask, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("t5 test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("t5 test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
80
tae.hpp
@ -17,22 +17,43 @@ class TAEBlock : public UnaryBlock {
|
||||
protected:
|
||||
int n_in;
|
||||
int n_out;
|
||||
bool use_midblock_gn;
|
||||
|
||||
public:
|
||||
TAEBlock(int n_in, int n_out)
|
||||
: n_in(n_in), n_out(n_out) {
|
||||
TAEBlock(int n_in, int n_out, bool use_midblock_gn = false)
|
||||
: n_in(n_in), n_out(n_out), use_midblock_gn(use_midblock_gn) {
|
||||
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
if (n_in != n_out) {
|
||||
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {1, 1}, {1, 1}, {1, 1}, {1, 1}, false));
|
||||
}
|
||||
if (use_midblock_gn) {
|
||||
int n_gn = n_in * 4;
|
||||
blocks["pool.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_gn, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
|
||||
blocks["pool.1"] = std::shared_ptr<GGMLBlock>(new GroupNorm(4, n_gn));
|
||||
// pool.2 is ReLU, handled in forward
|
||||
blocks["pool.3"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_gn, n_in, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
|
||||
// x: [n, n_in, h, w]
|
||||
// return: [n, n_out, h, w]
|
||||
|
||||
if (use_midblock_gn) {
|
||||
auto pool_0 = std::dynamic_pointer_cast<Conv2d>(blocks["pool.0"]);
|
||||
auto pool_1 = std::dynamic_pointer_cast<GroupNorm>(blocks["pool.1"]);
|
||||
auto pool_3 = std::dynamic_pointer_cast<Conv2d>(blocks["pool.3"]);
|
||||
|
||||
auto p = pool_0->forward(ctx, x);
|
||||
p = pool_1->forward(ctx, p);
|
||||
p = ggml_relu_inplace(ctx->ggml_ctx, p);
|
||||
p = pool_3->forward(ctx, p);
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, p);
|
||||
}
|
||||
|
||||
auto conv_0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]);
|
||||
auto conv_2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]);
|
||||
auto conv_4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]);
|
||||
@ -62,7 +83,7 @@ class TinyEncoder : public UnaryBlock {
|
||||
int num_blocks = 3;
|
||||
|
||||
public:
|
||||
TinyEncoder(int z_channels = 4)
|
||||
TinyEncoder(int z_channels = 4, bool use_midblock_gn = false)
|
||||
: z_channels(z_channels) {
|
||||
int index = 0;
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, channels, {3, 3}, {1, 1}, {1, 1}));
|
||||
@ -80,7 +101,7 @@ public:
|
||||
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels, use_midblock_gn));
|
||||
}
|
||||
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, z_channels, {3, 3}, {1, 1}, {1, 1}));
|
||||
@ -107,7 +128,7 @@ class TinyDecoder : public UnaryBlock {
|
||||
int num_blocks = 3;
|
||||
|
||||
public:
|
||||
TinyDecoder(int z_channels = 4)
|
||||
TinyDecoder(int z_channels = 4, bool use_midblock_gn = false)
|
||||
: z_channels(z_channels) {
|
||||
int index = 0;
|
||||
|
||||
@ -115,7 +136,7 @@ public:
|
||||
index++; // nn.ReLU()
|
||||
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels, use_midblock_gn));
|
||||
}
|
||||
index++; // nn.Upsample()
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
|
||||
@ -140,9 +161,9 @@ public:
|
||||
// z: [n, z_channels, h, w]
|
||||
// return: [n, out_channels, h*8, w*8]
|
||||
|
||||
auto h = ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
||||
auto h = ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
||||
h = ggml_tanh_inplace(ctx->ggml_ctx, h);
|
||||
h = ggml_scale(ctx->ggml_ctx, h, 3.0f);
|
||||
h = ggml_ext_scale(ctx->ggml_ctx, h, 3.0f);
|
||||
|
||||
for (int i = 0; i < num_blocks * 3 + 10; i++) {
|
||||
if (blocks.find(std::to_string(i)) == blocks.end()) {
|
||||
@ -379,10 +400,11 @@ public:
|
||||
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["1"]);
|
||||
|
||||
// Clamp()
|
||||
auto h = ggml_scale_inplace(ctx->ggml_ctx,
|
||||
ggml_tanh_inplace(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
||||
3.0f);
|
||||
auto h = ggml_ext_scale(ctx->ggml_ctx,
|
||||
ggml_tanh_inplace(ctx->ggml_ctx,
|
||||
ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
||||
3.0f,
|
||||
true);
|
||||
|
||||
h = first_conv->forward(ctx, h);
|
||||
h = ggml_relu_inplace(ctx->ggml_ctx, h);
|
||||
@ -470,29 +492,44 @@ public:
|
||||
class TAESD : public GGMLBlock {
|
||||
protected:
|
||||
bool decode_only;
|
||||
bool taef2 = false;
|
||||
|
||||
public:
|
||||
TAESD(bool decode_only = true, SDVersion version = VERSION_SD1)
|
||||
: decode_only(decode_only) {
|
||||
int z_channels = 4;
|
||||
int z_channels = 4;
|
||||
bool use_midblock_gn = false;
|
||||
taef2 = sd_version_is_flux2(version);
|
||||
|
||||
if (sd_version_is_dit(version)) {
|
||||
z_channels = 16;
|
||||
}
|
||||
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels));
|
||||
if (taef2) {
|
||||
z_channels = 32;
|
||||
use_midblock_gn = true;
|
||||
}
|
||||
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels, use_midblock_gn));
|
||||
|
||||
if (!decode_only) {
|
||||
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels));
|
||||
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels, use_midblock_gn));
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* decode(GGMLRunnerContext* ctx, struct ggml_tensor* z) {
|
||||
auto decoder = std::dynamic_pointer_cast<TinyDecoder>(blocks["decoder.layers"]);
|
||||
if (taef2) {
|
||||
z = unpatchify(ctx->ggml_ctx, z, 2);
|
||||
}
|
||||
return decoder->forward(ctx, z);
|
||||
}
|
||||
|
||||
struct ggml_tensor* encode(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
auto encoder = std::dynamic_pointer_cast<TinyEncoder>(blocks["encoder.layers"]);
|
||||
return encoder->forward(ctx, x);
|
||||
auto z = encoder->forward(ctx, x);
|
||||
if (taef2) {
|
||||
z = patchify(ctx->ggml_ctx, z, 2);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
};
|
||||
|
||||
@ -505,7 +542,8 @@ struct TinyAutoEncoder : public GGMLRunner {
|
||||
struct ggml_tensor** output,
|
||||
struct ggml_context* output_ctx = nullptr) = 0;
|
||||
|
||||
virtual bool load_from_file(const std::string& file_path, int n_threads) = 0;
|
||||
virtual bool load_from_file(const std::string& file_path, int n_threads) = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) = 0;
|
||||
};
|
||||
|
||||
struct TinyImageAutoEncoder : public TinyAutoEncoder {
|
||||
@ -555,6 +593,10 @@ struct TinyImageAutoEncoder : public TinyAutoEncoder {
|
||||
return success;
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
taesd.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
z = to_backend(z);
|
||||
@ -624,6 +666,10 @@ struct TinyVideoAutoEncoder : public TinyAutoEncoder {
|
||||
return success;
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
taehv.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
z = to_backend(z);
|
||||
|
||||
18
thirdparty/darts.h
vendored
@ -845,7 +845,7 @@ inline void BitVector::build() {
|
||||
|
||||
num_ones_ = 0;
|
||||
for (std::size_t i = 0; i < units_.size(); ++i) {
|
||||
ranks_[i] = num_ones_;
|
||||
ranks_[i] = static_cast<id_type>(num_ones_);
|
||||
num_ones_ += pop_count(units_[i]);
|
||||
}
|
||||
}
|
||||
@ -1769,7 +1769,7 @@ id_type DoubleArrayBuilder::arrange_from_keyset(const Keyset<T> &keyset,
|
||||
|
||||
inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
|
||||
if (extras_head_ >= units_.size()) {
|
||||
return units_.size() | (id & LOWER_MASK);
|
||||
return static_cast<id_type>(units_.size()) | (id & LOWER_MASK);
|
||||
}
|
||||
|
||||
id_type unfixed_id = extras_head_;
|
||||
@ -1781,7 +1781,7 @@ inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
|
||||
unfixed_id = extras(unfixed_id).next();
|
||||
} while (unfixed_id != extras_head_);
|
||||
|
||||
return units_.size() | (id & LOWER_MASK);
|
||||
return static_cast<id_type>(units_.size()) | (id & LOWER_MASK);
|
||||
}
|
||||
|
||||
inline bool DoubleArrayBuilder::is_valid_offset(id_type id,
|
||||
@ -1812,7 +1812,7 @@ inline void DoubleArrayBuilder::reserve_id(id_type id) {
|
||||
if (id == extras_head_) {
|
||||
extras_head_ = extras(id).next();
|
||||
if (extras_head_ == id) {
|
||||
extras_head_ = units_.size();
|
||||
extras_head_ = static_cast<id_type>(units_.size());
|
||||
}
|
||||
}
|
||||
extras(extras(id).prev()).set_next(extras(id).next());
|
||||
@ -1821,8 +1821,8 @@ inline void DoubleArrayBuilder::reserve_id(id_type id) {
|
||||
}
|
||||
|
||||
inline void DoubleArrayBuilder::expand_units() {
|
||||
id_type src_num_units = units_.size();
|
||||
id_type src_num_blocks = num_blocks();
|
||||
id_type src_num_units = static_cast<id_type>(units_.size());
|
||||
id_type src_num_blocks = static_cast<id_type>(num_blocks());
|
||||
|
||||
id_type dest_num_units = src_num_units + BLOCK_SIZE;
|
||||
id_type dest_num_blocks = src_num_blocks + 1;
|
||||
@ -1834,7 +1834,7 @@ inline void DoubleArrayBuilder::expand_units() {
|
||||
units_.resize(dest_num_units);
|
||||
|
||||
if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
|
||||
for (std::size_t id = src_num_units; id < dest_num_units; ++id) {
|
||||
for (id_type id = src_num_units; id < dest_num_units; ++id) {
|
||||
extras(id).set_is_used(false);
|
||||
extras(id).set_is_fixed(false);
|
||||
}
|
||||
@ -1858,9 +1858,9 @@ inline void DoubleArrayBuilder::expand_units() {
|
||||
inline void DoubleArrayBuilder::fix_all_blocks() {
|
||||
id_type begin = 0;
|
||||
if (num_blocks() > NUM_EXTRA_BLOCKS) {
|
||||
begin = num_blocks() - NUM_EXTRA_BLOCKS;
|
||||
begin = static_cast<id_type>(num_blocks() - NUM_EXTRA_BLOCKS);
|
||||
}
|
||||
id_type end = num_blocks();
|
||||
id_type end = static_cast<id_type>(num_blocks());
|
||||
|
||||
for (id_type block_id = begin; block_id != end; ++block_id) {
|
||||
fix_block(block_id);
|
||||
|
||||
14
thirdparty/stb_image_write.h
vendored
@ -257,6 +257,10 @@ int stbi_write_tga_with_rle = 1;
|
||||
int stbi_write_force_png_filter = -1;
|
||||
#endif
|
||||
|
||||
#ifndef STBMIN
|
||||
#define STBMIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif // STBMIN
|
||||
|
||||
static int stbi__flip_vertically_on_write = 0;
|
||||
|
||||
STBIWDEF void stbi_flip_vertically_on_write(int flag)
|
||||
@ -1179,8 +1183,8 @@ STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int s
|
||||
if (!zlib) return 0;
|
||||
|
||||
if(parameters != NULL) {
|
||||
param_length = strlen(parameters);
|
||||
param_length += strlen("parameters") + 1; // For the name and the null-byte
|
||||
param_length = (int)strlen(parameters);
|
||||
param_length += (int)strlen("parameters") + 1; // For the name and the null-byte
|
||||
}
|
||||
|
||||
// each tag requires 12 bytes of overhead
|
||||
@ -1526,11 +1530,11 @@ static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, in
|
||||
if(parameters != NULL) {
|
||||
stbiw__putc(s, 0xFF /* comnent */ );
|
||||
stbiw__putc(s, 0xFE /* marker */ );
|
||||
size_t param_length = std::min(2 + strlen("parameters") + 1 + strlen(parameters) + 1, (size_t) 0xFFFF);
|
||||
int param_length = STBMIN(2 + (int)strlen("parameters") + 1 + (int)strlen(parameters) + 1, 0xFFFF);
|
||||
stbiw__putc(s, param_length >> 8); // no need to mask, length < 65536
|
||||
stbiw__putc(s, param_length & 0xFF);
|
||||
s->func(s->context, (void*)"parameters", strlen("parameters") + 1); // std::string is zero-terminated
|
||||
s->func(s->context, (void*)parameters, std::min(param_length, (size_t) 65534) - 2 - strlen("parameters") - 1);
|
||||
s->func(s->context, (void*)"parameters", (int)strlen("parameters") + 1); // std::string is zero-terminated
|
||||
s->func(s->context, (void*)parameters, STBMIN(param_length, 65534) - 2 - (int)strlen("parameters") - 1);
|
||||
if(param_length > 65534) stbiw__putc(s, 0); // always zero-terminate for safety
|
||||
if(param_length & 1) stbiw__putc(s, 0xFF); // pad to even length
|
||||
}
|
||||
|
||||
36
unet.hpp
@ -12,7 +12,7 @@
|
||||
class SpatialVideoTransformer : public SpatialTransformer {
|
||||
protected:
|
||||
int64_t time_depth;
|
||||
int64_t max_time_embed_period;
|
||||
int max_time_embed_period;
|
||||
|
||||
public:
|
||||
SpatialVideoTransformer(int64_t in_channels,
|
||||
@ -21,8 +21,8 @@ public:
|
||||
int64_t depth,
|
||||
int64_t context_dim,
|
||||
bool use_linear,
|
||||
int64_t time_depth = 1,
|
||||
int64_t max_time_embed_period = 10000)
|
||||
int64_t time_depth = 1,
|
||||
int max_time_embed_period = 10000)
|
||||
: SpatialTransformer(in_channels, n_head, d_head, depth, context_dim, use_linear),
|
||||
max_time_embed_period(max_time_embed_period) {
|
||||
// We will convert unet transformer linear to conv2d 1x1 when loading the weights, so use_linear is always False
|
||||
@ -112,9 +112,9 @@ public:
|
||||
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
|
||||
x = ggml_reshape_3d(ctx->ggml_ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
|
||||
|
||||
auto num_frames = ggml_arange(ctx->ggml_ctx, 0, timesteps, 1);
|
||||
auto num_frames = ggml_arange(ctx->ggml_ctx, 0.f, static_cast<float>(timesteps), 1.f);
|
||||
// since b is 1, no need to do repeat
|
||||
auto t_emb = ggml_ext_timestep_embedding(ctx->ggml_ctx, num_frames, in_channels, max_time_embed_period); // [N, in_channels]
|
||||
auto t_emb = ggml_ext_timestep_embedding(ctx->ggml_ctx, num_frames, static_cast<int>(in_channels), max_time_embed_period); // [N, in_channels]
|
||||
|
||||
auto emb = time_pos_embed_0->forward(ctx, t_emb);
|
||||
emb = ggml_silu_inplace(ctx->ggml_ctx, emb);
|
||||
@ -201,6 +201,9 @@ public:
|
||||
num_head_channels = 64;
|
||||
num_heads = -1;
|
||||
use_linear_projection = true;
|
||||
if (version == VERSION_SDXL_VEGA) {
|
||||
transformer_depth = {1, 1, 2};
|
||||
}
|
||||
} else if (version == VERSION_SVD) {
|
||||
in_channels = 8;
|
||||
out_channels = 4;
|
||||
@ -215,10 +218,13 @@ public:
|
||||
} else if (sd_version_is_unet_edit(version)) {
|
||||
in_channels = 8;
|
||||
}
|
||||
if (version == VERSION_SD1_TINY_UNET || version == VERSION_SD2_TINY_UNET) {
|
||||
if (version == VERSION_SD1_TINY_UNET || version == VERSION_SD2_TINY_UNET || version == VERSION_SDXS) {
|
||||
num_res_blocks = 1;
|
||||
channel_mult = {1, 2, 4};
|
||||
tiny_unet = true;
|
||||
if (version == VERSION_SDXS) {
|
||||
attention_resolutions = {4, 2}; // here just like SDXL
|
||||
}
|
||||
}
|
||||
|
||||
// dims is always 2
|
||||
@ -316,7 +322,7 @@ public:
|
||||
}
|
||||
if (!tiny_unet) {
|
||||
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
|
||||
if (version != VERSION_SDXL_SSD1B) {
|
||||
if (version != VERSION_SDXL_SSD1B && version != VERSION_SDXL_VEGA) {
|
||||
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
|
||||
n_head,
|
||||
d_head,
|
||||
@ -517,16 +523,16 @@ public:
|
||||
// middle_block
|
||||
if (!tiny_unet) {
|
||||
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
if (version != VERSION_SDXL_SSD1B) {
|
||||
if (version != VERSION_SDXL_SSD1B && version != VERSION_SDXL_VEGA) {
|
||||
h = attention_layer_forward("middle_block.1", ctx, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
}
|
||||
}
|
||||
if (controls.size() > 0) {
|
||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[controls.size() - 1], control_strength);
|
||||
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[controls.size() - 1], control_strength, true);
|
||||
h = ggml_add(ctx->ggml_ctx, h, cs); // middle control
|
||||
}
|
||||
int control_offset = controls.size() - 2;
|
||||
int control_offset = static_cast<int>(controls.size() - 2);
|
||||
|
||||
// output_blocks
|
||||
int output_block_idx = 0;
|
||||
@ -536,7 +542,7 @@ public:
|
||||
hs.pop_back();
|
||||
|
||||
if (controls.size() > 0) {
|
||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[control_offset], control_strength);
|
||||
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[control_offset], control_strength, true);
|
||||
h_skip = ggml_add(ctx->ggml_ctx, h_skip, cs); // control net condition
|
||||
control_offset--;
|
||||
}
|
||||
@ -615,7 +621,7 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
struct ggml_cgraph* gf = new_graph_custom(UNET_GRAPH_SIZE);
|
||||
|
||||
if (num_video_frames == -1) {
|
||||
num_video_frames = x->ne[3];
|
||||
num_video_frames = static_cast<int>(x->ne[3]);
|
||||
}
|
||||
|
||||
x = to_backend(x);
|
||||
@ -700,12 +706,12 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, y, num_video_frames, {}, 0.f, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("unet test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("unet test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
150
util.cpp
@ -95,9 +95,71 @@ bool is_directory(const std::string& path) {
|
||||
return (attributes != INVALID_FILE_ATTRIBUTES && (attributes & FILE_ATTRIBUTE_DIRECTORY));
|
||||
}
|
||||
|
||||
class MmapWrapperImpl : public MmapWrapper {
|
||||
public:
|
||||
MmapWrapperImpl(void* data, size_t size, HANDLE hfile, HANDLE hmapping)
|
||||
: MmapWrapper(data, size), hfile_(hfile), hmapping_(hmapping) {}
|
||||
|
||||
~MmapWrapperImpl() override {
|
||||
UnmapViewOfFile(data_);
|
||||
CloseHandle(hmapping_);
|
||||
CloseHandle(hfile_);
|
||||
}
|
||||
|
||||
private:
|
||||
HANDLE hfile_;
|
||||
HANDLE hmapping_;
|
||||
};
|
||||
|
||||
std::unique_ptr<MmapWrapper> MmapWrapper::create(const std::string& filename) {
|
||||
void* mapped_data = nullptr;
|
||||
size_t file_size = 0;
|
||||
|
||||
HANDLE file_handle = CreateFileA(
|
||||
filename.c_str(),
|
||||
GENERIC_READ,
|
||||
FILE_SHARE_READ,
|
||||
NULL,
|
||||
OPEN_EXISTING,
|
||||
FILE_ATTRIBUTE_NORMAL,
|
||||
NULL);
|
||||
|
||||
if (file_handle == INVALID_HANDLE_VALUE) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
LARGE_INTEGER size;
|
||||
if (!GetFileSizeEx(file_handle, &size)) {
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
file_size = static_cast<size_t>(size.QuadPart);
|
||||
|
||||
HANDLE mapping_handle = CreateFileMapping(file_handle, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
|
||||
if (mapping_handle == NULL) {
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
mapped_data = MapViewOfFile(mapping_handle, FILE_MAP_READ, 0, 0, file_size);
|
||||
|
||||
if (mapped_data == NULL) {
|
||||
CloseHandle(mapping_handle);
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_unique<MmapWrapperImpl>(mapped_data, file_size, file_handle, mapping_handle);
|
||||
}
|
||||
|
||||
#else // Unix
|
||||
#include <dirent.h>
|
||||
#include <fcntl.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
bool file_exists(const std::string& filename) {
|
||||
struct stat buffer;
|
||||
@ -109,8 +171,64 @@ bool is_directory(const std::string& path) {
|
||||
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode));
|
||||
}
|
||||
|
||||
class MmapWrapperImpl : public MmapWrapper {
|
||||
public:
|
||||
MmapWrapperImpl(void* data, size_t size)
|
||||
: MmapWrapper(data, size) {}
|
||||
|
||||
~MmapWrapperImpl() override {
|
||||
munmap(data_, size_);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<MmapWrapper> MmapWrapper::create(const std::string& filename) {
|
||||
int file_descriptor = open(filename.c_str(), O_RDONLY);
|
||||
if (file_descriptor == -1) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
int mmap_flags = MAP_PRIVATE;
|
||||
|
||||
#ifdef __linux__
|
||||
// performance flags used by llama.cpp
|
||||
// posix_fadvise(file_descriptor, 0, 0, POSIX_FADV_SEQUENTIAL);
|
||||
// mmap_flags |= MAP_POPULATE;
|
||||
#endif
|
||||
|
||||
struct stat sb;
|
||||
if (fstat(file_descriptor, &sb) == -1) {
|
||||
close(file_descriptor);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
size_t file_size = sb.st_size;
|
||||
|
||||
void* mapped_data = mmap(NULL, file_size, PROT_READ, mmap_flags, file_descriptor, 0);
|
||||
|
||||
close(file_descriptor);
|
||||
|
||||
if (mapped_data == MAP_FAILED) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#ifdef __linux__
|
||||
// performance flags used by llama.cpp
|
||||
// posix_madvise(mapped_data, file_size, POSIX_MADV_WILLNEED);
|
||||
#endif
|
||||
|
||||
return std::make_unique<MmapWrapperImpl>(mapped_data, file_size);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
bool MmapWrapper::copy_data(void* buf, size_t n, size_t offset) const {
|
||||
if (offset >= size_ || n > (size_ - offset)) {
|
||||
return false;
|
||||
}
|
||||
std::memcpy(buf, data() + offset, n);
|
||||
return true;
|
||||
}
|
||||
|
||||
// get_num_physical_cores is copy from
|
||||
// https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
|
||||
// LICENSE: https://github.com/ggerganov/llama.cpp/blob/master/LICENSE
|
||||
@ -370,7 +488,7 @@ sd_image_f32_t sd_image_t_to_sd_image_f32_t(sd_image_t image) {
|
||||
// Allocate memory for float data
|
||||
converted_image.data = (float*)malloc(image.width * image.height * image.channel * sizeof(float));
|
||||
|
||||
for (int i = 0; i < image.width * image.height * image.channel; i++) {
|
||||
for (uint32_t i = 0; i < image.width * image.height * image.channel; i++) {
|
||||
// Convert uint8_t to float
|
||||
converted_image.data[i] = (float)image.data[i];
|
||||
}
|
||||
@ -402,7 +520,7 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
uint32_t x2 = std::min(x1 + 1, image.width - 1);
|
||||
uint32_t y2 = std::min(y1 + 1, image.height - 1);
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
|
||||
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
|
||||
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
|
||||
@ -422,9 +540,9 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
}
|
||||
|
||||
void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3]) {
|
||||
for (int y = 0; y < image.height; y++) {
|
||||
for (int x = 0; x < image.width; x++) {
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t y = 0; y < image.height; y++) {
|
||||
for (uint32_t x = 0; x < image.width; x++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
int index = (y * image.width + x) * image.channel + k;
|
||||
image.data[index] = (image.data[index] - means[k]) / stds[k];
|
||||
}
|
||||
@ -433,8 +551,8 @@ void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3
|
||||
}
|
||||
|
||||
// Constants for means and std
|
||||
float means[3] = {0.48145466, 0.4578275, 0.40821073};
|
||||
float stds[3] = {0.26862954, 0.26130258, 0.27577711};
|
||||
float means[3] = {0.48145466f, 0.4578275f, 0.40821073f};
|
||||
float stds[3] = {0.26862954f, 0.26130258f, 0.27577711f};
|
||||
|
||||
// Function to clip and preprocess sd_image_f32_t
|
||||
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int target_height) {
|
||||
@ -458,7 +576,7 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
uint32_t x2 = std::min(x1 + 1, image.width - 1);
|
||||
uint32_t y2 = std::min(y1 + 1, image.height - 1);
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
|
||||
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
|
||||
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
|
||||
@ -484,11 +602,11 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
result.channel = image.channel;
|
||||
result.data = (float*)malloc(target_height * target_width * image.channel * sizeof(float));
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (int i = 0; i < result.height; i++) {
|
||||
for (int j = 0; j < result.width; j++) {
|
||||
int src_y = std::min(i + h_offset, resized_height - 1);
|
||||
int src_x = std::min(j + w_offset, resized_width - 1);
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
for (uint32_t i = 0; i < result.height; i++) {
|
||||
for (uint32_t j = 0; j < result.width; j++) {
|
||||
int src_y = std::min(static_cast<int>(i + h_offset), resized_height - 1);
|
||||
int src_x = std::min(static_cast<int>(j + w_offset), resized_width - 1);
|
||||
*(result.data + i * result.width * image.channel + j * image.channel + k) =
|
||||
fmin(fmax(*(resized_data + src_y * resized_width * image.channel + src_x * image.channel + k), 0.0f), 255.0f) / 255.0f;
|
||||
}
|
||||
@ -499,9 +617,9 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
free(resized_data);
|
||||
|
||||
// Normalize
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (int i = 0; i < result.height; i++) {
|
||||
for (int j = 0; j < result.width; j++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
for (uint32_t i = 0; i < result.height; i++) {
|
||||
for (uint32_t j = 0; j < result.width; j++) {
|
||||
// *(result.data + i * size * image.channel + j * image.channel + k) = 0.5f;
|
||||
int offset = i * result.width * image.channel + j * image.channel + k;
|
||||
float value = *(result.data + offset);
|
||||
|
||||
23
util.h
@ -2,6 +2,7 @@
|
||||
#define __UTIL_H__
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
@ -43,6 +44,28 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
|
||||
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int target_height);
|
||||
|
||||
class MmapWrapper {
|
||||
public:
|
||||
static std::unique_ptr<MmapWrapper> create(const std::string& filename);
|
||||
|
||||
virtual ~MmapWrapper() = default;
|
||||
|
||||
MmapWrapper(const MmapWrapper&) = delete;
|
||||
MmapWrapper& operator=(const MmapWrapper&) = delete;
|
||||
MmapWrapper(MmapWrapper&&) = delete;
|
||||
MmapWrapper& operator=(MmapWrapper&&) = delete;
|
||||
|
||||
const uint8_t* data() const { return static_cast<uint8_t*>(data_); }
|
||||
size_t size() const { return size_; }
|
||||
bool copy_data(void* buf, size_t n, size_t offset) const;
|
||||
|
||||
protected:
|
||||
MmapWrapper(void* data, size_t size)
|
||||
: data_(data), size_(size) {}
|
||||
void* data_ = nullptr;
|
||||
size_t size_ = 0;
|
||||
};
|
||||
|
||||
std::string path_join(const std::string& p1, const std::string& p2);
|
||||
std::vector<std::string> split_string(const std::string& str, char delimiter);
|
||||
void pretty_progress(int step, int steps, float time);
|
||||
|
||||
47
vae.hpp
@ -127,8 +127,6 @@ public:
|
||||
q = q_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
k = k_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
v = v_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [N, in_channels, h * w]
|
||||
} else {
|
||||
q = q_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
q = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, q, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
@ -138,11 +136,12 @@ public:
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, k, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
k = ggml_reshape_3d(ctx->ggml_ctx, k, c, h * w, n); // [N, h * w, in_channels]
|
||||
|
||||
v = v_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [N, in_channels, h * w]
|
||||
v = v_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, v, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, c, h * w, n); // [N, h * w, in_channels]
|
||||
}
|
||||
|
||||
h_ = ggml_ext_attention(ctx->ggml_ctx, q, k, v, false); // [N, h * w, in_channels]
|
||||
h_ = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled);
|
||||
|
||||
if (use_linear) {
|
||||
h_ = proj_out->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
@ -166,18 +165,18 @@ public:
|
||||
AE3DConv(int64_t in_channels,
|
||||
int64_t out_channels,
|
||||
std::pair<int, int> kernel_size,
|
||||
int64_t video_kernel_size = 3,
|
||||
int video_kernel_size = 3,
|
||||
std::pair<int, int> stride = {1, 1},
|
||||
std::pair<int, int> padding = {0, 0},
|
||||
std::pair<int, int> dilation = {1, 1},
|
||||
bool bias = true)
|
||||
: Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias) {
|
||||
int64_t kernel_padding = video_kernel_size / 2;
|
||||
blocks["time_mix_conv"] = std::shared_ptr<GGMLBlock>(new Conv3dnx1x1(out_channels,
|
||||
out_channels,
|
||||
video_kernel_size,
|
||||
1,
|
||||
kernel_padding));
|
||||
int kernel_padding = video_kernel_size / 2;
|
||||
blocks["time_mix_conv"] = std::shared_ptr<GGMLBlock>(new Conv3d(out_channels,
|
||||
out_channels,
|
||||
{video_kernel_size, 1, 1},
|
||||
{1, 1, 1},
|
||||
{kernel_padding, 0, 0}));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
@ -186,7 +185,7 @@ public:
|
||||
// skip_video always False
|
||||
// x: [N, IC, IH, IW]
|
||||
// result: [N, OC, OH, OW]
|
||||
auto time_mix_conv = std::dynamic_pointer_cast<Conv3dnx1x1>(blocks["time_mix_conv"]);
|
||||
auto time_mix_conv = std::dynamic_pointer_cast<Conv3d>(blocks["time_mix_conv"]);
|
||||
|
||||
x = Conv2d::forward(ctx, x);
|
||||
// timesteps = x.shape[0]
|
||||
@ -254,8 +253,8 @@ public:
|
||||
|
||||
float alpha = get_alpha();
|
||||
x = ggml_add(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, x, alpha),
|
||||
ggml_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
||||
ggml_ext_scale(ctx->ggml_ctx, x, alpha),
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
||||
|
||||
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
|
||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
|
||||
@ -409,8 +408,8 @@ public:
|
||||
z_channels(z_channels),
|
||||
video_decoder(video_decoder),
|
||||
video_kernel_size(video_kernel_size) {
|
||||
size_t num_resolutions = ch_mult.size();
|
||||
int block_in = ch * ch_mult[num_resolutions - 1];
|
||||
int num_resolutions = static_cast<int>(ch_mult.size());
|
||||
int block_in = ch * ch_mult[num_resolutions - 1];
|
||||
|
||||
blocks["conv_in"] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, block_in, {3, 3}, {1, 1}, {1, 1}));
|
||||
|
||||
@ -461,7 +460,7 @@ public:
|
||||
h = mid_block_2->forward(ctx, h); // [N, block_in, h, w]
|
||||
|
||||
// upsampling
|
||||
size_t num_resolutions = ch_mult.size();
|
||||
int num_resolutions = static_cast<int>(ch_mult.size());
|
||||
for (int i = num_resolutions - 1; i >= 0; i--) {
|
||||
for (int j = 0; j < num_res_blocks + 1; j++) {
|
||||
std::string name = "up." + std::to_string(i) + ".block." + std::to_string(j);
|
||||
@ -745,12 +744,12 @@ struct AutoEncoderKL : public VAE {
|
||||
print_ggml_tensor(x);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("encode test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("encode test done in %lldms", t1 - t0);
|
||||
}
|
||||
|
||||
if (false) {
|
||||
@ -763,12 +762,12 @@ struct AutoEncoderKL : public VAE {
|
||||
print_ggml_tensor(z);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, z, true, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("decode test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("decode test done in %lldms", t1 - t0);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
88
wan.hpp
@ -108,7 +108,7 @@ namespace WAN {
|
||||
struct ggml_tensor* w = params["gamma"];
|
||||
w = ggml_reshape_1d(ctx->ggml_ctx, w, ggml_nelements(w));
|
||||
auto h = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, x, 3, 0, 1, 2)); // [ID, IH, IW, N*IC]
|
||||
h = ggml_rms_norm(ctx->ggml_ctx, h, 1e-12);
|
||||
h = ggml_rms_norm(ctx->ggml_ctx, h, 1e-12f);
|
||||
h = ggml_mul(ctx->ggml_ctx, h, w);
|
||||
h = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, h, 1, 2, 3, 0));
|
||||
|
||||
@ -243,13 +243,13 @@ namespace WAN {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
int64_t out_channels;
|
||||
int64_t factor_t;
|
||||
int64_t factor_s;
|
||||
int64_t factor;
|
||||
int factor_t;
|
||||
int factor_s;
|
||||
int factor;
|
||||
int64_t group_size;
|
||||
|
||||
public:
|
||||
AvgDown3D(int64_t in_channels, int64_t out_channels, int64_t factor_t, int64_t factor_s = 1)
|
||||
AvgDown3D(int64_t in_channels, int64_t out_channels, int factor_t, int factor_s = 1)
|
||||
: in_channels(in_channels), out_channels(out_channels), factor_t(factor_t), factor_s(factor_s) {
|
||||
factor = factor_t * factor_s * factor_s;
|
||||
GGML_ASSERT(in_channels * factor % out_channels == 0);
|
||||
@ -266,7 +266,7 @@ namespace WAN {
|
||||
int64_t H = x->ne[1];
|
||||
int64_t W = x->ne[0];
|
||||
|
||||
int64_t pad_t = (factor_t - T % factor_t) % factor_t;
|
||||
int pad_t = (factor_t - T % factor_t) % factor_t;
|
||||
|
||||
x = ggml_pad_ext(ctx->ggml_ctx, x, 0, 0, 0, 0, pad_t, 0, 0, 0);
|
||||
T = x->ne[2];
|
||||
@ -572,9 +572,8 @@ namespace WAN {
|
||||
auto v = qkv_vec[2];
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [t, c, h * w]
|
||||
|
||||
x = ggml_ext_attention(ctx->ggml_ctx, q, k, v, false); // [t, h * w, c]
|
||||
// v = ggml_cont(ctx, ggml_ext_torch_permute(ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
||||
// x = ggml_ext_attention_ext(ctx, q, k, v, q->ne[2], nullptr, false, false, true);
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled); // [t, h * w, c]
|
||||
|
||||
x = ggml_ext_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [t, c, h * w]
|
||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, c, n); // [t, c, h, w]
|
||||
@ -1071,7 +1070,7 @@ namespace WAN {
|
||||
int64_t iter_ = z->ne[2];
|
||||
auto x = conv2->forward(ctx, z);
|
||||
struct ggml_tensor* out;
|
||||
for (int64_t i = 0; i < iter_; i++) {
|
||||
for (int i = 0; i < iter_; i++) {
|
||||
_conv_idx = 0;
|
||||
if (i == 0) {
|
||||
auto in = ggml_ext_slice(ctx->ggml_ctx, x, 2, i, i + 1); // [b*c, 1, h, w]
|
||||
@ -1091,7 +1090,7 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* decode_partial(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* z,
|
||||
int64_t i,
|
||||
int i,
|
||||
int64_t b = 1) {
|
||||
// z: [b*c, t, h, w]
|
||||
GGML_ASSERT(b == 1);
|
||||
@ -1146,12 +1145,12 @@ namespace WAN {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int64_t i) {
|
||||
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int i) {
|
||||
struct ggml_cgraph* gf = new_graph_custom(20480);
|
||||
|
||||
ae.clear_cache();
|
||||
|
||||
for (int64_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
for (size_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
auto feat_cache = get_cache_tensor_by_name("feat_idx:" + std::to_string(feat_idx));
|
||||
ae._feat_map[feat_idx] = feat_cache;
|
||||
}
|
||||
@ -1162,7 +1161,7 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* out = decode_graph ? ae.decode_partial(&runner_ctx, z, i) : ae.encode(&runner_ctx, z);
|
||||
|
||||
for (int64_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
for (size_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
ggml_tensor* feat_cache = ae._feat_map[feat_idx];
|
||||
if (feat_cache != nullptr) {
|
||||
cache("feat_idx:" + std::to_string(feat_idx), feat_cache);
|
||||
@ -1188,7 +1187,7 @@ namespace WAN {
|
||||
} else { // chunk 1 result is weird
|
||||
ae.clear_cache();
|
||||
int64_t t = z->ne[2];
|
||||
int64_t i = 0;
|
||||
int i = 0;
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph_partial(z, decode_graph, i);
|
||||
};
|
||||
@ -1394,7 +1393,7 @@ namespace WAN {
|
||||
k = norm_k->forward(ctx, k);
|
||||
auto v = v_proj->forward(ctx, context); // [N, n_context, dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
|
||||
x = o_proj->forward(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
@ -1443,11 +1442,8 @@ namespace WAN {
|
||||
int64_t dim = x->ne[0];
|
||||
int64_t context_txt_len = context->ne[1] - context_img_len;
|
||||
|
||||
context = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context, 0, 2, 1, 3)); // [context_img_len + context_txt_len, N, dim]
|
||||
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_img_len, context->nb[1], context->nb[2], 0);
|
||||
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_txt_len, context->nb[1], context->nb[2], context_img_len * context->nb[2]);
|
||||
context_img = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_img, 0, 2, 1, 3)); // [N, context_img_len, dim]
|
||||
context_txt = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_txt, 0, 2, 1, 3)); // [N, context_txt_len, dim]
|
||||
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, context_img_len, N, context->nb[1], context->nb[2], 0); // [N, context_img_len, dim]
|
||||
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, context_txt_len, N, context->nb[1], context->nb[2], context_img_len * context->nb[1]); // [N, context_txt_len, dim]
|
||||
|
||||
auto q = q_proj->forward(ctx, x);
|
||||
q = norm_q->forward(ctx, q);
|
||||
@ -1459,8 +1455,8 @@ namespace WAN {
|
||||
k_img = norm_k_img->forward(ctx, k_img);
|
||||
auto v_img = v_img_proj->forward(ctx, context_img); // [N, context_img_len, dim]
|
||||
|
||||
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, img_x);
|
||||
|
||||
@ -1499,7 +1495,7 @@ namespace WAN {
|
||||
|
||||
class WanAttentionBlock : public GGMLBlock {
|
||||
protected:
|
||||
int dim;
|
||||
int64_t dim;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
@ -1577,7 +1573,7 @@ namespace WAN {
|
||||
y = modulate_add(ctx->ggml_ctx, y, es[3]);
|
||||
|
||||
y = ffn_0->forward(ctx, y);
|
||||
y = ggml_gelu_inplace(ctx->ggml_ctx, y);
|
||||
y = ggml_ext_gelu(ctx->ggml_ctx, y, true);
|
||||
y = ffn_2->forward(ctx, y);
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, modulate_mul(ctx->ggml_ctx, y, es[5]));
|
||||
@ -1639,7 +1635,7 @@ namespace WAN {
|
||||
|
||||
class Head : public GGMLBlock {
|
||||
protected:
|
||||
int dim;
|
||||
int64_t dim;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
@ -1685,8 +1681,8 @@ namespace WAN {
|
||||
|
||||
class MLPProj : public GGMLBlock {
|
||||
protected:
|
||||
int in_dim;
|
||||
int flf_pos_embed_token_number;
|
||||
int64_t in_dim;
|
||||
int64_t flf_pos_embed_token_number;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
if (flf_pos_embed_token_number > 0) {
|
||||
@ -1724,7 +1720,7 @@ namespace WAN {
|
||||
|
||||
auto x = proj_0->forward(ctx, image_embeds);
|
||||
x = proj_1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = proj_3->forward(ctx, x);
|
||||
x = proj_4->forward(ctx, x);
|
||||
|
||||
@ -1739,17 +1735,17 @@ namespace WAN {
|
||||
int64_t in_dim = 16;
|
||||
int64_t dim = 2048;
|
||||
int64_t ffn_dim = 8192;
|
||||
int64_t freq_dim = 256;
|
||||
int freq_dim = 256;
|
||||
int64_t text_dim = 4096;
|
||||
int64_t out_dim = 16;
|
||||
int64_t num_heads = 16;
|
||||
int64_t num_layers = 32;
|
||||
int64_t vace_layers = 0;
|
||||
int num_layers = 32;
|
||||
int vace_layers = 0;
|
||||
int64_t vace_in_dim = 96;
|
||||
std::map<int, int> vace_layers_mapping = {};
|
||||
bool qk_norm = true;
|
||||
bool cross_attn_norm = true;
|
||||
float eps = 1e-6;
|
||||
float eps = 1e-6f;
|
||||
int64_t flf_pos_embed_token_number = 0;
|
||||
int theta = 10000;
|
||||
// wan2.1 1.3B: 1536/12, wan2.1/2.2 14B: 5120/40, wan2.2 5B: 3074/24
|
||||
@ -1911,7 +1907,7 @@ namespace WAN {
|
||||
e0 = ggml_reshape_4d(ctx->ggml_ctx, e0, e0->ne[0] / 6, 6, e0->ne[1], e0->ne[2]); // [N, 6, dim] or [N, T, 6, dim]
|
||||
|
||||
context = text_embedding_0->forward(ctx, context);
|
||||
context = ggml_gelu(ctx->ggml_ctx, context);
|
||||
context = ggml_ext_gelu(ctx->ggml_ctx, context);
|
||||
context = text_embedding_2->forward(ctx, context); // [N, context_txt_len, dim]
|
||||
|
||||
int64_t context_img_len = 0;
|
||||
@ -1950,7 +1946,7 @@ namespace WAN {
|
||||
auto result = vace_block->forward(ctx, c, x_orig, e0, pe, context, context_img_len);
|
||||
auto c_skip = result.first;
|
||||
c = result.second;
|
||||
c_skip = ggml_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
||||
c_skip = ggml_ext_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
||||
x = ggml_add(ctx->ggml_ctx, x, c_skip);
|
||||
}
|
||||
}
|
||||
@ -2066,7 +2062,7 @@ namespace WAN {
|
||||
if (version == VERSION_WAN2_2_TI2V) {
|
||||
desc = "Wan2.2-TI2V-5B";
|
||||
wan_params.dim = 3072;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 14336;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.in_dim = 48;
|
||||
@ -2085,7 +2081,7 @@ namespace WAN {
|
||||
wan_params.in_dim = 16;
|
||||
}
|
||||
wan_params.dim = 1536;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 8960;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.num_heads = 12;
|
||||
@ -2114,14 +2110,14 @@ namespace WAN {
|
||||
}
|
||||
}
|
||||
wan_params.dim = 5120;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 13824;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.num_heads = 40;
|
||||
wan_params.out_dim = 16;
|
||||
wan_params.text_len = 512;
|
||||
} else {
|
||||
GGML_ABORT("invalid num_layers(%ld) of wan", wan_params.num_layers);
|
||||
GGML_ABORT("invalid num_layers(%d) of wan", wan_params.num_layers);
|
||||
}
|
||||
|
||||
LOG_INFO("%s", desc.c_str());
|
||||
@ -2156,16 +2152,16 @@ namespace WAN {
|
||||
time_dim_concat = to_backend(time_dim_concat);
|
||||
vace_context = to_backend(vace_context);
|
||||
|
||||
pe_vec = Rope::gen_wan_pe(x->ne[2],
|
||||
x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_wan_pe(static_cast<int>(x->ne[2]),
|
||||
static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
std::get<0>(wan_params.patch_size),
|
||||
std::get<1>(wan_params.patch_size),
|
||||
std::get<2>(wan_params.patch_size),
|
||||
1,
|
||||
wan_params.theta,
|
||||
wan_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / wan_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / wan_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, wan_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -2243,12 +2239,12 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, nullptr, nullptr, nullptr, 1.f, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("wan test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("wan test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
66
z_image.hpp
@ -54,15 +54,37 @@ namespace ZImage {
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
||||
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1)); // [num_heads + num_kv_heads*2, N, n_token, head_dim]
|
||||
|
||||
auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0); // [num_heads, N, n_token, head_dim]
|
||||
auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads); // [num_kv_heads, N, n_token, head_dim]
|
||||
auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads)); // [num_kv_heads, N, n_token, head_dim]
|
||||
|
||||
q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2)); // [N, n_token, num_heads, head_dim]
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
auto q = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
0); // [N, n_token, num_heads, head_dim]
|
||||
auto k = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_kv_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
num_heads * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||
auto v = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_kv_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
(num_heads + num_kv_heads) * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||
|
||||
if (qk_norm) {
|
||||
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
||||
@ -239,7 +261,7 @@ namespace ZImage {
|
||||
};
|
||||
|
||||
struct ZImageParams {
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t hidden_size = 3840;
|
||||
int64_t in_channels = 16;
|
||||
int64_t out_channels = 16;
|
||||
@ -249,11 +271,11 @@ namespace ZImage {
|
||||
int64_t num_heads = 30;
|
||||
int64_t num_kv_heads = 30;
|
||||
int64_t multiple_of = 256;
|
||||
float ffn_dim_multiplier = 8.0 / 3.0f;
|
||||
float ffn_dim_multiplier = 8.0f / 3.0f;
|
||||
float norm_eps = 1e-5f;
|
||||
bool qk_norm = true;
|
||||
int64_t cap_feat_dim = 2560;
|
||||
float theta = 256.f;
|
||||
int theta = 256;
|
||||
std::vector<int> axes_dim = {32, 48, 48};
|
||||
int64_t axes_dim_sum = 128;
|
||||
};
|
||||
@ -411,13 +433,13 @@ namespace ZImage {
|
||||
auto txt = cap_embedder_1->forward(ctx, cap_embedder_0->forward(ctx, context)); // [N, n_txt_token, hidden_size]
|
||||
auto img = x_embedder->forward(ctx, x); // [N, n_img_token, hidden_size]
|
||||
|
||||
int64_t n_txt_pad_token = Rope::bound_mod(n_txt_token, SEQ_MULTI_OF);
|
||||
int64_t n_txt_pad_token = Rope::bound_mod(static_cast<int>(n_txt_token), SEQ_MULTI_OF);
|
||||
if (n_txt_pad_token > 0) {
|
||||
auto txt_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, txt_pad_token, txt_pad_token->ne[0], n_txt_pad_token, N, 1);
|
||||
txt = ggml_concat(ctx->ggml_ctx, txt, txt_pad_tokens, 1); // [N, n_txt_token + n_txt_pad_token, hidden_size]
|
||||
}
|
||||
|
||||
int64_t n_img_pad_token = Rope::bound_mod(n_img_token, SEQ_MULTI_OF);
|
||||
int64_t n_img_pad_token = Rope::bound_mod(static_cast<int>(n_img_token), SEQ_MULTI_OF);
|
||||
if (n_img_pad_token > 0) {
|
||||
auto img_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, img_pad_token, img_pad_token->ne[0], n_img_pad_token, N, 1);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, img_pad_tokens, 1); // [N, n_img_token + n_img_pad_token, hidden_size]
|
||||
@ -495,7 +517,7 @@ namespace ZImage {
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
||||
|
||||
out = ggml_scale(ctx->ggml_ctx, out, -1.f);
|
||||
out = ggml_ext_scale(ctx->ggml_ctx, out, -1.f);
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -543,11 +565,11 @@ namespace ZImage {
|
||||
ref_latents[i] = to_backend(ref_latents[i]);
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_z_image_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_z_image_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
z_image_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
SEQ_MULTI_OF,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
@ -555,7 +577,7 @@ namespace ZImage {
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
z_image_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / z_image_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / z_image_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, z_image_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -619,12 +641,12 @@ namespace ZImage {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("z_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("z_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||