Compare commits
66 Commits
master-427
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
65891d74cc | ||
|
|
f957fa3d2a | ||
|
|
c252e03c6b | ||
|
|
e63daba33d | ||
|
|
3959109281 | ||
|
|
e411520407 | ||
|
|
43e829f219 | ||
|
|
7837232631 | ||
|
|
4ccce027b2 | ||
|
|
fa61ea744d | ||
|
|
5e4579c11d | ||
|
|
329571131d | ||
|
|
a48b4a3ade | ||
|
|
b87fe13afd | ||
|
|
e50e1f253d | ||
|
|
c6206fb351 | ||
|
|
639091fbe9 | ||
|
|
9293016c9d | ||
|
|
2efd19978d | ||
|
|
61659ef299 | ||
|
|
9565c7f6bd | ||
|
|
fbce16e02d | ||
|
|
7010bb4dff | ||
|
|
48d3161a8d | ||
|
|
271b594e74 | ||
|
|
885e62ea82 | ||
|
|
0e52afc651 | ||
|
|
27b5f17401 | ||
|
|
dfe6d6c664 | ||
|
|
9be0b91927 | ||
|
|
e7e83ed4d1 | ||
|
|
c5602a676c | ||
|
|
c34730d9b4 | ||
|
|
fdcacc1ebb | ||
|
|
496ec9421e | ||
|
|
05006cd6e1 | ||
|
|
b90b1ee9cf | ||
|
|
2cef4badb8 | ||
|
|
a119a4da9a | ||
|
|
6eefd2d49a | ||
|
|
4ff2c8c74b | ||
|
|
51bd9c8004 | ||
|
|
d0d836ae74 | ||
|
|
a2d83dd0c8 | ||
|
|
cc107714d7 | ||
|
|
37c9860b79 | ||
|
|
ccb6b0ac9d | ||
|
|
df4efe26bd | ||
|
|
860a78e248 | ||
|
|
a0adcfb148 | ||
|
|
3d5fdd7b37 | ||
|
|
3e6c428c27 | ||
|
|
96fcb13fc0 | ||
|
|
3e812460cf | ||
|
|
98916e8256 | ||
|
|
298b11069f | ||
|
|
30a91138f8 | ||
|
|
c6937ba44a | ||
|
|
ca5b1969a8 | ||
|
|
50ff966445 | ||
|
|
88ec9d30b1 | ||
|
|
60abda56e0 | ||
|
|
23fce0bd84 | ||
|
|
7c88c4765c | ||
|
|
1f77545cf8 | ||
|
|
8e9f3a4d9e |
@ -1,4 +1,5 @@
|
||||
build*/
|
||||
docs/
|
||||
test/
|
||||
|
||||
.cache/
|
||||
|
||||
137
.github/workflows/build.yml
vendored
@ -38,6 +38,10 @@ on:
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
@ -92,6 +96,123 @@ jobs:
|
||||
path: |
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
|
||||
|
||||
ubuntu-latest-cmake-vulkan:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev glslc
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DSD_BUILD_SHARED_LIBS=ON -DSD_VULKAN=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Fetch system info
|
||||
id: system-info
|
||||
run: |
|
||||
echo "CPU_ARCH=`uname -m`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_NAME=`lsb_release -s -i`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_VERSION=`lsb_release -s -r`" >> "$GITHUB_OUTPUT"
|
||||
echo "OS_TYPE=`uname -s`" >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp ggml/LICENSE ./build/bin/ggml.txt
|
||||
cp LICENSE ./build/bin/stable-diffusion.cpp.txt
|
||||
zip -j sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
|
||||
path: |
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}-vulkan.zip
|
||||
|
||||
build-and-push-docker-images:
|
||||
name: Build and push container images
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
id-token: write
|
||||
attestations: write
|
||||
artifact-metadata: write
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
variant: [musa, sycl, vulkan]
|
||||
|
||||
env:
|
||||
REGISTRY: ghcr.io
|
||||
IMAGE_NAME: ${{ github.repository }}
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Log in to the container registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ${{ env.REGISTRY }}
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Extract metadata for Docker
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
||||
|
||||
- name: Free Disk Space (Ubuntu)
|
||||
uses: jlumbroso/free-disk-space@v1.3.1
|
||||
with:
|
||||
# this might remove tools that are actually needed,
|
||||
# if set to "true" but frees about 6 GB
|
||||
tool-cache: false
|
||||
|
||||
- name: Build and push Docker image
|
||||
id: build-push
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
platforms: linux/amd64
|
||||
push: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
file: Dockerfile.${{ matrix.variant }}
|
||||
tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:${{ env.BRANCH_NAME }}-${{ matrix.variant }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
annotations: ${{ steps.meta.outputs.annotations }}
|
||||
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -146,7 +267,7 @@ jobs:
|
||||
sd-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-${{ steps.system-info.outputs.OS_TYPE }}-${{ steps.system-info.outputs.OS_NAME }}-${{ steps.system-info.outputs.OS_VERSION }}-${{ steps.system-info.outputs.CPU_ARCH }}.zip
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-2025
|
||||
runs-on: windows-2022
|
||||
|
||||
env:
|
||||
VULKAN_VERSION: 1.4.328.1
|
||||
@ -163,8 +284,8 @@ jobs:
|
||||
- build: "avx512"
|
||||
defines: "-DGGML_NATIVE=OFF -DGGML_AVX512=ON -DGGML_AVX=ON -DGGML_AVX2=ON -DSD_BUILD_SHARED_LIBS=ON"
|
||||
- build: "cuda12"
|
||||
defines: "-DSD_CUDA=ON -DSD_BUILD_SHARED_LIBS=ON -DCMAKE_CUDA_ARCHITECTURES='61;70;75;80;86;89;90;100;120'"
|
||||
- build: 'vulkan'
|
||||
defines: "-DSD_CUDA=ON -DSD_BUILD_SHARED_LIBS=ON -DCMAKE_CUDA_ARCHITECTURES='61;70;75;80;86;89;90;100;120' -DCMAKE_CUDA_FLAGS='-Xcudafe \"--diag_suppress=177\" -Xcudafe \"--diag_suppress=550\"'"
|
||||
- build: "vulkan"
|
||||
defines: "-DSD_VULKAN=ON -DSD_BUILD_SHARED_LIBS=ON"
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -191,13 +312,17 @@ jobs:
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
|
||||
- name: Activate MSVC environment
|
||||
id: msvc_dev_cmd
|
||||
uses: ilammy/msvc-dev-cmd@v1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. ${{ matrix.defines }}
|
||||
cmake --build . --config Release
|
||||
cmake .. -DCMAKE_CXX_FLAGS='/bigobj' -G Ninja -DCMAKE_C_COMPILER=cl.exe -DCMAKE_CXX_COMPILER=cl.exe -DCMAKE_BUILD_TYPE=Release ${{ matrix.defines }}
|
||||
cmake --build .
|
||||
|
||||
- name: Check AVX512F support
|
||||
id: check_avx512f
|
||||
@ -367,6 +492,8 @@ jobs:
|
||||
|
||||
needs:
|
||||
- ubuntu-latest-cmake
|
||||
- ubuntu-latest-cmake-vulkan
|
||||
- build-and-push-docker-images
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-hip
|
||||
|
||||
@ -8,6 +8,11 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
add_compile_definitions(_SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING)
|
||||
endif()
|
||||
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@ -18,5 +18,6 @@ RUN apt-get update && \
|
||||
apt-get clean
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
@ -19,5 +19,6 @@ RUN mkdir build && cd build && \
|
||||
FROM mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64 as runtime
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
@ -15,5 +15,6 @@ RUN mkdir build && cd build && \
|
||||
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS runtime
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
|
||||
23
Dockerfile.vulkan
Normal file
@ -0,0 +1,23 @@
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends build-essential git cmake libvulkan-dev glslc
|
||||
|
||||
WORKDIR /sd.cpp
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake . -B ./build -DSD_VULKAN=ON
|
||||
RUN cmake --build ./build --config Release --parallel
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install --yes --no-install-recommends libgomp1 libvulkan1 mesa-vulkan-drivers && \
|
||||
apt-get clean
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd-cli /sd-cli
|
||||
COPY --from=build /sd.cpp/build/bin/sd-server /sd-server
|
||||
|
||||
ENTRYPOINT [ "/sd-cli" ]
|
||||
18
README.md
@ -15,6 +15,9 @@ API and command-line option may change frequently.***
|
||||
|
||||
## 🔥Important News
|
||||
|
||||
* **2026/01/18** 🚀 stable-diffusion.cpp now supports **FLUX.2-klein**
|
||||
👉 Details: [PR #1193](https://github.com/leejet/stable-diffusion.cpp/pull/1193)
|
||||
|
||||
* **2025/12/01** 🚀 stable-diffusion.cpp now supports **Z-Image**
|
||||
👉 Details: [PR #1020](https://github.com/leejet/stable-diffusion.cpp/pull/1020)
|
||||
|
||||
@ -43,8 +46,8 @@ API and command-line option may change frequently.***
|
||||
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
|
||||
- [Some SD1.x and SDXL distilled models](./docs/distilled_sd.md)
|
||||
- [SD3/SD3.5](./docs/sd3.md)
|
||||
- [FlUX.1-dev/FlUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev](./docs/flux2.md)
|
||||
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
|
||||
- [Chroma](./docs/chroma.md)
|
||||
- [Chroma1-Radiance](./docs/chroma_radiance.md)
|
||||
- [Qwen Image](./docs/qwen_image.md)
|
||||
@ -52,7 +55,7 @@ API and command-line option may change frequently.***
|
||||
- [Ovis-Image](./docs/ovis_image.md)
|
||||
- Image Edit Models
|
||||
- [FLUX.1-Kontext-dev](./docs/kontext.md)
|
||||
- [Qwen Image Edit/Qwen Image Edit 2509](./docs/qwen_image_edit.md)
|
||||
- [Qwen Image Edit series](./docs/qwen_image_edit.md)
|
||||
- Video Models
|
||||
- [Wan2.1/Wan2.2](./docs/wan.md)
|
||||
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker) support.
|
||||
@ -70,7 +73,7 @@ API and command-line option may change frequently.***
|
||||
- SYCL
|
||||
- Supported weight formats
|
||||
- Pytorch checkpoint (`.ckpt` or `.pth`)
|
||||
- Safetensors (`./safetensors`)
|
||||
- Safetensors (`.safetensors`)
|
||||
- GGUF (`.gguf`)
|
||||
- Supported platforms
|
||||
- Linux
|
||||
@ -127,12 +130,12 @@ If you want to improve performance or reduce VRAM/RAM usage, please refer to [pe
|
||||
|
||||
- [SD1.x/SD2.x/SDXL](./docs/sd.md)
|
||||
- [SD3/SD3.5](./docs/sd3.md)
|
||||
- [FlUX.1-dev/FlUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev](./docs/flux2.md)
|
||||
- [FLUX.1-dev/FLUX.1-schnell](./docs/flux.md)
|
||||
- [FLUX.2-dev/FLUX.2-klein](./docs/flux2.md)
|
||||
- [FLUX.1-Kontext-dev](./docs/kontext.md)
|
||||
- [Chroma](./docs/chroma.md)
|
||||
- [🔥Qwen Image](./docs/qwen_image.md)
|
||||
- [🔥Qwen Image Edit/Qwen Image Edit 2509](./docs/qwen_image_edit.md)
|
||||
- [🔥Qwen Image Edit series](./docs/qwen_image_edit.md)
|
||||
- [🔥Wan2.1/Wan2.2](./docs/wan.md)
|
||||
- [🔥Z-Image](./docs/z_image.md)
|
||||
- [Ovis-Image](./docs/ovis_image.md)
|
||||
@ -143,6 +146,7 @@ If you want to improve performance or reduce VRAM/RAM usage, please refer to [pe
|
||||
- [Using TAESD to faster decoding](./docs/taesd.md)
|
||||
- [Docker](./docs/docker.md)
|
||||
- [Quantization and GGUF](./docs/quantization_and_gguf.md)
|
||||
- [Inference acceleration via caching](./docs/caching.md)
|
||||
|
||||
## Bindings
|
||||
|
||||
|
||||
BIN
assets/flux2/flux2-klein-4b-edit.png
Normal file
|
After Width: | Height: | Size: 510 KiB |
BIN
assets/flux2/flux2-klein-4b.png
Normal file
|
After Width: | Height: | Size: 455 KiB |
BIN
assets/flux2/flux2-klein-9b-edit.png
Normal file
|
After Width: | Height: | Size: 511 KiB |
BIN
assets/flux2/flux2-klein-9b.png
Normal file
|
After Width: | Height: | Size: 491 KiB |
BIN
assets/flux2/flux2-klein-base-4b.png
Normal file
|
After Width: | Height: | Size: 464 KiB |
BIN
assets/flux2/flux2-klein-base-9b.png
Normal file
|
After Width: | Height: | Size: 552 KiB |
BIN
assets/qwen/qwen_image_edit_2511.png
Normal file
|
After Width: | Height: | Size: 450 KiB |
BIN
assets/z_image/base_bf16.png
Normal file
|
After Width: | Height: | Size: 870 KiB |
975
cache_dit.hpp
Normal file
@ -0,0 +1,975 @@
|
||||
#ifndef __CACHE_DIT_HPP__
|
||||
#define __CACHE_DIT_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
|
||||
struct DBCacheConfig {
|
||||
bool enabled = false;
|
||||
int Fn_compute_blocks = 8;
|
||||
int Bn_compute_blocks = 0;
|
||||
float residual_diff_threshold = 0.08f;
|
||||
int max_warmup_steps = 8;
|
||||
int max_cached_steps = -1;
|
||||
int max_continuous_cached_steps = -1;
|
||||
float max_accumulated_residual_diff = -1.0f;
|
||||
std::vector<int> steps_computation_mask;
|
||||
bool scm_policy_dynamic = true;
|
||||
};
|
||||
|
||||
struct TaylorSeerConfig {
|
||||
bool enabled = false;
|
||||
int n_derivatives = 1;
|
||||
int max_warmup_steps = 2;
|
||||
int skip_interval_steps = 1;
|
||||
};
|
||||
|
||||
struct CacheDitConfig {
|
||||
DBCacheConfig dbcache;
|
||||
TaylorSeerConfig taylorseer;
|
||||
int double_Fn_blocks = -1;
|
||||
int double_Bn_blocks = -1;
|
||||
int single_Fn_blocks = -1;
|
||||
int single_Bn_blocks = -1;
|
||||
};
|
||||
|
||||
struct TaylorSeerState {
|
||||
int n_derivatives = 1;
|
||||
int current_step = -1;
|
||||
int last_computed_step = -1;
|
||||
std::vector<std::vector<float>> dY_prev;
|
||||
std::vector<std::vector<float>> dY_current;
|
||||
|
||||
void init(int n_deriv, size_t hidden_size) {
|
||||
n_derivatives = n_deriv;
|
||||
int order = n_derivatives + 1;
|
||||
dY_prev.resize(order);
|
||||
dY_current.resize(order);
|
||||
for (int i = 0; i < order; i++) {
|
||||
dY_prev[i].clear();
|
||||
dY_current[i].clear();
|
||||
}
|
||||
current_step = -1;
|
||||
last_computed_step = -1;
|
||||
}
|
||||
|
||||
void reset() {
|
||||
for (auto& v : dY_prev)
|
||||
v.clear();
|
||||
for (auto& v : dY_current)
|
||||
v.clear();
|
||||
current_step = -1;
|
||||
last_computed_step = -1;
|
||||
}
|
||||
|
||||
bool can_approximate() const {
|
||||
return last_computed_step >= n_derivatives && !dY_prev.empty() && !dY_prev[0].empty();
|
||||
}
|
||||
|
||||
void update_derivatives(const float* Y, size_t size, int step) {
|
||||
int order = n_derivatives + 1;
|
||||
dY_prev = dY_current;
|
||||
dY_current[0].resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
dY_current[0][i] = Y[i];
|
||||
}
|
||||
|
||||
int window = step - last_computed_step;
|
||||
if (window <= 0)
|
||||
window = 1;
|
||||
|
||||
for (int d = 0; d < n_derivatives; d++) {
|
||||
if (!dY_prev[d].empty() && dY_prev[d].size() == size) {
|
||||
dY_current[d + 1].resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
dY_current[d + 1][i] = (dY_current[d][i] - dY_prev[d][i]) / static_cast<float>(window);
|
||||
}
|
||||
} else {
|
||||
dY_current[d + 1].clear();
|
||||
}
|
||||
}
|
||||
|
||||
current_step = step;
|
||||
last_computed_step = step;
|
||||
}
|
||||
|
||||
void approximate(float* output, size_t size, int target_step) const {
|
||||
if (!can_approximate() || dY_prev[0].size() != size) {
|
||||
return;
|
||||
}
|
||||
|
||||
int elapsed = target_step - last_computed_step;
|
||||
if (elapsed <= 0)
|
||||
elapsed = 1;
|
||||
|
||||
std::fill(output, output + size, 0.0f);
|
||||
float factorial = 1.0f;
|
||||
int order = static_cast<int>(dY_prev.size());
|
||||
|
||||
for (int o = 0; o < order; o++) {
|
||||
if (dY_prev[o].empty() || dY_prev[o].size() != size)
|
||||
continue;
|
||||
if (o > 0)
|
||||
factorial *= static_cast<float>(o);
|
||||
float coeff = ::powf(static_cast<float>(elapsed), static_cast<float>(o)) / factorial;
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
output[i] += coeff * dY_prev[o][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct BlockCacheEntry {
|
||||
std::vector<float> residual_img;
|
||||
std::vector<float> residual_txt;
|
||||
std::vector<float> residual;
|
||||
std::vector<float> prev_img;
|
||||
std::vector<float> prev_txt;
|
||||
std::vector<float> prev_output;
|
||||
bool has_prev = false;
|
||||
};
|
||||
|
||||
struct CacheDitState {
|
||||
CacheDitConfig config;
|
||||
bool initialized = false;
|
||||
|
||||
int total_double_blocks = 0;
|
||||
int total_single_blocks = 0;
|
||||
size_t hidden_size = 0;
|
||||
|
||||
int current_step = -1;
|
||||
int total_steps = 0;
|
||||
int warmup_remaining = 0;
|
||||
std::vector<int> cached_steps;
|
||||
int continuous_cached_steps = 0;
|
||||
float accumulated_residual_diff = 0.0f;
|
||||
|
||||
std::vector<BlockCacheEntry> double_block_cache;
|
||||
std::vector<BlockCacheEntry> single_block_cache;
|
||||
|
||||
std::vector<float> Fn_residual_img;
|
||||
std::vector<float> Fn_residual_txt;
|
||||
std::vector<float> prev_Fn_residual_img;
|
||||
std::vector<float> prev_Fn_residual_txt;
|
||||
bool has_prev_Fn_residual = false;
|
||||
|
||||
std::vector<float> Bn_buffer_img;
|
||||
std::vector<float> Bn_buffer_txt;
|
||||
std::vector<float> Bn_buffer;
|
||||
bool has_Bn_buffer = false;
|
||||
|
||||
TaylorSeerState taylor_state;
|
||||
|
||||
bool can_cache_this_step = false;
|
||||
bool is_caching_this_step = false;
|
||||
|
||||
int total_blocks_computed = 0;
|
||||
int total_blocks_cached = 0;
|
||||
|
||||
void init(const CacheDitConfig& cfg, int num_double_blocks, int num_single_blocks, size_t h_size) {
|
||||
config = cfg;
|
||||
total_double_blocks = num_double_blocks;
|
||||
total_single_blocks = num_single_blocks;
|
||||
hidden_size = h_size;
|
||||
|
||||
initialized = cfg.dbcache.enabled || cfg.taylorseer.enabled;
|
||||
|
||||
if (!initialized)
|
||||
return;
|
||||
|
||||
warmup_remaining = cfg.dbcache.max_warmup_steps;
|
||||
double_block_cache.resize(total_double_blocks);
|
||||
single_block_cache.resize(total_single_blocks);
|
||||
|
||||
if (cfg.taylorseer.enabled) {
|
||||
taylor_state.init(cfg.taylorseer.n_derivatives, h_size);
|
||||
}
|
||||
|
||||
reset_runtime();
|
||||
}
|
||||
|
||||
void reset_runtime() {
|
||||
current_step = -1;
|
||||
total_steps = 0;
|
||||
warmup_remaining = config.dbcache.max_warmup_steps;
|
||||
cached_steps.clear();
|
||||
continuous_cached_steps = 0;
|
||||
accumulated_residual_diff = 0.0f;
|
||||
|
||||
for (auto& entry : double_block_cache) {
|
||||
entry.residual_img.clear();
|
||||
entry.residual_txt.clear();
|
||||
entry.prev_img.clear();
|
||||
entry.prev_txt.clear();
|
||||
entry.has_prev = false;
|
||||
}
|
||||
|
||||
for (auto& entry : single_block_cache) {
|
||||
entry.residual.clear();
|
||||
entry.prev_output.clear();
|
||||
entry.has_prev = false;
|
||||
}
|
||||
|
||||
Fn_residual_img.clear();
|
||||
Fn_residual_txt.clear();
|
||||
prev_Fn_residual_img.clear();
|
||||
prev_Fn_residual_txt.clear();
|
||||
has_prev_Fn_residual = false;
|
||||
|
||||
Bn_buffer_img.clear();
|
||||
Bn_buffer_txt.clear();
|
||||
Bn_buffer.clear();
|
||||
has_Bn_buffer = false;
|
||||
|
||||
taylor_state.reset();
|
||||
|
||||
can_cache_this_step = false;
|
||||
is_caching_this_step = false;
|
||||
|
||||
total_blocks_computed = 0;
|
||||
total_blocks_cached = 0;
|
||||
}
|
||||
|
||||
bool enabled() const {
|
||||
return initialized && (config.dbcache.enabled || config.taylorseer.enabled);
|
||||
}
|
||||
|
||||
void begin_step(int step_index, float sigma = 0.0f) {
|
||||
if (!enabled())
|
||||
return;
|
||||
if (step_index == current_step)
|
||||
return;
|
||||
|
||||
current_step = step_index;
|
||||
total_steps++;
|
||||
|
||||
bool in_warmup = warmup_remaining > 0;
|
||||
if (in_warmup) {
|
||||
warmup_remaining--;
|
||||
}
|
||||
|
||||
bool scm_allows_cache = true;
|
||||
if (!config.dbcache.steps_computation_mask.empty()) {
|
||||
if (step_index < static_cast<int>(config.dbcache.steps_computation_mask.size())) {
|
||||
scm_allows_cache = (config.dbcache.steps_computation_mask[step_index] == 0);
|
||||
if (!config.dbcache.scm_policy_dynamic && scm_allows_cache) {
|
||||
can_cache_this_step = true;
|
||||
is_caching_this_step = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool max_cached_ok = (config.dbcache.max_cached_steps < 0) ||
|
||||
(static_cast<int>(cached_steps.size()) < config.dbcache.max_cached_steps);
|
||||
|
||||
bool max_cont_ok = (config.dbcache.max_continuous_cached_steps < 0) ||
|
||||
(continuous_cached_steps < config.dbcache.max_continuous_cached_steps);
|
||||
|
||||
bool accum_ok = (config.dbcache.max_accumulated_residual_diff < 0.0f) ||
|
||||
(accumulated_residual_diff < config.dbcache.max_accumulated_residual_diff);
|
||||
|
||||
can_cache_this_step = !in_warmup && scm_allows_cache && max_cached_ok && max_cont_ok && accum_ok && has_prev_Fn_residual;
|
||||
is_caching_this_step = false;
|
||||
}
|
||||
|
||||
void end_step(bool was_cached) {
|
||||
if (was_cached) {
|
||||
cached_steps.push_back(current_step);
|
||||
continuous_cached_steps++;
|
||||
} else {
|
||||
continuous_cached_steps = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static float calculate_residual_diff(const float* prev, const float* curr, size_t size) {
|
||||
if (size == 0)
|
||||
return 0.0f;
|
||||
|
||||
float sum_diff = 0.0f;
|
||||
float sum_abs = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
sum_diff += std::fabs(prev[i] - curr[i]);
|
||||
sum_abs += std::fabs(prev[i]);
|
||||
}
|
||||
|
||||
return sum_diff / (sum_abs + 1e-6f);
|
||||
}
|
||||
|
||||
static float calculate_residual_diff(const std::vector<float>& prev, const std::vector<float>& curr) {
|
||||
if (prev.size() != curr.size() || prev.empty())
|
||||
return 1.0f;
|
||||
return calculate_residual_diff(prev.data(), curr.data(), prev.size());
|
||||
}
|
||||
|
||||
int get_double_Fn_blocks() const {
|
||||
return (config.double_Fn_blocks >= 0) ? config.double_Fn_blocks : config.dbcache.Fn_compute_blocks;
|
||||
}
|
||||
|
||||
int get_double_Bn_blocks() const {
|
||||
return (config.double_Bn_blocks >= 0) ? config.double_Bn_blocks : config.dbcache.Bn_compute_blocks;
|
||||
}
|
||||
|
||||
int get_single_Fn_blocks() const {
|
||||
return (config.single_Fn_blocks >= 0) ? config.single_Fn_blocks : config.dbcache.Fn_compute_blocks;
|
||||
}
|
||||
|
||||
int get_single_Bn_blocks() const {
|
||||
return (config.single_Bn_blocks >= 0) ? config.single_Bn_blocks : config.dbcache.Bn_compute_blocks;
|
||||
}
|
||||
|
||||
bool is_Fn_double_block(int block_idx) const {
|
||||
return block_idx < get_double_Fn_blocks();
|
||||
}
|
||||
|
||||
bool is_Bn_double_block(int block_idx) const {
|
||||
int Bn = get_double_Bn_blocks();
|
||||
return Bn > 0 && block_idx >= (total_double_blocks - Bn);
|
||||
}
|
||||
|
||||
bool is_Mn_double_block(int block_idx) const {
|
||||
return !is_Fn_double_block(block_idx) && !is_Bn_double_block(block_idx);
|
||||
}
|
||||
|
||||
bool is_Fn_single_block(int block_idx) const {
|
||||
return block_idx < get_single_Fn_blocks();
|
||||
}
|
||||
|
||||
bool is_Bn_single_block(int block_idx) const {
|
||||
int Bn = get_single_Bn_blocks();
|
||||
return Bn > 0 && block_idx >= (total_single_blocks - Bn);
|
||||
}
|
||||
|
||||
bool is_Mn_single_block(int block_idx) const {
|
||||
return !is_Fn_single_block(block_idx) && !is_Bn_single_block(block_idx);
|
||||
}
|
||||
|
||||
void store_Fn_residual(const float* img, const float* txt, size_t img_size, size_t txt_size, const float* input_img, const float* input_txt) {
|
||||
Fn_residual_img.resize(img_size);
|
||||
Fn_residual_txt.resize(txt_size);
|
||||
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
Fn_residual_img[i] = img[i] - input_img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
Fn_residual_txt[i] = txt[i] - input_txt[i];
|
||||
}
|
||||
}
|
||||
|
||||
bool check_cache_decision() {
|
||||
if (!can_cache_this_step) {
|
||||
is_caching_this_step = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!has_prev_Fn_residual || prev_Fn_residual_img.empty()) {
|
||||
is_caching_this_step = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
float diff_img = calculate_residual_diff(prev_Fn_residual_img, Fn_residual_img);
|
||||
float diff_txt = calculate_residual_diff(prev_Fn_residual_txt, Fn_residual_txt);
|
||||
float diff = (diff_img + diff_txt) / 2.0f;
|
||||
|
||||
if (diff < config.dbcache.residual_diff_threshold) {
|
||||
is_caching_this_step = true;
|
||||
accumulated_residual_diff += diff;
|
||||
return true;
|
||||
}
|
||||
|
||||
is_caching_this_step = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
void update_prev_Fn_residual() {
|
||||
prev_Fn_residual_img = Fn_residual_img;
|
||||
prev_Fn_residual_txt = Fn_residual_txt;
|
||||
has_prev_Fn_residual = !prev_Fn_residual_img.empty();
|
||||
}
|
||||
|
||||
void store_double_block_residual(int block_idx, const float* img, const float* txt, size_t img_size, size_t txt_size, const float* prev_img, const float* prev_txt) {
|
||||
if (block_idx < 0 || block_idx >= static_cast<int>(double_block_cache.size()))
|
||||
return;
|
||||
|
||||
BlockCacheEntry& entry = double_block_cache[block_idx];
|
||||
|
||||
entry.residual_img.resize(img_size);
|
||||
entry.residual_txt.resize(txt_size);
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
entry.residual_img[i] = img[i] - prev_img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
entry.residual_txt[i] = txt[i] - prev_txt[i];
|
||||
}
|
||||
|
||||
entry.prev_img.resize(img_size);
|
||||
entry.prev_txt.resize(txt_size);
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
entry.prev_img[i] = img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
entry.prev_txt[i] = txt[i];
|
||||
}
|
||||
entry.has_prev = true;
|
||||
}
|
||||
|
||||
void apply_double_block_cache(int block_idx, float* img, float* txt, size_t img_size, size_t txt_size) {
|
||||
if (block_idx < 0 || block_idx >= static_cast<int>(double_block_cache.size()))
|
||||
return;
|
||||
|
||||
const BlockCacheEntry& entry = double_block_cache[block_idx];
|
||||
if (entry.residual_img.size() != img_size || entry.residual_txt.size() != txt_size)
|
||||
return;
|
||||
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
img[i] += entry.residual_img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
txt[i] += entry.residual_txt[i];
|
||||
}
|
||||
|
||||
total_blocks_cached++;
|
||||
}
|
||||
|
||||
void store_single_block_residual(int block_idx, const float* output, size_t size, const float* input) {
|
||||
if (block_idx < 0 || block_idx >= static_cast<int>(single_block_cache.size()))
|
||||
return;
|
||||
|
||||
BlockCacheEntry& entry = single_block_cache[block_idx];
|
||||
|
||||
entry.residual.resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
entry.residual[i] = output[i] - input[i];
|
||||
}
|
||||
|
||||
entry.prev_output.resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
entry.prev_output[i] = output[i];
|
||||
}
|
||||
entry.has_prev = true;
|
||||
}
|
||||
|
||||
void apply_single_block_cache(int block_idx, float* output, size_t size) {
|
||||
if (block_idx < 0 || block_idx >= static_cast<int>(single_block_cache.size()))
|
||||
return;
|
||||
|
||||
const BlockCacheEntry& entry = single_block_cache[block_idx];
|
||||
if (entry.residual.size() != size)
|
||||
return;
|
||||
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
output[i] += entry.residual[i];
|
||||
}
|
||||
|
||||
total_blocks_cached++;
|
||||
}
|
||||
|
||||
void store_Bn_buffer(const float* img, const float* txt, size_t img_size, size_t txt_size, const float* Bn_start_img, const float* Bn_start_txt) {
|
||||
Bn_buffer_img.resize(img_size);
|
||||
Bn_buffer_txt.resize(txt_size);
|
||||
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
Bn_buffer_img[i] = img[i] - Bn_start_img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
Bn_buffer_txt[i] = txt[i] - Bn_start_txt[i];
|
||||
}
|
||||
has_Bn_buffer = true;
|
||||
}
|
||||
|
||||
void apply_Bn_buffer(float* img, float* txt, size_t img_size, size_t txt_size) {
|
||||
if (!has_Bn_buffer)
|
||||
return;
|
||||
if (Bn_buffer_img.size() != img_size || Bn_buffer_txt.size() != txt_size)
|
||||
return;
|
||||
|
||||
for (size_t i = 0; i < img_size; i++) {
|
||||
img[i] += Bn_buffer_img[i];
|
||||
}
|
||||
for (size_t i = 0; i < txt_size; i++) {
|
||||
txt[i] += Bn_buffer_txt[i];
|
||||
}
|
||||
}
|
||||
|
||||
void taylor_update(const float* hidden_state, size_t size) {
|
||||
if (!config.taylorseer.enabled)
|
||||
return;
|
||||
taylor_state.update_derivatives(hidden_state, size, current_step);
|
||||
}
|
||||
|
||||
bool taylor_can_approximate() const {
|
||||
return config.taylorseer.enabled && taylor_state.can_approximate();
|
||||
}
|
||||
|
||||
void taylor_approximate(float* output, size_t size) {
|
||||
if (!config.taylorseer.enabled)
|
||||
return;
|
||||
taylor_state.approximate(output, size, current_step);
|
||||
}
|
||||
|
||||
bool should_use_taylor_this_step() const {
|
||||
if (!config.taylorseer.enabled)
|
||||
return false;
|
||||
if (current_step < config.taylorseer.max_warmup_steps)
|
||||
return false;
|
||||
|
||||
int interval = config.taylorseer.skip_interval_steps;
|
||||
if (interval <= 0)
|
||||
interval = 1;
|
||||
|
||||
return (current_step % (interval + 1)) != 0;
|
||||
}
|
||||
|
||||
void log_metrics() const {
|
||||
if (!enabled())
|
||||
return;
|
||||
|
||||
int total_blocks = total_blocks_computed + total_blocks_cached;
|
||||
float cache_ratio = (total_blocks > 0) ? (static_cast<float>(total_blocks_cached) / total_blocks * 100.0f) : 0.0f;
|
||||
|
||||
float step_cache_ratio = (total_steps > 0) ? (static_cast<float>(cached_steps.size()) / total_steps * 100.0f) : 0.0f;
|
||||
|
||||
LOG_INFO("CacheDIT: steps_cached=%zu/%d (%.1f%%), blocks_cached=%d/%d (%.1f%%), accum_diff=%.4f",
|
||||
cached_steps.size(), total_steps, step_cache_ratio,
|
||||
total_blocks_cached, total_blocks, cache_ratio,
|
||||
accumulated_residual_diff);
|
||||
}
|
||||
|
||||
std::string get_summary() const {
|
||||
char buf[256];
|
||||
snprintf(buf, sizeof(buf),
|
||||
"CacheDIT[thresh=%.2f]: cached %zu/%d steps, %d/%d blocks",
|
||||
config.dbcache.residual_diff_threshold,
|
||||
cached_steps.size(), total_steps,
|
||||
total_blocks_cached, total_blocks_computed + total_blocks_cached);
|
||||
return std::string(buf);
|
||||
}
|
||||
};
|
||||
|
||||
inline std::vector<int> parse_scm_mask(const std::string& mask_str) {
|
||||
std::vector<int> mask;
|
||||
if (mask_str.empty())
|
||||
return mask;
|
||||
|
||||
size_t pos = 0;
|
||||
size_t start = 0;
|
||||
while ((pos = mask_str.find(',', start)) != std::string::npos) {
|
||||
std::string token = mask_str.substr(start, pos - start);
|
||||
mask.push_back(std::stoi(token));
|
||||
start = pos + 1;
|
||||
}
|
||||
if (start < mask_str.length()) {
|
||||
mask.push_back(std::stoi(mask_str.substr(start)));
|
||||
}
|
||||
|
||||
return mask;
|
||||
}
|
||||
|
||||
inline std::vector<int> generate_scm_mask(
|
||||
const std::vector<int>& compute_bins,
|
||||
const std::vector<int>& cache_bins,
|
||||
int total_steps) {
|
||||
std::vector<int> mask;
|
||||
size_t c_idx = 0, cache_idx = 0;
|
||||
|
||||
while (static_cast<int>(mask.size()) < total_steps) {
|
||||
if (c_idx < compute_bins.size()) {
|
||||
for (int i = 0; i < compute_bins[c_idx] && static_cast<int>(mask.size()) < total_steps; i++) {
|
||||
mask.push_back(1);
|
||||
}
|
||||
c_idx++;
|
||||
}
|
||||
if (cache_idx < cache_bins.size()) {
|
||||
for (int i = 0; i < cache_bins[cache_idx] && static_cast<int>(mask.size()) < total_steps; i++) {
|
||||
mask.push_back(0);
|
||||
}
|
||||
cache_idx++;
|
||||
}
|
||||
if (c_idx >= compute_bins.size() && cache_idx >= cache_bins.size())
|
||||
break;
|
||||
}
|
||||
|
||||
if (!mask.empty()) {
|
||||
mask.back() = 1;
|
||||
}
|
||||
|
||||
return mask;
|
||||
}
|
||||
|
||||
inline std::vector<int> get_scm_preset(const std::string& preset, int total_steps) {
|
||||
struct Preset {
|
||||
std::vector<int> compute_bins;
|
||||
std::vector<int> cache_bins;
|
||||
};
|
||||
|
||||
Preset slow = {{8, 3, 3, 2, 1, 1}, {1, 2, 2, 2, 3}};
|
||||
Preset medium = {{6, 2, 2, 2, 2, 1}, {1, 3, 3, 3, 3}};
|
||||
Preset fast = {{6, 1, 1, 1, 1, 1}, {1, 3, 4, 5, 4}};
|
||||
Preset ultra = {{4, 1, 1, 1, 1}, {2, 5, 6, 7}};
|
||||
|
||||
Preset* p = nullptr;
|
||||
if (preset == "slow" || preset == "s" || preset == "S")
|
||||
p = &slow;
|
||||
else if (preset == "medium" || preset == "m" || preset == "M")
|
||||
p = &medium;
|
||||
else if (preset == "fast" || preset == "f" || preset == "F")
|
||||
p = &fast;
|
||||
else if (preset == "ultra" || preset == "u" || preset == "U")
|
||||
p = &ultra;
|
||||
else
|
||||
return {};
|
||||
|
||||
if (total_steps != 28 && total_steps > 0) {
|
||||
float scale = static_cast<float>(total_steps) / 28.0f;
|
||||
std::vector<int> scaled_compute, scaled_cache;
|
||||
|
||||
for (int v : p->compute_bins) {
|
||||
scaled_compute.push_back(std::max(1, static_cast<int>(v * scale + 0.5f)));
|
||||
}
|
||||
for (int v : p->cache_bins) {
|
||||
scaled_cache.push_back(std::max(1, static_cast<int>(v * scale + 0.5f)));
|
||||
}
|
||||
|
||||
return generate_scm_mask(scaled_compute, scaled_cache, total_steps);
|
||||
}
|
||||
|
||||
return generate_scm_mask(p->compute_bins, p->cache_bins, total_steps);
|
||||
}
|
||||
|
||||
inline float get_preset_threshold(const std::string& preset) {
|
||||
if (preset == "slow" || preset == "s" || preset == "S")
|
||||
return 0.20f;
|
||||
if (preset == "medium" || preset == "m" || preset == "M")
|
||||
return 0.25f;
|
||||
if (preset == "fast" || preset == "f" || preset == "F")
|
||||
return 0.30f;
|
||||
if (preset == "ultra" || preset == "u" || preset == "U")
|
||||
return 0.34f;
|
||||
return 0.08f;
|
||||
}
|
||||
|
||||
inline int get_preset_warmup(const std::string& preset) {
|
||||
if (preset == "slow" || preset == "s" || preset == "S")
|
||||
return 8;
|
||||
if (preset == "medium" || preset == "m" || preset == "M")
|
||||
return 6;
|
||||
if (preset == "fast" || preset == "f" || preset == "F")
|
||||
return 6;
|
||||
if (preset == "ultra" || preset == "u" || preset == "U")
|
||||
return 4;
|
||||
return 8;
|
||||
}
|
||||
|
||||
inline int get_preset_Fn(const std::string& preset) {
|
||||
if (preset == "slow" || preset == "s" || preset == "S")
|
||||
return 8;
|
||||
if (preset == "medium" || preset == "m" || preset == "M")
|
||||
return 8;
|
||||
if (preset == "fast" || preset == "f" || preset == "F")
|
||||
return 6;
|
||||
if (preset == "ultra" || preset == "u" || preset == "U")
|
||||
return 4;
|
||||
return 8;
|
||||
}
|
||||
|
||||
inline int get_preset_Bn(const std::string& preset) {
|
||||
(void)preset;
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline void parse_dbcache_options(const std::string& opts, DBCacheConfig& cfg) {
|
||||
if (opts.empty())
|
||||
return;
|
||||
|
||||
int Fn = 8, Bn = 0, warmup = 8, max_cached = -1, max_cont = -1;
|
||||
float thresh = 0.08f;
|
||||
|
||||
sscanf(opts.c_str(), "%d,%d,%f,%d,%d,%d",
|
||||
&Fn, &Bn, &thresh, &warmup, &max_cached, &max_cont);
|
||||
|
||||
cfg.Fn_compute_blocks = Fn;
|
||||
cfg.Bn_compute_blocks = Bn;
|
||||
cfg.residual_diff_threshold = thresh;
|
||||
cfg.max_warmup_steps = warmup;
|
||||
cfg.max_cached_steps = max_cached;
|
||||
cfg.max_continuous_cached_steps = max_cont;
|
||||
}
|
||||
|
||||
inline void parse_taylorseer_options(const std::string& opts, TaylorSeerConfig& cfg) {
|
||||
if (opts.empty())
|
||||
return;
|
||||
|
||||
int n_deriv = 1, warmup = 2, interval = 1;
|
||||
sscanf(opts.c_str(), "%d,%d,%d", &n_deriv, &warmup, &interval);
|
||||
|
||||
cfg.n_derivatives = n_deriv;
|
||||
cfg.max_warmup_steps = warmup;
|
||||
cfg.skip_interval_steps = interval;
|
||||
}
|
||||
|
||||
struct CacheDitConditionState {
|
||||
DBCacheConfig config;
|
||||
TaylorSeerConfig taylor_config;
|
||||
bool initialized = false;
|
||||
|
||||
int current_step_index = -1;
|
||||
bool step_active = false;
|
||||
bool skip_current_step = false;
|
||||
bool initial_step = true;
|
||||
int warmup_remaining = 0;
|
||||
std::vector<int> cached_steps;
|
||||
int continuous_cached_steps = 0;
|
||||
float accumulated_residual_diff = 0.0f;
|
||||
int total_steps_skipped = 0;
|
||||
|
||||
const void* anchor_condition = nullptr;
|
||||
|
||||
struct CacheEntry {
|
||||
std::vector<float> diff;
|
||||
std::vector<float> prev_input;
|
||||
std::vector<float> prev_output;
|
||||
bool has_prev = false;
|
||||
};
|
||||
std::unordered_map<const void*, CacheEntry> cache_diffs;
|
||||
|
||||
TaylorSeerState taylor_state;
|
||||
|
||||
float start_sigma = std::numeric_limits<float>::max();
|
||||
float end_sigma = 0.0f;
|
||||
|
||||
void reset_runtime() {
|
||||
current_step_index = -1;
|
||||
step_active = false;
|
||||
skip_current_step = false;
|
||||
initial_step = true;
|
||||
warmup_remaining = config.max_warmup_steps;
|
||||
cached_steps.clear();
|
||||
continuous_cached_steps = 0;
|
||||
accumulated_residual_diff = 0.0f;
|
||||
total_steps_skipped = 0;
|
||||
anchor_condition = nullptr;
|
||||
cache_diffs.clear();
|
||||
taylor_state.reset();
|
||||
}
|
||||
|
||||
void init(const DBCacheConfig& dbcfg, const TaylorSeerConfig& tcfg) {
|
||||
config = dbcfg;
|
||||
taylor_config = tcfg;
|
||||
initialized = dbcfg.enabled || tcfg.enabled;
|
||||
reset_runtime();
|
||||
|
||||
if (taylor_config.enabled) {
|
||||
taylor_state.init(taylor_config.n_derivatives, 0);
|
||||
}
|
||||
}
|
||||
|
||||
void set_sigmas(const std::vector<float>& sigmas) {
|
||||
if (!initialized || sigmas.size() < 2)
|
||||
return;
|
||||
|
||||
float start_percent = 0.15f;
|
||||
float end_percent = 0.95f;
|
||||
|
||||
size_t n_steps = sigmas.size() - 1;
|
||||
size_t start_step = static_cast<size_t>(start_percent * n_steps);
|
||||
size_t end_step = static_cast<size_t>(end_percent * n_steps);
|
||||
|
||||
if (start_step >= n_steps)
|
||||
start_step = n_steps - 1;
|
||||
if (end_step >= n_steps)
|
||||
end_step = n_steps - 1;
|
||||
|
||||
start_sigma = sigmas[start_step];
|
||||
end_sigma = sigmas[end_step];
|
||||
|
||||
if (start_sigma < end_sigma) {
|
||||
std::swap(start_sigma, end_sigma);
|
||||
}
|
||||
}
|
||||
|
||||
bool enabled() const {
|
||||
return initialized && (config.enabled || taylor_config.enabled);
|
||||
}
|
||||
|
||||
void begin_step(int step_index, float sigma) {
|
||||
if (!enabled())
|
||||
return;
|
||||
if (step_index == current_step_index)
|
||||
return;
|
||||
|
||||
current_step_index = step_index;
|
||||
skip_current_step = false;
|
||||
step_active = false;
|
||||
|
||||
if (sigma > start_sigma)
|
||||
return;
|
||||
if (!(sigma > end_sigma))
|
||||
return;
|
||||
|
||||
step_active = true;
|
||||
|
||||
if (warmup_remaining > 0) {
|
||||
warmup_remaining--;
|
||||
return;
|
||||
}
|
||||
|
||||
if (!config.steps_computation_mask.empty()) {
|
||||
if (step_index < static_cast<int>(config.steps_computation_mask.size())) {
|
||||
if (config.steps_computation_mask[step_index] == 1) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (config.max_cached_steps >= 0 &&
|
||||
static_cast<int>(cached_steps.size()) >= config.max_cached_steps) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (config.max_continuous_cached_steps >= 0 &&
|
||||
continuous_cached_steps >= config.max_continuous_cached_steps) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool step_is_active() const {
|
||||
return enabled() && step_active;
|
||||
}
|
||||
|
||||
bool is_step_skipped() const {
|
||||
return enabled() && step_active && skip_current_step;
|
||||
}
|
||||
|
||||
bool has_cache(const void* cond) const {
|
||||
auto it = cache_diffs.find(cond);
|
||||
return it != cache_diffs.end() && !it->second.diff.empty();
|
||||
}
|
||||
|
||||
void update_cache(const void* cond, const float* input, const float* output, size_t size) {
|
||||
CacheEntry& entry = cache_diffs[cond];
|
||||
entry.diff.resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
entry.diff[i] = output[i] - input[i];
|
||||
}
|
||||
|
||||
entry.prev_input.resize(size);
|
||||
entry.prev_output.resize(size);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
entry.prev_input[i] = input[i];
|
||||
entry.prev_output[i] = output[i];
|
||||
}
|
||||
entry.has_prev = true;
|
||||
}
|
||||
|
||||
void apply_cache(const void* cond, const float* input, float* output, size_t size) {
|
||||
auto it = cache_diffs.find(cond);
|
||||
if (it == cache_diffs.end() || it->second.diff.empty())
|
||||
return;
|
||||
if (it->second.diff.size() != size)
|
||||
return;
|
||||
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
output[i] = input[i] + it->second.diff[i];
|
||||
}
|
||||
}
|
||||
|
||||
bool before_condition(const void* cond, struct ggml_tensor* input, struct ggml_tensor* output, float sigma, int step_index) {
|
||||
if (!enabled() || step_index < 0)
|
||||
return false;
|
||||
|
||||
if (step_index != current_step_index) {
|
||||
begin_step(step_index, sigma);
|
||||
}
|
||||
|
||||
if (!step_active)
|
||||
return false;
|
||||
|
||||
if (initial_step) {
|
||||
anchor_condition = cond;
|
||||
initial_step = false;
|
||||
}
|
||||
|
||||
bool is_anchor = (cond == anchor_condition);
|
||||
|
||||
if (skip_current_step) {
|
||||
if (has_cache(cond)) {
|
||||
apply_cache(cond, (float*)input->data, (float*)output->data,
|
||||
static_cast<size_t>(ggml_nelements(output)));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!is_anchor)
|
||||
return false;
|
||||
|
||||
auto it = cache_diffs.find(cond);
|
||||
if (it == cache_diffs.end() || !it->second.has_prev)
|
||||
return false;
|
||||
|
||||
size_t ne = static_cast<size_t>(ggml_nelements(input));
|
||||
if (it->second.prev_input.size() != ne)
|
||||
return false;
|
||||
|
||||
float* input_data = (float*)input->data;
|
||||
float diff = CacheDitState::calculate_residual_diff(
|
||||
it->second.prev_input.data(), input_data, ne);
|
||||
|
||||
float effective_threshold = config.residual_diff_threshold;
|
||||
if (config.Fn_compute_blocks > 0) {
|
||||
float fn_confidence = 1.0f + 0.02f * (config.Fn_compute_blocks - 8);
|
||||
fn_confidence = std::max(0.5f, std::min(2.0f, fn_confidence));
|
||||
effective_threshold *= fn_confidence;
|
||||
}
|
||||
if (config.Bn_compute_blocks > 0) {
|
||||
float bn_quality = 1.0f - 0.03f * config.Bn_compute_blocks;
|
||||
bn_quality = std::max(0.5f, std::min(1.0f, bn_quality));
|
||||
effective_threshold *= bn_quality;
|
||||
}
|
||||
|
||||
if (diff < effective_threshold) {
|
||||
skip_current_step = true;
|
||||
total_steps_skipped++;
|
||||
cached_steps.push_back(current_step_index);
|
||||
continuous_cached_steps++;
|
||||
accumulated_residual_diff += diff;
|
||||
apply_cache(cond, input_data, (float*)output->data, ne);
|
||||
return true;
|
||||
}
|
||||
|
||||
continuous_cached_steps = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
void after_condition(const void* cond, struct ggml_tensor* input, struct ggml_tensor* output) {
|
||||
if (!step_is_active())
|
||||
return;
|
||||
|
||||
size_t ne = static_cast<size_t>(ggml_nelements(output));
|
||||
update_cache(cond, (float*)input->data, (float*)output->data, ne);
|
||||
|
||||
if (cond == anchor_condition && taylor_config.enabled) {
|
||||
taylor_state.update_derivatives((float*)output->data, ne, current_step_index);
|
||||
}
|
||||
}
|
||||
|
||||
void log_metrics() const {
|
||||
if (!enabled())
|
||||
return;
|
||||
|
||||
LOG_INFO("CacheDIT: steps_skipped=%d/%d (%.1f%%), accum_residual_diff=%.4f",
|
||||
total_steps_skipped,
|
||||
current_step_index + 1,
|
||||
(current_step_index > 0) ? (100.0f * total_steps_skipped / (current_step_index + 1)) : 0.0f,
|
||||
accumulated_residual_diff);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
67
clip.hpp
@ -296,7 +296,7 @@ public:
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
if (max_length > 0 && padding) {
|
||||
size_t n = std::ceil(tokens.size() * 1.0 / (max_length - 2));
|
||||
size_t n = static_cast<size_t>(std::ceil(tokens.size() * 1.0 / (max_length - 2)));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
@ -479,9 +479,9 @@ public:
|
||||
|
||||
x = fc1->forward(ctx, x);
|
||||
if (use_gelu) {
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
} else {
|
||||
x = ggml_gelu_quick_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu_quick(ctx->ggml_ctx, x, true);
|
||||
}
|
||||
x = fc2->forward(ctx, x);
|
||||
return x;
|
||||
@ -510,7 +510,7 @@ public:
|
||||
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, bool mask = true) {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, struct ggml_tensor* mask = nullptr) {
|
||||
// x: [N, n_token, d_model]
|
||||
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
|
||||
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
|
||||
@ -525,10 +525,10 @@ public:
|
||||
|
||||
struct CLIPEncoder : public GGMLBlock {
|
||||
protected:
|
||||
int64_t n_layer;
|
||||
int n_layer;
|
||||
|
||||
public:
|
||||
CLIPEncoder(int64_t n_layer,
|
||||
CLIPEncoder(int n_layer,
|
||||
int64_t d_model,
|
||||
int64_t n_head,
|
||||
int64_t intermediate_size,
|
||||
@ -542,8 +542,8 @@ public:
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int clip_skip = -1,
|
||||
bool mask = true) {
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
int clip_skip = -1) {
|
||||
// x: [N, n_token, d_model]
|
||||
int layer_idx = n_layer - 1;
|
||||
// LOG_DEBUG("clip_skip %d", clip_skip);
|
||||
@ -623,10 +623,10 @@ public:
|
||||
class CLIPVisionEmbeddings : public GGMLBlock {
|
||||
protected:
|
||||
int64_t embed_dim;
|
||||
int64_t num_channels;
|
||||
int64_t patch_size;
|
||||
int64_t image_size;
|
||||
int64_t num_patches;
|
||||
int num_channels;
|
||||
int patch_size;
|
||||
int image_size;
|
||||
int num_patches;
|
||||
int64_t num_positions;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
@ -641,9 +641,9 @@ protected:
|
||||
|
||||
public:
|
||||
CLIPVisionEmbeddings(int64_t embed_dim,
|
||||
int64_t num_channels = 3,
|
||||
int64_t patch_size = 14,
|
||||
int64_t image_size = 224)
|
||||
int num_channels = 3,
|
||||
int patch_size = 14,
|
||||
int image_size = 224)
|
||||
: embed_dim(embed_dim),
|
||||
num_channels(num_channels),
|
||||
patch_size(patch_size),
|
||||
@ -741,16 +741,17 @@ public:
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* tkn_embeddings,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
// input_ids: [N, n_token]
|
||||
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
|
||||
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
|
||||
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
|
||||
|
||||
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
|
||||
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true);
|
||||
x = encoder->forward(ctx, x, mask, return_pooled ? -1 : clip_skip);
|
||||
if (return_pooled || with_final_ln) {
|
||||
x = final_layer_norm->forward(ctx, x);
|
||||
}
|
||||
@ -814,10 +815,11 @@ public:
|
||||
|
||||
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
|
||||
x = pre_layernorm->forward(ctx, x);
|
||||
x = encoder->forward(ctx, x, clip_skip, false);
|
||||
// print_ggml_tensor(x, true, "ClipVisionModel x: ");
|
||||
x = encoder->forward(ctx, x, nullptr, clip_skip);
|
||||
|
||||
auto last_hidden_state = x;
|
||||
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
|
||||
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
if (return_pooled) {
|
||||
@ -905,6 +907,8 @@ public:
|
||||
struct CLIPTextModelRunner : public GGMLRunner {
|
||||
CLIPTextModel model;
|
||||
|
||||
std::vector<float> attention_mask_vec;
|
||||
|
||||
CLIPTextModelRunner(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map,
|
||||
@ -938,6 +942,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* embeddings,
|
||||
struct ggml_tensor* mask,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
@ -948,7 +953,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
input_ids = ggml_reshape_2d(ctx->ggml_ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
|
||||
}
|
||||
|
||||
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
return model.forward(ctx, input_ids, embeddings, mask, max_token_idx, return_pooled, clip_skip);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||
@ -975,9 +980,23 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
|
||||
}
|
||||
|
||||
int n_tokens = static_cast<int>(input_ids->ne[0]);
|
||||
attention_mask_vec.resize(n_tokens * n_tokens);
|
||||
for (int i0 = 0; i0 < n_tokens; i0++) {
|
||||
for (int i1 = 0; i1 < n_tokens; i1++) {
|
||||
float value = 0.f;
|
||||
if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
attention_mask_vec[i1 * n_tokens + i0] = value;
|
||||
}
|
||||
}
|
||||
auto attention_mask = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
set_backend_tensor_data(attention_mask, attention_mask_vec.data());
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, embeddings, attention_mask, max_token_idx, return_pooled, clip_skip);
|
||||
|
||||
ggml_build_forward_expand(gf, hidden_states);
|
||||
|
||||
|
||||
20
common.hpp
@ -28,7 +28,7 @@ public:
|
||||
if (vae_downsample) {
|
||||
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["conv"]);
|
||||
|
||||
x = ggml_pad(ctx->ggml_ctx, x, 1, 1, 0, 0);
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, 1, 1, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
x = conv->forward(ctx, x);
|
||||
} else {
|
||||
auto conv = std::dynamic_pointer_cast<Conv2d>(blocks["op"]);
|
||||
@ -80,7 +80,7 @@ protected:
|
||||
std::pair<int, int> padding) {
|
||||
GGML_ASSERT(dims == 2 || dims == 3);
|
||||
if (dims == 3) {
|
||||
return std::shared_ptr<GGMLBlock>(new Conv3dnx1x1(in_channels, out_channels, kernel_size.first, 1, padding.first));
|
||||
return std::shared_ptr<GGMLBlock>(new Conv3d(in_channels, out_channels, {kernel_size.first, 1, 1}, {1, 1, 1}, {padding.first, 0, 0}));
|
||||
} else {
|
||||
return std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, out_channels, kernel_size, {1, 1}, padding));
|
||||
}
|
||||
@ -200,7 +200,7 @@ public:
|
||||
|
||||
gate = ggml_cont(ctx->ggml_ctx, gate);
|
||||
|
||||
gate = ggml_gelu_inplace(ctx->ggml_ctx, gate);
|
||||
gate = ggml_ext_gelu(ctx->ggml_ctx, gate, true);
|
||||
|
||||
x = ggml_mul(ctx->ggml_ctx, x, gate); // [ne3, ne2, ne1, dim_out]
|
||||
|
||||
@ -220,7 +220,7 @@ public:
|
||||
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
||||
|
||||
x = proj->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
@ -317,7 +317,7 @@ public:
|
||||
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
|
||||
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, inner_dim]
|
||||
|
||||
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
|
||||
return x;
|
||||
@ -536,17 +536,17 @@ public:
|
||||
// image_only_indicator is always tensor([0.])
|
||||
float alpha = get_alpha();
|
||||
auto x = ggml_add(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, x_spatial, alpha),
|
||||
ggml_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_spatial, alpha),
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_temporal, 1.0f - alpha));
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
class VideoResBlock : public ResBlock {
|
||||
public:
|
||||
VideoResBlock(int channels,
|
||||
int emb_channels,
|
||||
int out_channels,
|
||||
VideoResBlock(int64_t channels,
|
||||
int64_t emb_channels,
|
||||
int64_t out_channels,
|
||||
std::pair<int, int> kernel_size = {3, 3},
|
||||
int64_t video_kernel_size = 3,
|
||||
int dims = 2) // always 2
|
||||
|
||||
112
conditioner.hpp
@ -34,6 +34,7 @@ struct Conditioner {
|
||||
virtual void free_params_buffer() = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
|
||||
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
@ -115,6 +116,13 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
text_model->set_flash_attention_enabled(enabled);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
text_model2->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
text_model->set_weight_adapter(adapter);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
@ -303,11 +311,11 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
int class_token = clean_input_ids[class_token_index[0]];
|
||||
class_idx = tokens_acc + class_token_index[0];
|
||||
std::vector<int> clean_input_ids_tmp;
|
||||
for (uint32_t i = 0; i < class_token_index[0]; i++)
|
||||
for (int i = 0; i < class_token_index[0]; i++)
|
||||
clean_input_ids_tmp.push_back(clean_input_ids[i]);
|
||||
for (uint32_t i = 0; i < (pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs); i++)
|
||||
for (int i = 0; i < (pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs); i++)
|
||||
clean_input_ids_tmp.push_back(class_token);
|
||||
for (uint32_t i = class_token_index[0] + 1; i < clean_input_ids.size(); i++)
|
||||
for (int i = class_token_index[0] + 1; i < clean_input_ids.size(); i++)
|
||||
clean_input_ids_tmp.push_back(clean_input_ids[i]);
|
||||
clean_input_ids.clear();
|
||||
clean_input_ids = clean_input_ids_tmp;
|
||||
@ -322,7 +330,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
|
||||
tokenizer.pad_tokens(tokens, weights, max_length, padding);
|
||||
int offset = pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs;
|
||||
for (uint32_t i = 0; i < tokens.size(); i++) {
|
||||
for (int i = 0; i < tokens.size(); i++) {
|
||||
// if (class_idx + 1 <= i && i < class_idx + 1 + 2*num_input_imgs) // photomaker V2 has num_tokens(=2)*num_input_imgs
|
||||
if (class_idx + 1 <= i && i < class_idx + 1 + offset) // photomaker V2 has num_tokens(=2)*num_input_imgs
|
||||
// hardcode for now
|
||||
@ -783,6 +791,18 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
@ -1191,6 +1211,15 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
@ -1440,6 +1469,12 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
if (t5) {
|
||||
t5->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (t5) {
|
||||
t5->set_weight_adapter(adapter);
|
||||
@ -1584,7 +1619,7 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
|
||||
modify_mask_to_attend_padding(t5_attn_mask, ggml_nelements(t5_attn_mask), mask_pad);
|
||||
modify_mask_to_attend_padding(t5_attn_mask, static_cast<int>(ggml_nelements(t5_attn_mask)), mask_pad);
|
||||
|
||||
return {hidden_states, t5_attn_mask, nullptr};
|
||||
}
|
||||
@ -1614,9 +1649,9 @@ struct LLMEmbedder : public Conditioner {
|
||||
bool enable_vision = false)
|
||||
: version(version) {
|
||||
LLM::LLMArch arch = LLM::LLMArch::QWEN2_5_VL;
|
||||
if (sd_version_is_flux2(version)) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
arch = LLM::LLMArch::MISTRAL_SMALL_3_2;
|
||||
} else if (sd_version_is_z_image(version) || version == VERSION_OVIS_IMAGE) {
|
||||
} else if (sd_version_is_z_image(version) || version == VERSION_OVIS_IMAGE || version == VERSION_FLUX2_KLEIN) {
|
||||
arch = LLM::LLMArch::QWEN3;
|
||||
}
|
||||
if (arch == LLM::LLMArch::MISTRAL_SMALL_3_2) {
|
||||
@ -1650,6 +1685,10 @@ struct LLMEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_flash_attention_enabled(bool enabled) override {
|
||||
llm->set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (llm) {
|
||||
llm->set_weight_adapter(adapter);
|
||||
@ -1708,6 +1747,9 @@ struct LLMEmbedder : public Conditioner {
|
||||
int prompt_template_encode_start_idx = 34;
|
||||
int max_length = 0;
|
||||
std::set<int> out_layers;
|
||||
std::vector<int> tokens;
|
||||
std::vector<float> weights;
|
||||
std::vector<float> mask;
|
||||
if (llm->enable_vision && conditioner_params.ref_images.size() > 0) {
|
||||
LOG_INFO("QwenImageEditPlusPipeline");
|
||||
prompt_template_encode_start_idx = 64;
|
||||
@ -1723,8 +1765,8 @@ struct LLMEmbedder : public Conditioner {
|
||||
double factor = llm->params.vision.patch_size * llm->params.vision.spatial_merge_size;
|
||||
int height = image.height;
|
||||
int width = image.width;
|
||||
int h_bar = static_cast<int>(std::round(height / factor)) * factor;
|
||||
int w_bar = static_cast<int>(std::round(width / factor)) * factor;
|
||||
int h_bar = static_cast<int>(std::round(height / factor) * factor);
|
||||
int w_bar = static_cast<int>(std::round(width / factor) * factor);
|
||||
|
||||
if (static_cast<double>(h_bar) * w_bar > max_pixels) {
|
||||
double beta = std::sqrt((height * width) / static_cast<double>(max_pixels));
|
||||
@ -1752,7 +1794,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
ggml_tensor* image_embed = nullptr;
|
||||
llm->encode_image(n_threads, image_tensor, &image_embed, work_ctx);
|
||||
image_embeds.emplace_back(image_embed_idx, image_embed);
|
||||
image_embed_idx += 1 + image_embed->ne[1] + 6;
|
||||
image_embed_idx += 1 + static_cast<int>(image_embed->ne[1]) + 6;
|
||||
|
||||
img_prompt += "Picture " + std::to_string(i + 1) + ": <|vision_start|>"; // [24669, 220, index, 25, 220, 151652]
|
||||
int64_t num_image_tokens = image_embed->ne[1];
|
||||
@ -1771,7 +1813,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
} else if (version == VERSION_FLUX2) {
|
||||
prompt_template_encode_start_idx = 0;
|
||||
out_layers = {10, 20, 30};
|
||||
|
||||
@ -1793,17 +1835,28 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
} else if (version == VERSION_FLUX2_KLEIN) {
|
||||
prompt_template_encode_start_idx = 0;
|
||||
out_layers = {10, 20, 30};
|
||||
max_length = 512;
|
||||
out_layers = {9, 18, 27};
|
||||
|
||||
prompt = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
prompt = "<|im_start|>user\n";
|
||||
|
||||
prompt_attn_range.first = prompt.size();
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = prompt.size();
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "[/INST]";
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n";
|
||||
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, 0, false);
|
||||
tokens = std::get<0>(tokens_and_weights);
|
||||
weights = std::get<1>(tokens_and_weights);
|
||||
|
||||
mask.insert(mask.end(), tokens.size(), 1.f);
|
||||
if (tokens.size() < max_length) {
|
||||
mask.insert(mask.end(), max_length - tokens.size(), 0.f);
|
||||
tokenizer->pad_tokens(tokens, weights, max_length, true);
|
||||
}
|
||||
} else if (version == VERSION_OVIS_IMAGE) {
|
||||
prompt_template_encode_start_idx = 28;
|
||||
max_length = prompt_template_encode_start_idx + 256;
|
||||
@ -1827,17 +1880,34 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
}
|
||||
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, max_length, max_length > 0);
|
||||
auto& tokens = std::get<0>(tokens_and_weights);
|
||||
auto& weights = std::get<1>(tokens_and_weights);
|
||||
if (tokens.empty()) {
|
||||
auto tokens_and_weights = tokenize(prompt, prompt_attn_range, max_length, max_length > 0);
|
||||
tokens = std::get<0>(tokens_and_weights);
|
||||
weights = std::get<1>(tokens_and_weights);
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = nullptr; // [N, n_token, 3584]
|
||||
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
|
||||
ggml_tensor* attention_mask = nullptr;
|
||||
if (!mask.empty()) {
|
||||
attention_mask = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, mask.size(), mask.size());
|
||||
ggml_ext_tensor_iter(attention_mask, [&](ggml_tensor* attention_mask, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = 0.f;
|
||||
if (mask[i0] == 0.f) {
|
||||
value = -INFINITY;
|
||||
} else if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
ggml_ext_tensor_set_f32(attention_mask, value, i0, i1, i2, i3);
|
||||
});
|
||||
}
|
||||
|
||||
llm->compute(n_threads,
|
||||
input_ids,
|
||||
attention_mask,
|
||||
image_embeds,
|
||||
out_layers,
|
||||
&hidden_states,
|
||||
@ -1861,7 +1931,7 @@ struct LLMEmbedder : public Conditioner {
|
||||
GGML_ASSERT(hidden_states->ne[1] > prompt_template_encode_start_idx);
|
||||
|
||||
int64_t min_length = 0;
|
||||
if (sd_version_is_flux2(version)) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
min_length = 512;
|
||||
}
|
||||
|
||||
|
||||
376
denoiser.hpp
@ -1,6 +1,8 @@
|
||||
#ifndef __DENOISER_HPP__
|
||||
#define __DENOISER_HPP__
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#include "gits_noise.inl"
|
||||
|
||||
@ -245,7 +247,7 @@ struct SGMUniformScheduler : SigmaScheduler {
|
||||
int t_max = TIMESTEPS - 1;
|
||||
int t_min = 0;
|
||||
std::vector<float> timesteps = linear_space(static_cast<float>(t_max), static_cast<float>(t_min), n + 1);
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
result.push_back(t_to_sigma_func(timesteps[i]));
|
||||
}
|
||||
result.push_back(0.0f);
|
||||
@ -259,11 +261,11 @@ struct LCMScheduler : SigmaScheduler {
|
||||
result.reserve(n + 1);
|
||||
const int original_steps = 50;
|
||||
const int k = TIMESTEPS / original_steps;
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
// the rounding ensures we match the training schedule of the LCM model
|
||||
int index = (i * original_steps) / n;
|
||||
int timestep = (original_steps - index) * k - 1;
|
||||
result.push_back(t_to_sigma(timestep));
|
||||
result.push_back(t_to_sigma(static_cast<float>(timestep)));
|
||||
}
|
||||
result.push_back(0.0f);
|
||||
return result;
|
||||
@ -276,6 +278,10 @@ struct KarrasScheduler : SigmaScheduler {
|
||||
// but does anybody ever bother to touch them?
|
||||
float rho = 7.f;
|
||||
|
||||
if (sigma_min <= 1e-6f) {
|
||||
sigma_min = 1e-6f;
|
||||
}
|
||||
|
||||
std::vector<float> result(n + 1);
|
||||
|
||||
float min_inv_rho = pow(sigma_min, (1.f / rho));
|
||||
@ -347,7 +353,95 @@ struct SmoothStepScheduler : SigmaScheduler {
|
||||
}
|
||||
};
|
||||
|
||||
// Implementation adapted from https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608
|
||||
struct BongTangentScheduler : SigmaScheduler {
|
||||
static constexpr float kPi = 3.14159265358979323846f;
|
||||
|
||||
static std::vector<float> get_bong_tangent_sigmas(int steps, float slope, float pivot, float start, float end) {
|
||||
std::vector<float> sigmas;
|
||||
if (steps <= 0) {
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
float smax = ((2.0f / kPi) * atanf(-slope * (0.0f - pivot)) + 1.0f) * 0.5f;
|
||||
float smin = ((2.0f / kPi) * atanf(-slope * ((float)(steps - 1) - pivot)) + 1.0f) * 0.5f;
|
||||
float srange = smax - smin;
|
||||
float sscale = start - end;
|
||||
|
||||
sigmas.reserve(steps);
|
||||
|
||||
if (fabsf(srange) < 1e-8f) {
|
||||
if (steps == 1) {
|
||||
sigmas.push_back(start);
|
||||
return sigmas;
|
||||
}
|
||||
for (int i = 0; i < steps; ++i) {
|
||||
float t = (float)i / (float)(steps - 1);
|
||||
sigmas.push_back(start + (end - start) * t);
|
||||
}
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
float inv_srange = 1.0f / srange;
|
||||
for (int x = 0; x < steps; ++x) {
|
||||
float v = ((2.0f / kPi) * atanf(-slope * ((float)x - pivot)) + 1.0f) * 0.5f;
|
||||
float sigma = ((v - smin) * inv_srange) * sscale + end;
|
||||
sigmas.push_back(sigma);
|
||||
}
|
||||
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t /*t_to_sigma*/) override {
|
||||
std::vector<float> result;
|
||||
if (n == 0) {
|
||||
return result;
|
||||
}
|
||||
|
||||
float start = sigma_max;
|
||||
float end = sigma_min;
|
||||
float middle = sigma_min + (sigma_max - sigma_min) * 0.5f;
|
||||
|
||||
float pivot_1 = 0.6f;
|
||||
float pivot_2 = 0.6f;
|
||||
float slope_1 = 0.2f;
|
||||
float slope_2 = 0.2f;
|
||||
|
||||
int steps = static_cast<int>(n) + 2;
|
||||
int midpoint = static_cast<int>(((float)steps * pivot_1 + (float)steps * pivot_2) * 0.5f);
|
||||
int pivot_1_i = static_cast<int>((float)steps * pivot_1);
|
||||
int pivot_2_i = static_cast<int>((float)steps * pivot_2);
|
||||
|
||||
float slope_scale = (float)steps / 40.0f;
|
||||
slope_1 = slope_1 / slope_scale;
|
||||
slope_2 = slope_2 / slope_scale;
|
||||
|
||||
int stage_2_len = steps - midpoint;
|
||||
int stage_1_len = steps - stage_2_len;
|
||||
|
||||
std::vector<float> sigmas_1 = get_bong_tangent_sigmas(stage_1_len, slope_1, (float)pivot_1_i, start, middle);
|
||||
std::vector<float> sigmas_2 = get_bong_tangent_sigmas(stage_2_len, slope_2, (float)(pivot_2_i - stage_1_len), middle, end);
|
||||
|
||||
if (!sigmas_1.empty()) {
|
||||
sigmas_1.pop_back();
|
||||
}
|
||||
|
||||
result.reserve(n + 1);
|
||||
result.insert(result.end(), sigmas_1.begin(), sigmas_1.end());
|
||||
result.insert(result.end(), sigmas_2.begin(), sigmas_2.end());
|
||||
|
||||
if (result.size() < n + 1) {
|
||||
while (result.size() < n + 1) {
|
||||
result.push_back(end);
|
||||
}
|
||||
} else if (result.size() > n + 1) {
|
||||
result.resize(n + 1);
|
||||
}
|
||||
|
||||
result[n] = 0.0f;
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
struct KLOptimalScheduler : SigmaScheduler {
|
||||
std::vector<float> get_sigmas(uint32_t n, float sigma_min, float sigma_max, t_to_sigma_t t_to_sigma) override {
|
||||
std::vector<float> sigmas;
|
||||
@ -355,29 +449,30 @@ struct KLOptimalScheduler : SigmaScheduler {
|
||||
if (n == 0) {
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
sigmas.push_back(sigma_max);
|
||||
sigmas.push_back(0.0f);
|
||||
return sigmas;
|
||||
}
|
||||
|
||||
if (sigma_min <= 1e-6f) {
|
||||
sigma_min = 1e-6f;
|
||||
}
|
||||
|
||||
sigmas.reserve(n + 1);
|
||||
|
||||
float alpha_min = std::atan(sigma_min);
|
||||
float alpha_max = std::atan(sigma_max);
|
||||
|
||||
for (uint32_t i = 0; i < n; ++i) {
|
||||
// t goes from 0.0 to 1.0
|
||||
float t = static_cast<float>(i) / static_cast<float>(n-1);
|
||||
|
||||
// Interpolate in the angle domain
|
||||
float t = static_cast<float>(i) / static_cast<float>(n - 1);
|
||||
float angle = t * alpha_min + (1.0f - t) * alpha_max;
|
||||
|
||||
// Convert back to sigma
|
||||
sigmas.push_back(std::tan(angle));
|
||||
}
|
||||
}
|
||||
|
||||
// Append the final zero to sigma
|
||||
sigmas.push_back(0.0f);
|
||||
|
||||
|
||||
return sigmas;
|
||||
}
|
||||
};
|
||||
@ -427,6 +522,10 @@ struct Denoiser {
|
||||
LOG_INFO("get_sigmas with SmoothStep scheduler");
|
||||
scheduler = std::make_shared<SmoothStepScheduler>();
|
||||
break;
|
||||
case BONG_TANGENT_SCHEDULER:
|
||||
LOG_INFO("get_sigmas with bong_tangent scheduler");
|
||||
scheduler = std::make_shared<BongTangentScheduler>();
|
||||
break;
|
||||
case KL_OPTIMAL_SCHEDULER:
|
||||
LOG_INFO("get_sigmas with KL Optimal scheduler");
|
||||
scheduler = std::make_shared<KLOptimalScheduler>();
|
||||
@ -521,8 +620,8 @@ struct CompVisVDenoiser : public CompVisDenoiser {
|
||||
};
|
||||
|
||||
struct EDMVDenoiser : public CompVisVDenoiser {
|
||||
float min_sigma = 0.002;
|
||||
float max_sigma = 120.0;
|
||||
float min_sigma = 0.002f;
|
||||
float max_sigma = 120.0f;
|
||||
|
||||
EDMVDenoiser(float min_sigma = 0.002, float max_sigma = 120.0)
|
||||
: min_sigma(min_sigma), max_sigma(max_sigma) {
|
||||
@ -533,7 +632,7 @@ struct EDMVDenoiser : public CompVisVDenoiser {
|
||||
}
|
||||
|
||||
float sigma_to_t(float s) override {
|
||||
return 0.25 * std::log(s);
|
||||
return 0.25f * std::log(s);
|
||||
}
|
||||
|
||||
float sigma_min() override {
|
||||
@ -565,7 +664,7 @@ struct DiscreteFlowDenoiser : public Denoiser {
|
||||
|
||||
void set_parameters() {
|
||||
for (int i = 1; i < TIMESTEPS + 1; i++) {
|
||||
sigmas[i - 1] = t_to_sigma(i);
|
||||
sigmas[i - 1] = t_to_sigma(static_cast<float>(i));
|
||||
}
|
||||
}
|
||||
|
||||
@ -608,7 +707,7 @@ struct DiscreteFlowDenoiser : public Denoiser {
|
||||
};
|
||||
|
||||
float flux_time_shift(float mu, float sigma, float t) {
|
||||
return std::exp(mu) / (std::exp(mu) + std::pow((1.0 / t - 1.0), sigma));
|
||||
return ::expf(mu) / (::expf(mu) + ::powf((1.0f / t - 1.0f), sigma));
|
||||
}
|
||||
|
||||
struct FluxFlowDenoiser : public Denoiser {
|
||||
@ -628,7 +727,7 @@ struct FluxFlowDenoiser : public Denoiser {
|
||||
void set_parameters(float shift) {
|
||||
set_shift(shift);
|
||||
for (int i = 0; i < TIMESTEPS; i++) {
|
||||
sigmas[i] = t_to_sigma(i);
|
||||
sigmas[i] = t_to_sigma(static_cast<float>(i));
|
||||
}
|
||||
}
|
||||
|
||||
@ -869,7 +968,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
// denoise
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
ggml_tensor* denoised = model(x, sigmas[i], -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
@ -927,7 +1026,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
// denoise
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
ggml_tensor* denoised = model(x, sigmas[i], -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
@ -1323,15 +1422,12 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// - pred_sample_direction -> "direction pointing to
|
||||
// x_t"
|
||||
// - pred_prev_sample -> "x_t-1"
|
||||
int timestep =
|
||||
roundf(TIMESTEPS -
|
||||
i * ((float)TIMESTEPS / steps)) -
|
||||
1;
|
||||
int timestep = static_cast<int>(roundf(TIMESTEPS - i * ((float)TIMESTEPS / steps))) - 1;
|
||||
// 1. get previous step value (=t-1)
|
||||
int prev_timestep = timestep - TIMESTEPS / steps;
|
||||
int prev_timestep = timestep - TIMESTEPS / static_cast<int>(steps);
|
||||
// The sigma here is chosen to cause the
|
||||
// CompVisDenoiser to produce t = timestep
|
||||
float sigma = compvis_sigmas[timestep];
|
||||
float sigma = static_cast<float>(compvis_sigmas[timestep]);
|
||||
if (i == 0) {
|
||||
// The function add_noise intializes x to
|
||||
// Diffusers' latents * sigma (as in Diffusers'
|
||||
@ -1388,10 +1484,10 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
}
|
||||
}
|
||||
// 2. compute alphas, betas
|
||||
float alpha_prod_t = alphas_cumprod[timestep];
|
||||
float alpha_prod_t = static_cast<float>(alphas_cumprod[timestep]);
|
||||
// Note final_alpha_cumprod = alphas_cumprod[0] due to
|
||||
// trailing timestep spacing
|
||||
float alpha_prod_t_prev = prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0];
|
||||
float alpha_prod_t_prev = static_cast<float>(prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0]);
|
||||
float beta_prod_t = 1 - alpha_prod_t;
|
||||
// 3. compute predicted original sample from predicted
|
||||
// noise also called "predicted x_0" of formula (12)
|
||||
@ -1438,8 +1534,8 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// Two step inner loop without an explicit
|
||||
// tensor
|
||||
float pred_sample_direction =
|
||||
std::sqrt(1 - alpha_prod_t_prev -
|
||||
std::pow(std_dev_t, 2)) *
|
||||
::sqrtf(1 - alpha_prod_t_prev -
|
||||
::powf(std_dev_t, 2)) *
|
||||
vec_model_output[j];
|
||||
vec_x[j] = std::sqrt(alpha_prod_t_prev) *
|
||||
vec_pred_original_sample[j] +
|
||||
@ -1514,7 +1610,7 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// Begin k-diffusion specific workaround for
|
||||
// evaluating F_theta(x; ...) from D(x, sigma), same
|
||||
// as in DDIM (and see there for detailed comments)
|
||||
float sigma = compvis_sigmas[timestep];
|
||||
float sigma = static_cast<float>(compvis_sigmas[timestep]);
|
||||
if (i == 0) {
|
||||
float* vec_x = (float*)x->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
@ -1553,14 +1649,14 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
// is different from the notation alpha_t in
|
||||
// DPM-Solver. In fact, we have alpha_{t_n} =
|
||||
// \sqrt{\hat{alpha_n}}, [...]"
|
||||
float alpha_prod_t = alphas_cumprod[timestep];
|
||||
float alpha_prod_t = static_cast<float>(alphas_cumprod[timestep]);
|
||||
float beta_prod_t = 1 - alpha_prod_t;
|
||||
// Note final_alpha_cumprod = alphas_cumprod[0] since
|
||||
// TCD is always "trailing"
|
||||
float alpha_prod_t_prev = prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0];
|
||||
float alpha_prod_t_prev = static_cast<float>(prev_timestep >= 0 ? alphas_cumprod[prev_timestep] : alphas_cumprod[0]);
|
||||
// The subscript _s are the only portion in this
|
||||
// section (2) unique to TCD
|
||||
float alpha_prod_s = alphas_cumprod[timestep_s];
|
||||
float alpha_prod_s = static_cast<float>(alphas_cumprod[timestep_s]);
|
||||
float beta_prod_s = 1 - alpha_prod_s;
|
||||
// 3. Compute the predicted noised sample x_s based on
|
||||
// the model parameterization
|
||||
@ -1633,6 +1729,216 @@ static bool sample_k_diffusion(sample_method_t method,
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case RES_MULTISTEP_SAMPLE_METHOD: // Res Multistep sampler
|
||||
{
|
||||
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* old_denoised = ggml_dup_tensor(work_ctx, x);
|
||||
|
||||
bool have_old_sigma = false;
|
||||
float old_sigma_down = 0.0f;
|
||||
|
||||
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||
auto sigma_fn = [](float t) -> float { return expf(-t); };
|
||||
auto phi1_fn = [](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||
}
|
||||
return (expf(t) - 1.0f) / t;
|
||||
};
|
||||
auto phi2_fn = [&](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||
}
|
||||
float phi1_val = phi1_fn(t);
|
||||
return (phi1_val - 1.0f) / t;
|
||||
};
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
ggml_tensor* denoised = model(x, sigmas[i], i + 1);
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float sigma_from = sigmas[i];
|
||||
float sigma_to = sigmas[i + 1];
|
||||
float sigma_up = 0.0f;
|
||||
float sigma_down = sigma_to;
|
||||
|
||||
if (eta > 0.0f) {
|
||||
float sigma_from_sq = sigma_from * sigma_from;
|
||||
float sigma_to_sq = sigma_to * sigma_to;
|
||||
if (sigma_from_sq > 0.0f) {
|
||||
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||
if (term > 0.0f) {
|
||||
sigma_up = eta * std::sqrt(term);
|
||||
}
|
||||
}
|
||||
sigma_up = std::min(sigma_up, sigma_to);
|
||||
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||
}
|
||||
|
||||
if (sigma_down == 0.0f || !have_old_sigma) {
|
||||
float dt = sigma_down - sigma_from;
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float d = (vec_x[j] - vec_denoised[j]) / sigma_from;
|
||||
vec_x[j] = vec_x[j] + d * dt;
|
||||
}
|
||||
} else {
|
||||
float t = t_fn(sigma_from);
|
||||
float t_old = t_fn(old_sigma_down);
|
||||
float t_next = t_fn(sigma_down);
|
||||
float t_prev = t_fn(sigmas[i - 1]);
|
||||
float h = t_next - t;
|
||||
float c2 = (t_prev - t_old) / h;
|
||||
|
||||
float phi1_val = phi1_fn(-h);
|
||||
float phi2_val = phi2_fn(-h);
|
||||
float b1 = phi1_val - phi2_val / c2;
|
||||
float b2 = phi2_val / c2;
|
||||
|
||||
if (!std::isfinite(b1)) {
|
||||
b1 = 0.0f;
|
||||
}
|
||||
if (!std::isfinite(b2)) {
|
||||
b2 = 0.0f;
|
||||
}
|
||||
|
||||
float sigma_h = sigma_fn(h);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
float* vec_old_denoised = (float*)old_denoised->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = sigma_h * vec_x[j] + h * (b1 * vec_denoised[j] + b2 * vec_old_denoised[j]);
|
||||
}
|
||||
}
|
||||
|
||||
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||
ggml_ext_im_set_randn_f32(noise, rng);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_noise = (float*)noise->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||
}
|
||||
}
|
||||
|
||||
float* vec_old_denoised = (float*)old_denoised->data;
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_old_denoised[j] = vec_denoised[j];
|
||||
}
|
||||
|
||||
old_sigma_down = sigma_down;
|
||||
have_old_sigma = true;
|
||||
}
|
||||
} break;
|
||||
case RES_2S_SAMPLE_METHOD: // Res 2s sampler
|
||||
{
|
||||
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* x0 = ggml_dup_tensor(work_ctx, x);
|
||||
struct ggml_tensor* x2 = ggml_dup_tensor(work_ctx, x);
|
||||
|
||||
const float c2 = 0.5f;
|
||||
auto t_fn = [](float sigma) -> float { return -logf(sigma); };
|
||||
auto phi1_fn = [](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 1.0f + t * 0.5f + (t * t) / 6.0f;
|
||||
}
|
||||
return (expf(t) - 1.0f) / t;
|
||||
};
|
||||
auto phi2_fn = [&](float t) -> float {
|
||||
if (fabsf(t) < 1e-6f) {
|
||||
return 0.5f + t / 6.0f + (t * t) / 24.0f;
|
||||
}
|
||||
float phi1_val = phi1_fn(t);
|
||||
return (phi1_val - 1.0f) / t;
|
||||
};
|
||||
|
||||
for (int i = 0; i < steps; i++) {
|
||||
float sigma_from = sigmas[i];
|
||||
float sigma_to = sigmas[i + 1];
|
||||
|
||||
ggml_tensor* denoised = model(x, sigma_from, -(i + 1));
|
||||
if (denoised == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float sigma_up = 0.0f;
|
||||
float sigma_down = sigma_to;
|
||||
if (eta > 0.0f) {
|
||||
float sigma_from_sq = sigma_from * sigma_from;
|
||||
float sigma_to_sq = sigma_to * sigma_to;
|
||||
if (sigma_from_sq > 0.0f) {
|
||||
float term = sigma_to_sq * (sigma_from_sq - sigma_to_sq) / sigma_from_sq;
|
||||
if (term > 0.0f) {
|
||||
sigma_up = eta * std::sqrt(term);
|
||||
}
|
||||
}
|
||||
sigma_up = std::min(sigma_up, sigma_to);
|
||||
float sigma_down_sq = sigma_to_sq - sigma_up * sigma_up;
|
||||
sigma_down = sigma_down_sq > 0.0f ? std::sqrt(sigma_down_sq) : 0.0f;
|
||||
}
|
||||
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_x0 = (float*)x0->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x0[j] = vec_x[j];
|
||||
}
|
||||
|
||||
if (sigma_down == 0.0f || sigma_from == 0.0f) {
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_denoised[j];
|
||||
}
|
||||
} else {
|
||||
float t = t_fn(sigma_from);
|
||||
float t_next = t_fn(sigma_down);
|
||||
float h = t_next - t;
|
||||
|
||||
float a21 = c2 * phi1_fn(-h * c2);
|
||||
float phi1_val = phi1_fn(-h);
|
||||
float phi2_val = phi2_fn(-h);
|
||||
float b2 = phi2_val / c2;
|
||||
float b1 = phi1_val - b2;
|
||||
|
||||
float sigma_c2 = expf(-(t + h * c2));
|
||||
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
float* vec_x2 = (float*)x2->data;
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||
vec_x2[j] = vec_x0[j] + h * a21 * eps1;
|
||||
}
|
||||
|
||||
ggml_tensor* denoised2 = model(x2, sigma_c2, i + 1);
|
||||
if (denoised2 == nullptr) {
|
||||
return false;
|
||||
}
|
||||
float* vec_denoised2 = (float*)denoised2->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
float eps1 = vec_denoised[j] - vec_x0[j];
|
||||
float eps2 = vec_denoised2[j] - vec_x0[j];
|
||||
vec_x[j] = vec_x0[j] + h * (b1 * eps1 + b2 * eps2);
|
||||
}
|
||||
}
|
||||
|
||||
if (sigmas[i + 1] > 0 && sigma_up > 0.0f) {
|
||||
ggml_ext_im_set_randn_f32(noise, rng);
|
||||
float* vec_x = (float*)x->data;
|
||||
float* vec_noise = (float*)noise->data;
|
||||
|
||||
for (int j = 0; j < ggml_nelements(x); j++) {
|
||||
vec_x[j] = vec_x[j] + vec_noise[j] * sigma_up;
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
||||
default:
|
||||
LOG_ERROR("Attempting to sample with nonexisting sample method %i", method);
|
||||
|
||||
@ -37,8 +37,9 @@ struct DiffusionModel {
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
|
||||
virtual int64_t get_adm_in_channels() = 0;
|
||||
virtual void set_flash_attn_enabled(bool enabled) = 0;
|
||||
virtual int64_t get_adm_in_channels() = 0;
|
||||
virtual void set_flash_attention_enabled(bool enabled) = 0;
|
||||
virtual void set_circular_axes(bool circular_x, bool circular_y) = 0;
|
||||
};
|
||||
|
||||
struct UNetModel : public DiffusionModel {
|
||||
@ -83,10 +84,14 @@ struct UNetModel : public DiffusionModel {
|
||||
return unet.unet.adm_in_channels;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
unet.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
unet.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
@ -144,10 +149,14 @@ struct MMDiTModel : public DiffusionModel {
|
||||
return 768 + 1280;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
mmdit.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
mmdit.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
@ -206,10 +215,14 @@ struct FluxModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
flux.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
flux.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
@ -273,10 +286,14 @@ struct WanModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
wan.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
wan.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
@ -303,8 +320,9 @@ struct QwenImageModel : public DiffusionModel {
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "model.diffusion_model",
|
||||
SDVersion version = VERSION_QWEN_IMAGE)
|
||||
: prefix(prefix), qwen_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version) {
|
||||
SDVersion version = VERSION_QWEN_IMAGE,
|
||||
bool zero_cond_t = false)
|
||||
: prefix(prefix), qwen_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version, zero_cond_t) {
|
||||
}
|
||||
|
||||
std::string get_desc() override {
|
||||
@ -339,10 +357,14 @@ struct QwenImageModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
qwen_image.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
qwen_image.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
@ -402,10 +424,14 @@ struct ZImageModel : public DiffusionModel {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
void set_flash_attention_enabled(bool enabled) {
|
||||
z_image.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) override {
|
||||
z_image.set_circular_axes(circular_x, circular_y);
|
||||
}
|
||||
|
||||
bool compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
|
||||
126
docs/caching.md
Normal file
@ -0,0 +1,126 @@
|
||||
## Caching
|
||||
|
||||
Caching methods accelerate diffusion inference by reusing intermediate computations when changes between steps are small.
|
||||
|
||||
### Cache Modes
|
||||
|
||||
| Mode | Target | Description |
|
||||
|------|--------|-------------|
|
||||
| `ucache` | UNET models | Condition-level caching with error tracking |
|
||||
| `easycache` | DiT models | Condition-level cache |
|
||||
| `dbcache` | DiT models | Block-level L1 residual threshold |
|
||||
| `taylorseer` | DiT models | Taylor series approximation |
|
||||
| `cache-dit` | DiT models | Combined DBCache + TaylorSeer |
|
||||
|
||||
### UCache (UNET Models)
|
||||
|
||||
UCache caches the residual difference (output - input) and reuses it when input changes are below threshold.
|
||||
|
||||
```bash
|
||||
sd-cli -m model.safetensors -p "a cat" --cache-mode ucache --cache-option "threshold=1.5"
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Parameter | Description | Default |
|
||||
|-----------|-------------|---------|
|
||||
| `threshold` | Error threshold for reuse decision | 1.0 |
|
||||
| `start` | Start caching at this percent of steps | 0.15 |
|
||||
| `end` | Stop caching at this percent of steps | 0.95 |
|
||||
| `decay` | Error decay rate (0-1) | 1.0 |
|
||||
| `relative` | Scale threshold by output norm (0/1) | 1 |
|
||||
| `reset` | Reset error after computing (0/1) | 1 |
|
||||
|
||||
#### Reset Parameter
|
||||
|
||||
The `reset` parameter controls error accumulation behavior:
|
||||
|
||||
- `reset=1` (default): Resets accumulated error after each computed step. More aggressive caching, works well with most samplers.
|
||||
- `reset=0`: Keeps error accumulated. More conservative, recommended for `euler_a` sampler.
|
||||
|
||||
### EasyCache (DiT Models)
|
||||
|
||||
Condition-level caching for DiT models. Caches and reuses outputs when input changes are below threshold.
|
||||
|
||||
```bash
|
||||
--cache-mode easycache --cache-option "threshold=0.3"
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Parameter | Description | Default |
|
||||
|-----------|-------------|---------|
|
||||
| `threshold` | Input change threshold for reuse | 0.2 |
|
||||
| `start` | Start caching at this percent of steps | 0.15 |
|
||||
| `end` | Stop caching at this percent of steps | 0.95 |
|
||||
|
||||
### Cache-DIT (DiT Models)
|
||||
|
||||
For DiT models like FLUX and QWEN, use block-level caching modes.
|
||||
|
||||
#### DBCache
|
||||
|
||||
Caches blocks based on L1 residual difference threshold:
|
||||
|
||||
```bash
|
||||
--cache-mode dbcache --cache-option "threshold=0.25,warmup=4"
|
||||
```
|
||||
|
||||
#### TaylorSeer
|
||||
|
||||
Uses Taylor series approximation to predict block outputs:
|
||||
|
||||
```bash
|
||||
--cache-mode taylorseer
|
||||
```
|
||||
|
||||
#### Cache-DIT (Combined)
|
||||
|
||||
Combines DBCache and TaylorSeer:
|
||||
|
||||
```bash
|
||||
--cache-mode cache-dit --cache-preset fast
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Parameter | Description | Default |
|
||||
|-----------|-------------|---------|
|
||||
| `Fn` | Front blocks to always compute | 8 |
|
||||
| `Bn` | Back blocks to always compute | 0 |
|
||||
| `threshold` | L1 residual difference threshold | 0.08 |
|
||||
| `warmup` | Steps before caching starts | 8 |
|
||||
|
||||
#### Presets
|
||||
|
||||
Available presets: `slow`, `medium`, `fast`, `ultra` (or `s`, `m`, `f`, `u`).
|
||||
|
||||
```bash
|
||||
--cache-mode cache-dit --cache-preset fast
|
||||
```
|
||||
|
||||
#### SCM Options
|
||||
|
||||
Steps Computation Mask controls which steps can be cached:
|
||||
|
||||
```bash
|
||||
--scm-mask "1,1,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1"
|
||||
```
|
||||
|
||||
Mask values: `1` = compute, `0` = can cache.
|
||||
|
||||
| Policy | Description |
|
||||
|--------|-------------|
|
||||
| `dynamic` | Check threshold before caching |
|
||||
| `static` | Always cache on cacheable steps |
|
||||
|
||||
```bash
|
||||
--scm-policy dynamic
|
||||
```
|
||||
|
||||
### Performance Tips
|
||||
|
||||
- Start with default thresholds and adjust based on output quality
|
||||
- Lower threshold = better quality, less speedup
|
||||
- Higher threshold = more speedup, potential quality loss
|
||||
- More steps generally means more caching opportunities
|
||||
@ -1,8 +1,8 @@
|
||||
# Running distilled models: SSD1B and SDx.x with tiny U-Nets
|
||||
# Running distilled models: SSD1B, Vega and SDx.x with tiny U-Nets
|
||||
|
||||
## Preface
|
||||
|
||||
These models feature a reduced U-Net architecture. Unlike standard SDXL models, the SSD-1B U-Net contains only one middle block and fewer attention layers in its up- and down-blocks, resulting in significantly smaller file sizes. Using these models can reduce inference time by more than 33%. For more details, refer to Segmind's paper: https://arxiv.org/abs/2401.02677v1.
|
||||
These models feature a reduced U-Net architecture. Unlike standard SDXL models, the SSD-1B and Vega U-Net contains only one middle block and fewer attention layers in its up- and down-blocks, resulting in significantly smaller file sizes. Using these models can reduce inference time by more than 33%. For more details, refer to Segmind's paper: https://arxiv.org/abs/2401.02677v1.
|
||||
Similarly, SD1.x- and SD2.x-style models with a tiny U-Net consist of only 6 U-Net blocks, leading to very small files and time savings of up to 50%. For more information, see the paper: https://arxiv.org/pdf/2305.15798.pdf.
|
||||
|
||||
## SSD1B
|
||||
@ -17,7 +17,17 @@ Useful LoRAs are also available:
|
||||
* https://huggingface.co/seungminh/lora-swarovski-SSD-1B/resolve/main/pytorch_lora_weights.safetensors
|
||||
* https://huggingface.co/kylielee505/mylcmlorassd/resolve/main/pytorch_lora_weights.safetensors
|
||||
|
||||
These files can be used out-of-the-box, unlike the models described in the next section.
|
||||
## Vega
|
||||
|
||||
Segmind's Vega model is available online here:
|
||||
|
||||
* https://huggingface.co/segmind/Segmind-Vega/resolve/main/segmind-vega.safetensors
|
||||
|
||||
VegaRT is an example for an LCM-LoRA:
|
||||
|
||||
* https://huggingface.co/segmind/Segmind-VegaRT/resolve/main/pytorch_lora_weights.safetensors
|
||||
|
||||
Both files can be used out-of-the-box, unlike the models described in next sections.
|
||||
|
||||
|
||||
## SD1.x, SD2.x with tiny U-Nets
|
||||
@ -83,7 +93,7 @@ python convert_diffusers_to_original_stable_diffusion.py \
|
||||
The file segmind_tiny-sd.ckpt will be generated and is now ready for use with sd.cpp. You can follow a similar process for the other models mentioned above.
|
||||
|
||||
|
||||
### Another available .ckpt file:
|
||||
##### Another available .ckpt file:
|
||||
|
||||
* https://huggingface.co/ClashSAN/small-sd/resolve/main/tinySDdistilled.ckpt
|
||||
|
||||
@ -97,3 +107,31 @@ for key, value in ckpt['state_dict'].items():
|
||||
ckpt['state_dict'][key] = value.contiguous()
|
||||
torch.save(ckpt, "tinySDdistilled_fixed.ckpt")
|
||||
```
|
||||
|
||||
|
||||
### SDXS-512
|
||||
|
||||
Another very tiny and **incredibly fast** model is SDXS by IDKiro et al. The authors refer to it as *"Real-Time One-Step Latent Diffusion Models with Image Conditions"*. For details read the paper: https://arxiv.org/pdf/2403.16627 . Once again the authors removed some more blocks of U-Net part and unlike other SD1 models they use an adjusted _AutoEncoderTiny_ instead of default _AutoEncoderKL_ for the VAE part.
|
||||
|
||||
##### 1. Download the diffusers model from Hugging Face using Python:
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionPipeline
|
||||
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper")
|
||||
pipe.save_pretrained(save_directory="sdxs")
|
||||
```
|
||||
##### 2. Create a safetensors file
|
||||
|
||||
```bash
|
||||
python convert_diffusers_to_original_stable_diffusion.py \
|
||||
--model_path sdxs --checkpoint_path sdxs.safetensors --half --use_safetensors
|
||||
```
|
||||
|
||||
##### 3. Run the model as follows:
|
||||
|
||||
```bash
|
||||
~/stable-diffusion.cpp/build/bin/sd-cli -m sdxs.safetensors -p "portrait of a lovely cat" \
|
||||
--cfg-scale 1 --steps 1
|
||||
```
|
||||
|
||||
Both options: ``` --cfg-scale 1 ``` and ``` --steps 1 ``` are mandatory here.
|
||||
|
||||
@ -1,15 +1,39 @@
|
||||
## Docker
|
||||
# Docker
|
||||
|
||||
### Building using Docker
|
||||
## Run CLI
|
||||
|
||||
```shell
|
||||
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output ghcr.io/leejet/stable-diffusion.cpp:master [args...]
|
||||
# For example
|
||||
# docker run --rm -v ./models:/models -v ./build:/output ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
## Run server
|
||||
|
||||
```shell
|
||||
docker run --rm --init -v /path/to/models:/models -v /path/to/output/:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master [args...]
|
||||
# For example
|
||||
# docker run --rm --init -v ./models:/models -v ./build:/output -p "1234:1234" --entrypoint "/sd-server" ghcr.io/leejet/stable-diffusion.cpp:master -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
## Building using Docker
|
||||
|
||||
```shell
|
||||
docker build -t sd .
|
||||
```
|
||||
|
||||
### Run
|
||||
## Building variants using Docker
|
||||
|
||||
Vulkan:
|
||||
|
||||
```shell
|
||||
docker run -v /path/to/models:/models -v /path/to/output/:/output sd-cli [args...]
|
||||
docker build -f Dockerfile.vulkan -t sd .
|
||||
```
|
||||
|
||||
## Run locally built image's CLI
|
||||
|
||||
```shell
|
||||
docker run --rm -v /path/to/models:/models -v /path/to/output/:/output sd [args...]
|
||||
# For example
|
||||
# docker run -v ./models:/models -v ./build:/output sd-cli -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
# docker run --rm -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4.ckpt -p "a lovely cat" -v -o /output/output.png
|
||||
```
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
## Using ESRGAN to upscale results
|
||||
|
||||
You can use ESRGAN to upscale the generated images. At the moment, only the [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth) model is supported. Support for more models of this architecture will be added soon.
|
||||
You can use ESRGAN—such as the model [RealESRGAN_x4plus_anime_6B.pth](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth)—to upscale the generated images and improve their overall resolution and clarity.
|
||||
|
||||
- Specify the model path using the `--upscale-model PATH` parameter. example:
|
||||
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
# How to Use
|
||||
|
||||
## Download weights
|
||||
## Flux.2-dev
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-dev
|
||||
- gguf: https://huggingface.co/city96/FLUX.2-dev-gguf/tree/main
|
||||
@ -9,7 +11,7 @@
|
||||
- Download Mistral-Small-3.2-24B-Instruct-2506-GGUF
|
||||
- gguf: https://huggingface.co/unsloth/Mistral-Small-3.2-24B-Instruct-2506-GGUF/tree/main
|
||||
|
||||
## Examples
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux2-dev-Q4_K_S.gguf --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\Mistral-Small-3.2-24B-Instruct-2506-Q4_K_M.gguf -r .\kontext_input.png -p "change 'flux.cpp' to 'flux2-dev.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu
|
||||
@ -17,5 +19,74 @@
|
||||
|
||||
<img alt="flux2 example" src="../assets/flux2/example.png" />
|
||||
|
||||
## Flux.2 klein 4B / Flux.2 klein base 4B
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-klein-4B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-4B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-4B-GGUF/tree/main
|
||||
- Download FLUX.2-klein-base-4B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-base-4B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-base-4B-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-dev/tree/main
|
||||
- Download Qwen3 4b
|
||||
- safetensors: https://huggingface.co/Comfy-Org/flux2-klein-4B/tree/main/split_files/text_encoders
|
||||
- gguf: https://huggingface.co/unsloth/Qwen3-4B-GGUF/tree/main
|
||||
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "a lovely cat" --cfg-scale 1.0 --steps 4 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-4b" src="../assets/flux2/flux2-klein-4b.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -r .\kontext_input.png -p "change 'flux.cpp' to 'klein.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu --steps 4
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-4b-edit" src="../assets/flux2/flux2-klein-4b-edit.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-base-4b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "a lovely cat" --cfg-scale 4.0 --steps 20 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-base-4b" src="../assets/flux2/flux2-klein-base-4b.png" />
|
||||
|
||||
## Flux.2 klein 9B / Flux.2 klein base 9B
|
||||
|
||||
### Download weights
|
||||
|
||||
- Download FLUX.2-klein-9B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-9B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-9B-GGUF/tree/main
|
||||
- Download FLUX.2-klein-base-9B
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-klein-base-9B
|
||||
- gguf: https://huggingface.co/leejet/FLUX.2-klein-base-9B-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.2-dev/tree/main
|
||||
- Download Qwen3 8B
|
||||
- safetensors: https://huggingface.co/Comfy-Org/flux2-klein-9B/tree/main/split_files/text_encoders
|
||||
- gguf: https://huggingface.co/unsloth/Qwen3-8B-GGUF/tree/main
|
||||
|
||||
### Examples
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -p "a lovely cat" --cfg-scale 1.0 --steps 4 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-9b" src="../assets/flux2/flux2-klein-9b.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -r .\kontext_input.png -p "change 'flux.cpp' to 'klein.cpp'" --cfg-scale 1.0 --sampling-method euler -v --diffusion-fa --offload-to-cpu --steps 4
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-9b-edit" src="../assets/flux2/flux2-klein-9b-edit.png" />
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\flux-2-klein-base-9b.safetensors --vae ..\..\ComfyUI\models\vae\flux2_ae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_3_8b.safetensors -p "a lovely cat" --cfg-scale 4.0 --steps 20 -v --offload-to-cpu --diffusion-fa
|
||||
```
|
||||
|
||||
<img alt="flux2-klein-base-9b" src="../assets/flux2/flux2-klein-base-9b.png" />
|
||||
@ -9,6 +9,9 @@
|
||||
- Qwen Image Edit 2509
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image-Edit_ComfyUI/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/QuantStack/Qwen-Image-Edit-2509-GGUF/tree/main
|
||||
- Qwen Image Edit 2511
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image-Edit_ComfyUI/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/unsloth/Qwen-Image-Edit-2511-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/vae
|
||||
- Download qwen_2.5_vl 7b
|
||||
@ -32,4 +35,14 @@
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\Qwen-Image-Edit-2509-Q4_K_S.gguf --vae ..\..\ComfyUI\models\vae\qwen_image_vae.safetensors --llm ..\..\ComfyUI\models\text_encoders\Qwen2.5-VL-7B-Instruct-Q8_0.gguf --llm_vision ..\..\ComfyUI\models\text_encoders\Qwen2.5-VL-7B-Instruct.mmproj-Q8_0.gguf --cfg-scale 2.5 --sampling-method euler -v --offload-to-cpu --diffusion-fa --flow-shift 3 -r ..\assets\flux\flux1-dev-q8_0.png -p "change 'flux.cpp' to 'Qwen Image Edit 2509'"
|
||||
```
|
||||
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2509.png" />
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2509.png" />
|
||||
|
||||
### Qwen Image Edit 2511
|
||||
|
||||
To use the new Qwen Image Edit 2511 mode, the `--qwen-image-zero-cond-t` flag must be enabled; otherwise, image editing quality will degrade significantly.
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\qwen-image-edit-2511-Q4_K_M.gguf --vae ..\..\ComfyUI\models\vae\qwen_image_vae.safetensors --llm ..\..\ComfyUI\models\text_encoders\qwen_2.5_vl_7b.safetensors --cfg-scale 2.5 --sampling-method euler -v --offload-to-cpu --diffusion-fa --flow-shift 3 -r ..\assets\flux\flux1-dev-q8_0.png -p "change 'flux.cpp' to 'edit.cpp'" --qwen-image-zero-cond-t
|
||||
```
|
||||
|
||||
<img alt="qwen_image_edit_2509" src="../assets/qwen/qwen_image_edit_2511.png" />
|
||||
@ -14,4 +14,26 @@ curl -L -O https://huggingface.co/madebyollin/taesd/resolve/main/diffusion_pytor
|
||||
|
||||
```bash
|
||||
sd-cli -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat" --taesd ../models/diffusion_pytorch_model.safetensors
|
||||
```
|
||||
```
|
||||
|
||||
### Qwen-Image and wan (TAEHV)
|
||||
|
||||
sd.cpp also supports [TAEHV](https://github.com/madebyollin/taehv) (#937), which can be used for Qwen-Image and wan.
|
||||
|
||||
- For **Qwen-Image and wan2.1 and wan2.2-A14B**, download the wan2.1 tae [safetensors weights](https://github.com/madebyollin/taehv/blob/main/safetensors/taew2_1.safetensors)
|
||||
|
||||
Or curl
|
||||
|
||||
```bash
|
||||
curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_1.safetensors
|
||||
```
|
||||
|
||||
- For **wan2.2-TI2V-5B**, use the wan2.2 tae [safetensors weights](https://github.com/madebyollin/taehv/blob/main/safetensors/taew2_2.safetensors)
|
||||
|
||||
Or curl
|
||||
|
||||
```bash
|
||||
curl -L -O https://github.com/madebyollin/taehv/raw/refs/heads/main/safetensors/taew2_2.safetensors
|
||||
```
|
||||
|
||||
Then simply replace the `--vae xxx.safetensors` with `--tae xxx.safetensors` in the commands. If it still out of VRAM, add `--vae-conv-direct` to your command though might be slower.
|
||||
|
||||
@ -39,6 +39,9 @@
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors
|
||||
- wan_2.2_vae (for Wan2.2 TI2V 5B only)
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/blob/main/split_files/vae/wan2.2_vae.safetensors
|
||||
|
||||
> Wan models vae requires really much VRAM! If you do not have enough VRAM, please try tae instead, though the results may be poorer. For tae usage, please refer to [taesd](taesd.md)
|
||||
|
||||
- Download umt5_xxl
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/text_encoders/umt5_xxl_fp16.safetensors
|
||||
- gguf: https://huggingface.co/city96/umt5-xxl-encoder-gguf/tree/main
|
||||
|
||||
@ -7,6 +7,9 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
||||
- Download Z-Image-Turbo
|
||||
- safetensors: https://huggingface.co/Comfy-Org/z_image_turbo/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/leejet/Z-Image-Turbo-GGUF/tree/main
|
||||
- Download Z-Image
|
||||
- safetensors: https://huggingface.co/Comfy-Org/z_image/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/unsloth/Z-Image-GGUF/tree/main
|
||||
- Download vae
|
||||
- safetensors: https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main
|
||||
- Download Qwen3 4b
|
||||
@ -15,12 +18,22 @@ You can run Z-Image with stable-diffusion.cpp on GPUs with 4GB of VRAM — or ev
|
||||
|
||||
## Examples
|
||||
|
||||
### Z-Image-Turbo
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model z_image_turbo-Q3_K.gguf --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\Qwen3-4B-Instruct-2507-Q4_K_M.gguf -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 1.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||
```
|
||||
|
||||
<img width="256" alt="z-image example" src="../assets/z_image/q3_K.png" />
|
||||
|
||||
### Z-Image-Base
|
||||
|
||||
```
|
||||
.\bin\Release\sd-cli.exe --diffusion-model ..\..\ComfyUI\models\diffusion_models\z_image_bf16.safetensors --vae ..\..\ComfyUI\models\vae\ae.sft --llm ..\..\ComfyUI\models\text_encoders\qwen_3_4b.safetensors -p "A cinematic, melancholic photograph of a solitary hooded figure walking through a sprawling, rain-slicked metropolis at night. The city lights are a chaotic blur of neon orange and cool blue, reflecting on the wet asphalt. The scene evokes a sense of being a single component in a vast machine. Superimposed over the image in a sleek, modern, slightly glitched font is the philosophical quote: 'THE CITY IS A CIRCUIT BOARD, AND I AM A BROKEN TRANSISTOR.' -- moody, atmospheric, profound, dark academic" --cfg-scale 5.0 -v --offload-to-cpu --diffusion-fa -H 1024 -W 512
|
||||
```
|
||||
|
||||
<img width="256" alt="z-image example" src="../assets/z_image/base_bf16.png" />
|
||||
|
||||
## Comparison of Different Quantization Types
|
||||
|
||||
| bf16 | q8_0 | q6_K | q5_0 | q4_K | q4_0 | q3_K | q2_K|
|
||||
|
||||
@ -51,7 +51,7 @@ public:
|
||||
x_cat = ggml_concat(ctx->ggml_ctx, x_cat, x4, 2);
|
||||
auto x5 = conv5->forward(ctx, x_cat);
|
||||
|
||||
x5 = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
||||
x5 = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, x5, 0.2f), x);
|
||||
return x5;
|
||||
}
|
||||
};
|
||||
@ -76,7 +76,7 @@ public:
|
||||
out = rdb2->forward(ctx, out);
|
||||
out = rdb3->forward(ctx, out);
|
||||
|
||||
out = ggml_add(ctx->ggml_ctx, ggml_scale(ctx->ggml_ctx, out, 0.2f), x);
|
||||
out = ggml_add(ctx->ggml_ctx, ggml_ext_scale(ctx->ggml_ctx, out, 0.2f), x);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
@ -4,11 +4,13 @@
|
||||
usage: ./bin/sd-cli [options]
|
||||
|
||||
CLI Options:
|
||||
-o, --output <string> path to write result image to (default: ./output.png)
|
||||
-o, --output <string> path to write result image to. you can use printf-style %d format specifiers for image sequences (default: ./output.png) (eg. output_%03d.png)
|
||||
--output-begin-idx <int> starting index for output image sequence, must be non-negative (default 0 if specified %d in output path, 1 otherwise)
|
||||
--preview-path <string> path to write preview image to (default: ./preview.png)
|
||||
--preview-interval <int> interval in denoising steps between consecutive updates of the image preview file (default is 1, meaning updating at
|
||||
every step)
|
||||
--canny apply canny preprocessor (edge detection)
|
||||
--convert-name convert tensor name (for convert mode)
|
||||
-v, --verbose print extra info
|
||||
--color colors the logging tags according to level
|
||||
--taesd-preview-only prevents usage of taesd for decoding the final image. (for use with --preview tae)
|
||||
@ -46,12 +48,17 @@ Context Options:
|
||||
--vae-tiling process vae in tiles to reduce memory usage
|
||||
--force-sdxl-vae-conv-scale force use of conv scale on sdxl vae
|
||||
--offload-to-cpu place the weights in RAM to save VRAM, and automatically load them into VRAM when needed
|
||||
--mmap whether to memory-map model
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--clip-on-cpu keep clip in cpu (for low vram)
|
||||
--vae-on-cpu keep vae in cpu (for low vram)
|
||||
--diffusion-fa use flash attention in the diffusion model
|
||||
--fa use flash attention
|
||||
--diffusion-fa use flash attention in the diffusion model only
|
||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||
--circular enable circular padding for convolutions
|
||||
--circularx enable circular RoPE wrapping on x-axis (width) only
|
||||
--circulary enable circular RoPE wrapping on y-axis (height) only
|
||||
--chroma-disable-dit-mask disable dit mask for chroma
|
||||
--chroma-enable-t5-mask enable t5 mask for chroma
|
||||
--type weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K). If not specified, the default is the
|
||||
@ -93,6 +100,7 @@ Generation Options:
|
||||
--timestep-shift <int> shift timestep for NitroFusion models (default: 0). recommended N for NitroSD-Realism around 250 and 500 for
|
||||
NitroSD-Vibrant
|
||||
--upscale-repeats <int> Run the ESRGAN upscaler this many times (default: 1)
|
||||
--upscale-tile-size <int> tile size for ESRGAN upscaling (default: 128)
|
||||
--cfg-scale <float> unconditional guidance scale: (default: 7.0)
|
||||
--img-cfg-scale <float> image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)
|
||||
--guidance <float> distilled guidance scale for models with guidance input (default: 3.5)
|
||||
@ -100,14 +108,14 @@ Generation Options:
|
||||
medium
|
||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||
--pm-style-strength <float>
|
||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||
@ -116,15 +124,21 @@ Generation Options:
|
||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm],
|
||||
default: discrete
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||
kl_optimal, lcm, bong_tangent], default: discrete
|
||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||
-r, --ref-image reference image for Flux Kontext models (can be used multiple times)
|
||||
--easycache enable EasyCache for DiT models with optional "threshold,start_percent,end_percent" (default: 0.2,0.15,0.95)
|
||||
--cache-mode caching method: 'easycache' (DiT), 'ucache' (UNET), 'dbcache'/'taylorseer'/'cache-dit' (DiT block-level)
|
||||
--cache-option named cache params (key=value format, comma-separated). easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples:
|
||||
"threshold=0.25" or "threshold=1.5,reset=0"
|
||||
--cache-preset cache-dit preset: 'slow'/'s', 'medium'/'m', 'fast'/'f', 'ultra'/'u'
|
||||
--scm-mask SCM steps mask for cache-dit: comma-separated 0/1 (e.g., "1,1,1,0,0,1,0,0,1,0") - 1=compute, 0=can cache
|
||||
--scm-policy SCM policy: 'dynamic' (default) or 'static'
|
||||
```
|
||||
|
||||
@ -172,9 +172,9 @@ int create_mjpg_avi_from_sd_images(const char* filename, sd_image_t* images, int
|
||||
|
||||
// Write '00dc' chunk (video frame)
|
||||
fwrite("00dc", 4, 1, f);
|
||||
write_u32_le(f, jpeg_data.size);
|
||||
write_u32_le(f, (uint32_t)jpeg_data.size);
|
||||
index[i].offset = ftell(f) - 8;
|
||||
index[i].size = jpeg_data.size;
|
||||
index[i].size = (uint32_t)jpeg_data.size;
|
||||
fwrite(jpeg_data.buf, 1, jpeg_data.size, f);
|
||||
|
||||
// Align to even byte size
|
||||
|
||||
@ -26,12 +26,16 @@ const char* previews_str[] = {
|
||||
"vae",
|
||||
};
|
||||
|
||||
std::regex format_specifier_regex("(?:[^%]|^)(?:%%)*(%\\d{0,3}d)");
|
||||
|
||||
struct SDCliParams {
|
||||
SDMode mode = IMG_GEN;
|
||||
std::string output_path = "output.png";
|
||||
int output_begin_idx = -1;
|
||||
|
||||
bool verbose = false;
|
||||
bool canny_preprocess = false;
|
||||
bool convert_name = false;
|
||||
|
||||
preview_t preview_method = PREVIEW_NONE;
|
||||
int preview_interval = 1;
|
||||
@ -49,7 +53,7 @@ struct SDCliParams {
|
||||
options.string_options = {
|
||||
{"-o",
|
||||
"--output",
|
||||
"path to write result image to (default: ./output.png)",
|
||||
"path to write result image to. you can use printf-style %d format specifiers for image sequences (default: ./output.png) (eg. output_%03d.png)",
|
||||
&output_path},
|
||||
{"",
|
||||
"--preview-path",
|
||||
@ -62,6 +66,10 @@ struct SDCliParams {
|
||||
"--preview-interval",
|
||||
"interval in denoising steps between consecutive updates of the image preview file (default is 1, meaning updating at every step)",
|
||||
&preview_interval},
|
||||
{"",
|
||||
"--output-begin-idx",
|
||||
"starting index for output image sequence, must be non-negative (default 0 if specified %d in output path, 1 otherwise)",
|
||||
&output_begin_idx},
|
||||
};
|
||||
|
||||
options.bool_options = {
|
||||
@ -69,6 +77,10 @@ struct SDCliParams {
|
||||
"--canny",
|
||||
"apply canny preprocessor (edge detection)",
|
||||
true, &canny_preprocess},
|
||||
{"",
|
||||
"--convert-name",
|
||||
"convert tensor name (for convert mode)",
|
||||
true, &convert_name},
|
||||
{"-v",
|
||||
"--verbose",
|
||||
"print extra info",
|
||||
@ -174,6 +186,7 @@ struct SDCliParams {
|
||||
<< " verbose: " << (verbose ? "true" : "false") << ",\n"
|
||||
<< " color: " << (color ? "true" : "false") << ",\n"
|
||||
<< " canny_preprocess: " << (canny_preprocess ? "true" : "false") << ",\n"
|
||||
<< " convert_name: " << (convert_name ? "true" : "false") << ",\n"
|
||||
<< " preview_method: " << previews_str[preview_method] << ",\n"
|
||||
<< " preview_interval: " << preview_interval << ",\n"
|
||||
<< " preview_path: \"" << preview_path << "\",\n"
|
||||
@ -232,7 +245,7 @@ std::string get_image_params(const SDCliParams& cli_params, const SDContextParam
|
||||
parameter_string += "Guidance: " + std::to_string(gen_params.sample_params.guidance.distilled_guidance) + ", ";
|
||||
parameter_string += "Eta: " + std::to_string(gen_params.sample_params.eta) + ", ";
|
||||
parameter_string += "Seed: " + std::to_string(seed) + ", ";
|
||||
parameter_string += "Size: " + std::to_string(gen_params.width) + "x" + std::to_string(gen_params.height) + ", ";
|
||||
parameter_string += "Size: " + std::to_string(gen_params.get_resolved_width()) + "x" + std::to_string(gen_params.get_resolved_height()) + ", ";
|
||||
parameter_string += "Model: " + sd_basename(ctx_params.model_path) + ", ";
|
||||
parameter_string += "RNG: " + std::string(sd_rng_type_name(ctx_params.rng_type)) + ", ";
|
||||
if (ctx_params.sampler_rng_type != RNG_TYPE_COUNT) {
|
||||
@ -338,6 +351,114 @@ void step_callback(int step, int frame_count, sd_image_t* image, bool is_noisy,
|
||||
}
|
||||
}
|
||||
|
||||
std::string format_frame_idx(std::string pattern, int frame_idx) {
|
||||
std::smatch match;
|
||||
std::string result = pattern;
|
||||
while (std::regex_search(result, match, format_specifier_regex)) {
|
||||
std::string specifier = match.str(1);
|
||||
char buffer[32];
|
||||
snprintf(buffer, sizeof(buffer), specifier.c_str(), frame_idx);
|
||||
result.replace(match.position(1), match.length(1), buffer);
|
||||
}
|
||||
|
||||
// Then replace all '%%' with '%'
|
||||
size_t pos = 0;
|
||||
while ((pos = result.find("%%", pos)) != std::string::npos) {
|
||||
result.replace(pos, 2, "%");
|
||||
pos += 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool save_results(const SDCliParams& cli_params,
|
||||
const SDContextParams& ctx_params,
|
||||
const SDGenerationParams& gen_params,
|
||||
sd_image_t* results,
|
||||
int num_results) {
|
||||
if (results == nullptr || num_results <= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
fs::path out_path = cli_params.output_path;
|
||||
|
||||
if (!out_path.parent_path().empty()) {
|
||||
std::error_code ec;
|
||||
fs::create_directories(out_path.parent_path(), ec);
|
||||
if (ec) {
|
||||
LOG_ERROR("failed to create directory '%s': %s",
|
||||
out_path.parent_path().string().c_str(), ec.message().c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
fs::path base_path = out_path;
|
||||
fs::path ext = out_path.has_extension() ? out_path.extension() : fs::path{};
|
||||
if (!ext.empty())
|
||||
base_path.replace_extension();
|
||||
|
||||
std::string ext_lower = ext.string();
|
||||
std::transform(ext_lower.begin(), ext_lower.end(), ext_lower.begin(), ::tolower);
|
||||
bool is_jpg = (ext_lower == ".jpg" || ext_lower == ".jpeg" || ext_lower == ".jpe");
|
||||
|
||||
int output_begin_idx = cli_params.output_begin_idx;
|
||||
if (output_begin_idx < 0) {
|
||||
output_begin_idx = 0;
|
||||
}
|
||||
|
||||
auto write_image = [&](const fs::path& path, int idx) {
|
||||
const sd_image_t& img = results[idx];
|
||||
if (!img.data)
|
||||
return;
|
||||
|
||||
std::string params = get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + idx);
|
||||
int ok = 0;
|
||||
if (is_jpg) {
|
||||
ok = stbi_write_jpg(path.string().c_str(), img.width, img.height, img.channel, img.data, 90, params.c_str());
|
||||
} else {
|
||||
ok = stbi_write_png(path.string().c_str(), img.width, img.height, img.channel, img.data, 0, params.c_str());
|
||||
}
|
||||
LOG_INFO("save result image %d to '%s' (%s)", idx, path.string().c_str(), ok ? "success" : "failure");
|
||||
};
|
||||
|
||||
if (std::regex_search(cli_params.output_path, format_specifier_regex)) {
|
||||
if (!is_jpg && ext_lower != ".png")
|
||||
ext = ".png";
|
||||
fs::path pattern = base_path;
|
||||
pattern += ext;
|
||||
|
||||
for (int i = 0; i < num_results; ++i) {
|
||||
fs::path img_path = format_frame_idx(pattern.string(), output_begin_idx + i);
|
||||
write_image(img_path, i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (cli_params.mode == VID_GEN && num_results > 1) {
|
||||
if (ext_lower != ".avi")
|
||||
ext = ".avi";
|
||||
fs::path video_path = base_path;
|
||||
video_path += ext;
|
||||
create_mjpg_avi_from_sd_images(video_path.string().c_str(), results, num_results, gen_params.fps);
|
||||
LOG_INFO("save result MJPG AVI video to '%s'", video_path.string().c_str());
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!is_jpg && ext_lower != ".png")
|
||||
ext = ".png";
|
||||
|
||||
for (int i = 0; i < num_results; ++i) {
|
||||
fs::path img_path = base_path;
|
||||
if (num_results > 1) {
|
||||
img_path += "_" + std::to_string(output_begin_idx + i);
|
||||
}
|
||||
img_path += ext;
|
||||
write_image(img_path, i);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
if (argc > 1 && std::string(argv[1]) == "--version") {
|
||||
std::cout << version_string() << "\n";
|
||||
@ -387,7 +508,8 @@ int main(int argc, const char* argv[]) {
|
||||
ctx_params.vae_path.c_str(),
|
||||
cli_params.output_path.c_str(),
|
||||
ctx_params.wtype,
|
||||
ctx_params.tensor_type_rules.c_str());
|
||||
ctx_params.tensor_type_rules.c_str(),
|
||||
cli_params.convert_name);
|
||||
if (!success) {
|
||||
LOG_ERROR("convert '%s'/'%s' to '%s' failed",
|
||||
ctx_params.model_path.c_str(),
|
||||
@ -404,10 +526,10 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
|
||||
bool vae_decode_only = true;
|
||||
sd_image_t init_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t end_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t control_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t mask_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 1, nullptr};
|
||||
sd_image_t init_image = {0, 0, 3, nullptr};
|
||||
sd_image_t end_image = {0, 0, 3, nullptr};
|
||||
sd_image_t control_image = {0, 0, 3, nullptr};
|
||||
sd_image_t mask_image = {0, 0, 1, nullptr};
|
||||
std::vector<sd_image_t> ref_images;
|
||||
std::vector<sd_image_t> pmid_images;
|
||||
std::vector<sd_image_t> control_frames;
|
||||
@ -434,57 +556,79 @@ int main(int argc, const char* argv[]) {
|
||||
control_frames.clear();
|
||||
};
|
||||
|
||||
auto load_image_and_update_size = [&](const std::string& path,
|
||||
sd_image_t& image,
|
||||
bool resize_image = true,
|
||||
int expected_channel = 3) -> bool {
|
||||
int expected_width = 0;
|
||||
int expected_height = 0;
|
||||
if (resize_image && gen_params.width_and_height_are_set()) {
|
||||
expected_width = gen_params.width;
|
||||
expected_height = gen_params.height;
|
||||
}
|
||||
|
||||
if (!load_sd_image_from_file(&image, path.c_str(), expected_width, expected_height, expected_channel)) {
|
||||
LOG_ERROR("load image from '%s' failed", path.c_str());
|
||||
release_all_resources();
|
||||
return false;
|
||||
}
|
||||
|
||||
gen_params.set_width_and_height_if_unset(image.width, image.height);
|
||||
return true;
|
||||
};
|
||||
|
||||
if (gen_params.init_image_path.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
init_image.data = load_image_from_file(gen_params.init_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (init_image.data == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.init_image_path.c_str());
|
||||
release_all_resources();
|
||||
if (!load_image_and_update_size(gen_params.init_image_path, init_image)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.end_image_path.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
end_image.data = load_image_from_file(gen_params.end_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (end_image.data == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.end_image_path.c_str());
|
||||
release_all_resources();
|
||||
if (!load_image_and_update_size(gen_params.init_image_path, end_image)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.ref_image_paths.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
for (auto& path : gen_params.ref_image_paths) {
|
||||
sd_image_t ref_image = {0, 0, 3, nullptr};
|
||||
if (!load_image_and_update_size(path, ref_image, false)) {
|
||||
return 1;
|
||||
}
|
||||
ref_images.push_back(ref_image);
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.mask_image_path.size() > 0) {
|
||||
int c = 0;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
mask_image.data = load_image_from_file(gen_params.mask_image_path.c_str(), width, height, gen_params.width, gen_params.height, 1);
|
||||
if (mask_image.data == nullptr) {
|
||||
if (!load_sd_image_from_file(&mask_image,
|
||||
gen_params.mask_image_path.c_str(),
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
1)) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.mask_image_path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
mask_image.data = (uint8_t*)malloc(gen_params.width * gen_params.height);
|
||||
memset(mask_image.data, 255, gen_params.width * gen_params.height);
|
||||
mask_image.data = (uint8_t*)malloc(gen_params.get_resolved_width() * gen_params.get_resolved_height());
|
||||
if (mask_image.data == nullptr) {
|
||||
LOG_ERROR("malloc mask image failed");
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
mask_image.width = gen_params.get_resolved_width();
|
||||
mask_image.height = gen_params.get_resolved_height();
|
||||
memset(mask_image.data, 255, gen_params.get_resolved_width() * gen_params.get_resolved_height());
|
||||
}
|
||||
|
||||
if (gen_params.control_image_path.size() > 0) {
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
control_image.data = load_image_from_file(gen_params.control_image_path.c_str(), width, height, gen_params.width, gen_params.height);
|
||||
if (control_image.data == nullptr) {
|
||||
if (!load_sd_image_from_file(&control_image,
|
||||
gen_params.control_image_path.c_str(),
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height())) {
|
||||
LOG_ERROR("load image from '%s' failed", gen_params.control_image_path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
@ -499,29 +643,11 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
}
|
||||
|
||||
if (gen_params.ref_image_paths.size() > 0) {
|
||||
vae_decode_only = false;
|
||||
for (auto& path : gen_params.ref_image_paths) {
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
uint8_t* image_buffer = load_image_from_file(path.c_str(), width, height);
|
||||
if (image_buffer == nullptr) {
|
||||
LOG_ERROR("load image from '%s' failed", path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
ref_images.push_back({(uint32_t)width,
|
||||
(uint32_t)height,
|
||||
3,
|
||||
image_buffer});
|
||||
}
|
||||
}
|
||||
|
||||
if (!gen_params.control_video_path.empty()) {
|
||||
if (!load_images_from_dir(gen_params.control_video_path,
|
||||
control_frames,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.video_frames,
|
||||
cli_params.verbose)) {
|
||||
release_all_resources();
|
||||
@ -595,8 +721,8 @@ int main(int argc, const char* argv[]) {
|
||||
gen_params.auto_resize_ref_image,
|
||||
gen_params.increase_ref_index,
|
||||
mask_image,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.sample_params,
|
||||
gen_params.strength,
|
||||
gen_params.seed,
|
||||
@ -610,7 +736,7 @@ int main(int argc, const char* argv[]) {
|
||||
gen_params.pm_style_strength,
|
||||
}, // pm_params
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.easycache_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
@ -626,8 +752,8 @@ int main(int argc, const char* argv[]) {
|
||||
end_image,
|
||||
control_frames.data(),
|
||||
(int)control_frames.size(),
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.get_resolved_width(),
|
||||
gen_params.get_resolved_height(),
|
||||
gen_params.sample_params,
|
||||
gen_params.high_noise_sample_params,
|
||||
gen_params.moe_boundary,
|
||||
@ -635,7 +761,8 @@ int main(int argc, const char* argv[]) {
|
||||
gen_params.seed,
|
||||
gen_params.video_frames,
|
||||
gen_params.vace_strength,
|
||||
gen_params.easycache_params,
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
results = generate_video(sd_ctx, &vid_gen_params, &num_results);
|
||||
@ -680,67 +807,8 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
}
|
||||
|
||||
// create directory if not exists
|
||||
{
|
||||
const fs::path out_path = cli_params.output_path;
|
||||
if (const fs::path out_dir = out_path.parent_path(); !out_dir.empty()) {
|
||||
std::error_code ec;
|
||||
fs::create_directories(out_dir, ec); // OK if already exists
|
||||
if (ec) {
|
||||
LOG_ERROR("failed to create directory '%s': %s",
|
||||
out_dir.string().c_str(), ec.message().c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string base_path;
|
||||
std::string file_ext;
|
||||
std::string file_ext_lower;
|
||||
bool is_jpg;
|
||||
size_t last_dot_pos = cli_params.output_path.find_last_of(".");
|
||||
size_t last_slash_pos = std::min(cli_params.output_path.find_last_of("/"),
|
||||
cli_params.output_path.find_last_of("\\"));
|
||||
if (last_dot_pos != std::string::npos && (last_slash_pos == std::string::npos || last_dot_pos > last_slash_pos)) { // filename has extension
|
||||
base_path = cli_params.output_path.substr(0, last_dot_pos);
|
||||
file_ext = file_ext_lower = cli_params.output_path.substr(last_dot_pos);
|
||||
std::transform(file_ext.begin(), file_ext.end(), file_ext_lower.begin(), ::tolower);
|
||||
is_jpg = (file_ext_lower == ".jpg" || file_ext_lower == ".jpeg" || file_ext_lower == ".jpe");
|
||||
} else {
|
||||
base_path = cli_params.output_path;
|
||||
file_ext = file_ext_lower = "";
|
||||
is_jpg = false;
|
||||
}
|
||||
|
||||
if (cli_params.mode == VID_GEN && num_results > 1) {
|
||||
std::string vid_output_path = cli_params.output_path;
|
||||
if (file_ext_lower == ".png") {
|
||||
vid_output_path = base_path + ".avi";
|
||||
}
|
||||
create_mjpg_avi_from_sd_images(vid_output_path.c_str(), results, num_results, gen_params.fps);
|
||||
LOG_INFO("save result MJPG AVI video to '%s'\n", vid_output_path.c_str());
|
||||
} else {
|
||||
// appending ".png" to absent or unknown extension
|
||||
if (!is_jpg && file_ext_lower != ".png") {
|
||||
base_path += file_ext;
|
||||
file_ext = ".png";
|
||||
}
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
if (results[i].data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
int write_ok;
|
||||
std::string final_image_path = i > 0 ? base_path + "_" + std::to_string(i + 1) + file_ext : base_path + file_ext;
|
||||
if (is_jpg) {
|
||||
write_ok = stbi_write_jpg(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
|
||||
results[i].data, 90, get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + i).c_str());
|
||||
LOG_INFO("save result JPEG image to '%s' (%s)", final_image_path.c_str(), write_ok == 0 ? "failure" : "success");
|
||||
} else {
|
||||
write_ok = stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
|
||||
results[i].data, 0, get_image_params(cli_params, ctx_params, gen_params, gen_params.seed + i).c_str());
|
||||
LOG_INFO("save result PNG image to '%s' (%s)", final_image_path.c_str(), write_ok == 0 ? "failure" : "success");
|
||||
}
|
||||
}
|
||||
if (!save_results(cli_params, ctx_params, gen_params, results, num_results)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
|
||||
@ -95,17 +95,28 @@ static void print_utf8(FILE* stream, const char* utf8) {
|
||||
? GetStdHandle(STD_ERROR_HANDLE)
|
||||
: GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, utf8, -1, NULL, 0);
|
||||
if (wlen <= 0)
|
||||
return;
|
||||
DWORD mode;
|
||||
BOOL is_console = GetConsoleMode(h, &mode);
|
||||
|
||||
wchar_t* wbuf = (wchar_t*)malloc(wlen * sizeof(wchar_t));
|
||||
MultiByteToWideChar(CP_UTF8, 0, utf8, -1, wbuf, wlen);
|
||||
if (is_console) {
|
||||
int wlen = MultiByteToWideChar(CP_UTF8, 0, utf8, -1, NULL, 0);
|
||||
if (wlen <= 0)
|
||||
return;
|
||||
|
||||
DWORD written;
|
||||
WriteConsoleW(h, wbuf, wlen - 1, &written, NULL);
|
||||
wchar_t* wbuf = (wchar_t*)malloc(wlen * sizeof(wchar_t));
|
||||
if (!wbuf)
|
||||
return;
|
||||
|
||||
free(wbuf);
|
||||
MultiByteToWideChar(CP_UTF8, 0, utf8, -1, wbuf, wlen);
|
||||
|
||||
DWORD written;
|
||||
WriteConsoleW(h, wbuf, wlen - 1, &written, NULL);
|
||||
|
||||
free(wbuf);
|
||||
} else {
|
||||
DWORD written;
|
||||
WriteFile(h, utf8, (DWORD)strlen(utf8), &written, NULL);
|
||||
}
|
||||
#else
|
||||
fputs(utf8, stream);
|
||||
#endif
|
||||
@ -434,7 +445,7 @@ struct SDContextParams {
|
||||
std::string photo_maker_path;
|
||||
sd_type_t wtype = SD_TYPE_COUNT;
|
||||
std::string tensor_type_rules;
|
||||
std::string lora_model_dir;
|
||||
std::string lora_model_dir = ".";
|
||||
|
||||
std::map<std::string, std::string> embedding_map;
|
||||
std::vector<sd_embedding_t> embedding_vec;
|
||||
@ -442,17 +453,25 @@ struct SDContextParams {
|
||||
rng_type_t rng_type = CUDA_RNG;
|
||||
rng_type_t sampler_rng_type = RNG_TYPE_COUNT;
|
||||
bool offload_params_to_cpu = false;
|
||||
bool enable_mmap = false;
|
||||
bool control_net_cpu = false;
|
||||
bool clip_on_cpu = false;
|
||||
bool vae_on_cpu = false;
|
||||
bool flash_attn = false;
|
||||
bool diffusion_flash_attn = false;
|
||||
bool diffusion_conv_direct = false;
|
||||
bool vae_conv_direct = false;
|
||||
|
||||
bool circular = false;
|
||||
bool circular_x = false;
|
||||
bool circular_y = false;
|
||||
|
||||
bool chroma_use_dit_mask = true;
|
||||
bool chroma_use_t5_mask = false;
|
||||
int chroma_t5_mask_pad = 1;
|
||||
|
||||
bool qwen_image_zero_cond_t = false;
|
||||
|
||||
prediction_t prediction = PREDICTION_COUNT;
|
||||
lora_apply_mode_t lora_apply_mode = LORA_APPLY_AUTO;
|
||||
|
||||
@ -581,6 +600,10 @@ struct SDContextParams {
|
||||
"--offload-to-cpu",
|
||||
"place the weights in RAM to save VRAM, and automatically load them into VRAM when needed",
|
||||
true, &offload_params_to_cpu},
|
||||
{"",
|
||||
"--mmap",
|
||||
"whether to memory-map model",
|
||||
true, &enable_mmap},
|
||||
{"",
|
||||
"--control-net-cpu",
|
||||
"keep controlnet in cpu (for low vram)",
|
||||
@ -593,9 +616,13 @@ struct SDContextParams {
|
||||
"--vae-on-cpu",
|
||||
"keep vae in cpu (for low vram)",
|
||||
true, &vae_on_cpu},
|
||||
{"",
|
||||
"--fa",
|
||||
"use flash attention",
|
||||
true, &flash_attn},
|
||||
{"",
|
||||
"--diffusion-fa",
|
||||
"use flash attention in the diffusion model",
|
||||
"use flash attention in the diffusion model only",
|
||||
true, &diffusion_flash_attn},
|
||||
{"",
|
||||
"--diffusion-conv-direct",
|
||||
@ -605,10 +632,26 @@ struct SDContextParams {
|
||||
"--vae-conv-direct",
|
||||
"use ggml_conv2d_direct in the vae model",
|
||||
true, &vae_conv_direct},
|
||||
{"",
|
||||
"--circular",
|
||||
"enable circular padding for convolutions",
|
||||
true, &circular},
|
||||
{"",
|
||||
"--circularx",
|
||||
"enable circular RoPE wrapping on x-axis (width) only",
|
||||
true, &circular_x},
|
||||
{"",
|
||||
"--circulary",
|
||||
"enable circular RoPE wrapping on y-axis (height) only",
|
||||
true, &circular_y},
|
||||
{"",
|
||||
"--chroma-disable-dit-mask",
|
||||
"disable dit mask for chroma",
|
||||
false, &chroma_use_dit_mask},
|
||||
{"",
|
||||
"--qwen-image-zero-cond-t",
|
||||
"enable zero_cond_t for qwen image",
|
||||
true, &qwen_image_zero_cond_t},
|
||||
{"",
|
||||
"--chroma-enable-t5-mask",
|
||||
"enable t5 mask for chroma",
|
||||
@ -771,7 +814,7 @@ struct SDContextParams {
|
||||
}
|
||||
|
||||
void build_embedding_map() {
|
||||
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
|
||||
static const std::vector<std::string> valid_ext = {".gguf", ".safetensors", ".pt"};
|
||||
|
||||
if (!fs::exists(embedding_dir) || !fs::is_directory(embedding_dir)) {
|
||||
return;
|
||||
@ -862,13 +905,19 @@ struct SDContextParams {
|
||||
<< " sampler_rng_type: " << sd_rng_type_name(sampler_rng_type) << ",\n"
|
||||
<< " flow_shift: " << (std::isinf(flow_shift) ? "INF" : std::to_string(flow_shift)) << "\n"
|
||||
<< " offload_params_to_cpu: " << (offload_params_to_cpu ? "true" : "false") << ",\n"
|
||||
<< " enable_mmap: " << (enable_mmap ? "true" : "false") << ",\n"
|
||||
<< " control_net_cpu: " << (control_net_cpu ? "true" : "false") << ",\n"
|
||||
<< " clip_on_cpu: " << (clip_on_cpu ? "true" : "false") << ",\n"
|
||||
<< " vae_on_cpu: " << (vae_on_cpu ? "true" : "false") << ",\n"
|
||||
<< " flash_attn: " << (flash_attn ? "true" : "false") << ",\n"
|
||||
<< " diffusion_flash_attn: " << (diffusion_flash_attn ? "true" : "false") << ",\n"
|
||||
<< " diffusion_conv_direct: " << (diffusion_conv_direct ? "true" : "false") << ",\n"
|
||||
<< " vae_conv_direct: " << (vae_conv_direct ? "true" : "false") << ",\n"
|
||||
<< " circular: " << (circular ? "true" : "false") << ",\n"
|
||||
<< " circular_x: " << (circular_x ? "true" : "false") << ",\n"
|
||||
<< " circular_y: " << (circular_y ? "true" : "false") << ",\n"
|
||||
<< " chroma_use_dit_mask: " << (chroma_use_dit_mask ? "true" : "false") << ",\n"
|
||||
<< " qwen_image_zero_cond_t: " << (qwen_image_zero_cond_t ? "true" : "false") << ",\n"
|
||||
<< " chroma_use_t5_mask: " << (chroma_use_t5_mask ? "true" : "false") << ",\n"
|
||||
<< " chroma_t5_mask_pad: " << chroma_t5_mask_pad << ",\n"
|
||||
<< " prediction: " << sd_prediction_name(prediction) << ",\n"
|
||||
@ -921,17 +970,22 @@ struct SDContextParams {
|
||||
prediction,
|
||||
lora_apply_mode,
|
||||
offload_params_to_cpu,
|
||||
enable_mmap,
|
||||
clip_on_cpu,
|
||||
control_net_cpu,
|
||||
vae_on_cpu,
|
||||
flash_attn,
|
||||
diffusion_flash_attn,
|
||||
taesd_preview,
|
||||
diffusion_conv_direct,
|
||||
vae_conv_direct,
|
||||
circular || circular_x,
|
||||
circular || circular_y,
|
||||
force_sdxl_vae_conv_scale,
|
||||
chroma_use_dit_mask,
|
||||
chroma_use_t5_mask,
|
||||
chroma_t5_mask_pad,
|
||||
qwen_image_zero_cond_t,
|
||||
flow_shift,
|
||||
};
|
||||
return sd_ctx_params;
|
||||
@ -977,8 +1031,8 @@ struct SDGenerationParams {
|
||||
std::string prompt_with_lora; // for metadata record only
|
||||
std::string negative_prompt;
|
||||
int clip_skip = -1; // <= 0 represents unspecified
|
||||
int width = 512;
|
||||
int height = 512;
|
||||
int width = -1;
|
||||
int height = -1;
|
||||
int batch_count = 1;
|
||||
std::string init_image_path;
|
||||
std::string end_image_path;
|
||||
@ -997,8 +1051,12 @@ struct SDGenerationParams {
|
||||
|
||||
std::vector<float> custom_sigmas;
|
||||
|
||||
std::string easycache_option;
|
||||
sd_easycache_params_t easycache_params;
|
||||
std::string cache_mode;
|
||||
std::string cache_option;
|
||||
std::string cache_preset;
|
||||
std::string scm_mask;
|
||||
bool scm_policy_dynamic = true;
|
||||
sd_cache_params_t cache_params{};
|
||||
|
||||
float moe_boundary = 0.875f;
|
||||
int video_frames = 1;
|
||||
@ -1335,10 +1393,10 @@ struct SDGenerationParams {
|
||||
if (!item.empty()) {
|
||||
try {
|
||||
custom_sigmas.push_back(std::stof(item));
|
||||
} catch (const std::invalid_argument& e) {
|
||||
} catch (const std::invalid_argument&) {
|
||||
LOG_ERROR("error: invalid float value '%s' in --sigmas", item.c_str());
|
||||
return -1;
|
||||
} catch (const std::out_of_range& e) {
|
||||
} catch (const std::out_of_range&) {
|
||||
LOG_ERROR("error: float value '%s' out of range in --sigmas", item.c_str());
|
||||
return -1;
|
||||
}
|
||||
@ -1360,36 +1418,64 @@ struct SDGenerationParams {
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_easycache_arg = [&](int argc, const char** argv, int index) {
|
||||
const std::string default_values = "0.2,0.15,0.95";
|
||||
auto looks_like_value = [](const std::string& token) {
|
||||
if (token.empty()) {
|
||||
return false;
|
||||
}
|
||||
if (token[0] != '-') {
|
||||
return true;
|
||||
}
|
||||
if (token.size() == 1) {
|
||||
return false;
|
||||
}
|
||||
unsigned char next = static_cast<unsigned char>(token[1]);
|
||||
return std::isdigit(next) || token[1] == '.';
|
||||
};
|
||||
auto on_cache_mode_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
cache_mode = argv_to_utf8(index, argv);
|
||||
if (cache_mode != "easycache" && cache_mode != "ucache" &&
|
||||
cache_mode != "dbcache" && cache_mode != "taylorseer" && cache_mode != "cache-dit") {
|
||||
fprintf(stderr, "error: invalid cache mode '%s', must be 'easycache', 'ucache', 'dbcache', 'taylorseer', or 'cache-dit'\n", cache_mode.c_str());
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
std::string option_value;
|
||||
int consumed = 0;
|
||||
if (index + 1 < argc) {
|
||||
std::string next_arg = argv[index + 1];
|
||||
if (looks_like_value(next_arg)) {
|
||||
option_value = argv_to_utf8(index + 1, argv);
|
||||
consumed = 1;
|
||||
}
|
||||
auto on_cache_option_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
if (option_value.empty()) {
|
||||
option_value = default_values;
|
||||
cache_option = argv_to_utf8(index, argv);
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_scm_mask_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
easycache_option = option_value;
|
||||
return consumed;
|
||||
scm_mask = argv_to_utf8(index, argv);
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_scm_policy_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
std::string policy = argv_to_utf8(index, argv);
|
||||
if (policy == "dynamic") {
|
||||
scm_policy_dynamic = true;
|
||||
} else if (policy == "static") {
|
||||
scm_policy_dynamic = false;
|
||||
} else {
|
||||
fprintf(stderr, "error: invalid scm policy '%s', must be 'dynamic' or 'static'\n", policy.c_str());
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_cache_preset_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
cache_preset = argv_to_utf8(index, argv);
|
||||
if (cache_preset != "slow" && cache_preset != "s" && cache_preset != "S" &&
|
||||
cache_preset != "medium" && cache_preset != "m" && cache_preset != "M" &&
|
||||
cache_preset != "fast" && cache_preset != "f" && cache_preset != "F" &&
|
||||
cache_preset != "ultra" && cache_preset != "u" && cache_preset != "U") {
|
||||
fprintf(stderr, "error: invalid cache preset '%s', must be 'slow'/'s', 'medium'/'m', 'fast'/'f', or 'ultra'/'u'\n", cache_preset.c_str());
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
options.manual_options = {
|
||||
@ -1399,17 +1485,17 @@ struct SDGenerationParams {
|
||||
on_seed_arg},
|
||||
{"",
|
||||
"--sampling-method",
|
||||
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd] "
|
||||
"sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s] "
|
||||
"(default: euler for Flux/SD3/Wan, euler_a otherwise)",
|
||||
on_sample_method_arg},
|
||||
{"",
|
||||
"--high-noise-sampling-method",
|
||||
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd]"
|
||||
"(high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd, res_multistep, res_2s]"
|
||||
" default: euler for Flux/SD3/Wan, euler_a otherwise",
|
||||
on_high_noise_sample_method_arg},
|
||||
{"",
|
||||
"--scheduler",
|
||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm], default: discrete",
|
||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm, bong_tangent], default: discrete",
|
||||
on_scheduler_arg},
|
||||
{"",
|
||||
"--sigmas",
|
||||
@ -1428,9 +1514,25 @@ struct SDGenerationParams {
|
||||
"reference image for Flux Kontext models (can be used multiple times)",
|
||||
on_ref_image_arg},
|
||||
{"",
|
||||
"--easycache",
|
||||
"enable EasyCache for DiT models with optional \"threshold,start_percent,end_percent\" (default: 0.2,0.15,0.95)",
|
||||
on_easycache_arg},
|
||||
"--cache-mode",
|
||||
"caching method: 'easycache' (DiT), 'ucache' (UNET), 'dbcache'/'taylorseer'/'cache-dit' (DiT block-level)",
|
||||
on_cache_mode_arg},
|
||||
{"",
|
||||
"--cache-option",
|
||||
"named cache params (key=value format, comma-separated). easycache/ucache: threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples: \"threshold=0.25\" or \"threshold=1.5,reset=0\"",
|
||||
on_cache_option_arg},
|
||||
{"",
|
||||
"--cache-preset",
|
||||
"cache-dit preset: 'slow'/'s', 'medium'/'m', 'fast'/'f', 'ultra'/'u'",
|
||||
on_cache_preset_arg},
|
||||
{"",
|
||||
"--scm-mask",
|
||||
"SCM steps mask for cache-dit: comma-separated 0/1 (e.g., \"1,1,1,0,0,1,0,0,1,0\") - 1=compute, 0=can cache",
|
||||
on_scm_mask_arg},
|
||||
{"",
|
||||
"--scm-policy",
|
||||
"SCM policy: 'dynamic' (default) or 'static'",
|
||||
on_scm_policy_arg},
|
||||
|
||||
};
|
||||
|
||||
@ -1473,7 +1575,10 @@ struct SDGenerationParams {
|
||||
|
||||
load_if_exists("prompt", prompt);
|
||||
load_if_exists("negative_prompt", negative_prompt);
|
||||
load_if_exists("easycache_option", easycache_option);
|
||||
load_if_exists("cache_mode", cache_mode);
|
||||
load_if_exists("cache_option", cache_option);
|
||||
load_if_exists("cache_preset", cache_preset);
|
||||
load_if_exists("scm_mask", scm_mask);
|
||||
|
||||
load_if_exists("clip_skip", clip_skip);
|
||||
load_if_exists("width", width);
|
||||
@ -1496,10 +1601,30 @@ struct SDGenerationParams {
|
||||
load_if_exists("skip_layers", skip_layers);
|
||||
load_if_exists("high_noise_skip_layers", high_noise_skip_layers);
|
||||
|
||||
load_if_exists("steps", sample_params.sample_steps);
|
||||
load_if_exists("high_noise_steps", high_noise_sample_params.sample_steps);
|
||||
load_if_exists("cfg_scale", sample_params.guidance.txt_cfg);
|
||||
load_if_exists("img_cfg_scale", sample_params.guidance.img_cfg);
|
||||
load_if_exists("guidance", sample_params.guidance.distilled_guidance);
|
||||
|
||||
auto load_sampler_if_exists = [&](const char* key, enum sample_method_t& out) {
|
||||
if (j.contains(key) && j[key].is_string()) {
|
||||
enum sample_method_t tmp = str_to_sample_method(j[key].get<std::string>().c_str());
|
||||
if (tmp != SAMPLE_METHOD_COUNT) {
|
||||
out = tmp;
|
||||
}
|
||||
}
|
||||
};
|
||||
load_sampler_if_exists("sample_method", sample_params.sample_method);
|
||||
load_sampler_if_exists("high_noise_sample_method", high_noise_sample_params.sample_method);
|
||||
|
||||
if (j.contains("scheduler") && j["scheduler"].is_string()) {
|
||||
enum scheduler_t tmp = str_to_scheduler(j["scheduler"].get<std::string>().c_str());
|
||||
if (tmp != SCHEDULER_COUNT) {
|
||||
sample_params.scheduler = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1508,7 +1633,7 @@ struct SDGenerationParams {
|
||||
return;
|
||||
}
|
||||
static const std::regex re(R"(<lora:([^:>]+):([^>]+)>)");
|
||||
static const std::vector<std::string> valid_ext = {".pt", ".safetensors", ".gguf"};
|
||||
static const std::vector<std::string> valid_ext = {".gguf", ".safetensors", ".pt"};
|
||||
std::smatch m;
|
||||
|
||||
std::string tmp = prompt;
|
||||
@ -1587,17 +1712,24 @@ struct SDGenerationParams {
|
||||
}
|
||||
}
|
||||
|
||||
bool width_and_height_are_set() const {
|
||||
return width > 0 && height > 0;
|
||||
}
|
||||
|
||||
void set_width_and_height_if_unset(int w, int h) {
|
||||
if (!width_and_height_are_set()) {
|
||||
LOG_INFO("set width x height to %d x %d", w, h);
|
||||
width = w;
|
||||
height = h;
|
||||
}
|
||||
}
|
||||
|
||||
int get_resolved_width() const { return (width > 0) ? width : 512; }
|
||||
|
||||
int get_resolved_height() const { return (height > 0) ? height : 512; }
|
||||
|
||||
bool process_and_check(SDMode mode, const std::string& lora_model_dir) {
|
||||
prompt_with_lora = prompt;
|
||||
if (width <= 0) {
|
||||
LOG_ERROR("error: the width must be greater than 0\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (height <= 0) {
|
||||
LOG_ERROR("error: the height must be greater than 0\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (sample_params.sample_steps <= 0) {
|
||||
LOG_ERROR("error: the sample_steps must be greater than 0\n");
|
||||
@ -1613,57 +1745,118 @@ struct SDGenerationParams {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!easycache_option.empty()) {
|
||||
float values[3] = {0.0f, 0.0f, 0.0f};
|
||||
std::stringstream ss(easycache_option);
|
||||
sd_cache_params_init(&cache_params);
|
||||
|
||||
auto parse_named_params = [&](const std::string& opt_str) -> bool {
|
||||
std::stringstream ss(opt_str);
|
||||
std::string token;
|
||||
int idx = 0;
|
||||
while (std::getline(ss, token, ',')) {
|
||||
auto trim = [](std::string& s) {
|
||||
const char* whitespace = " \t\r\n";
|
||||
auto start = s.find_first_not_of(whitespace);
|
||||
if (start == std::string::npos) {
|
||||
s.clear();
|
||||
return;
|
||||
}
|
||||
auto end = s.find_last_not_of(whitespace);
|
||||
s = s.substr(start, end - start + 1);
|
||||
};
|
||||
trim(token);
|
||||
if (token.empty()) {
|
||||
LOG_ERROR("error: invalid easycache option '%s'", easycache_option.c_str());
|
||||
return false;
|
||||
}
|
||||
if (idx >= 3) {
|
||||
LOG_ERROR("error: easycache expects exactly 3 comma-separated values (threshold,start,end)\n");
|
||||
size_t eq_pos = token.find('=');
|
||||
if (eq_pos == std::string::npos) {
|
||||
LOG_ERROR("error: cache option '%s' missing '=' separator", token.c_str());
|
||||
return false;
|
||||
}
|
||||
std::string key = token.substr(0, eq_pos);
|
||||
std::string val = token.substr(eq_pos + 1);
|
||||
try {
|
||||
values[idx] = std::stof(token);
|
||||
if (key == "threshold") {
|
||||
if (cache_mode == "easycache" || cache_mode == "ucache") {
|
||||
cache_params.reuse_threshold = std::stof(val);
|
||||
} else {
|
||||
cache_params.residual_diff_threshold = std::stof(val);
|
||||
}
|
||||
} else if (key == "start") {
|
||||
cache_params.start_percent = std::stof(val);
|
||||
} else if (key == "end") {
|
||||
cache_params.end_percent = std::stof(val);
|
||||
} else if (key == "decay") {
|
||||
cache_params.error_decay_rate = std::stof(val);
|
||||
} else if (key == "relative") {
|
||||
cache_params.use_relative_threshold = (std::stof(val) != 0.0f);
|
||||
} else if (key == "reset") {
|
||||
cache_params.reset_error_on_compute = (std::stof(val) != 0.0f);
|
||||
} else if (key == "Fn" || key == "fn") {
|
||||
cache_params.Fn_compute_blocks = std::stoi(val);
|
||||
} else if (key == "Bn" || key == "bn") {
|
||||
cache_params.Bn_compute_blocks = std::stoi(val);
|
||||
} else if (key == "warmup") {
|
||||
cache_params.max_warmup_steps = std::stoi(val);
|
||||
} else {
|
||||
LOG_ERROR("error: unknown cache parameter '%s'", key.c_str());
|
||||
return false;
|
||||
}
|
||||
} catch (const std::exception&) {
|
||||
LOG_ERROR("error: invalid easycache value '%s'", token.c_str());
|
||||
LOG_ERROR("error: invalid value '%s' for parameter '%s'", val.c_str(), key.c_str());
|
||||
return false;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
if (idx != 3) {
|
||||
LOG_ERROR("error: easycache expects exactly 3 comma-separated values (threshold,start,end)\n");
|
||||
return false;
|
||||
return true;
|
||||
};
|
||||
|
||||
if (!cache_mode.empty()) {
|
||||
if (cache_mode == "easycache") {
|
||||
cache_params.mode = SD_CACHE_EASYCACHE;
|
||||
cache_params.reuse_threshold = 0.2f;
|
||||
cache_params.start_percent = 0.15f;
|
||||
cache_params.end_percent = 0.95f;
|
||||
cache_params.error_decay_rate = 1.0f;
|
||||
cache_params.use_relative_threshold = true;
|
||||
cache_params.reset_error_on_compute = true;
|
||||
} else if (cache_mode == "ucache") {
|
||||
cache_params.mode = SD_CACHE_UCACHE;
|
||||
cache_params.reuse_threshold = 1.0f;
|
||||
cache_params.start_percent = 0.15f;
|
||||
cache_params.end_percent = 0.95f;
|
||||
cache_params.error_decay_rate = 1.0f;
|
||||
cache_params.use_relative_threshold = true;
|
||||
cache_params.reset_error_on_compute = true;
|
||||
} else if (cache_mode == "dbcache") {
|
||||
cache_params.mode = SD_CACHE_DBCACHE;
|
||||
cache_params.Fn_compute_blocks = 8;
|
||||
cache_params.Bn_compute_blocks = 0;
|
||||
cache_params.residual_diff_threshold = 0.08f;
|
||||
cache_params.max_warmup_steps = 8;
|
||||
} else if (cache_mode == "taylorseer") {
|
||||
cache_params.mode = SD_CACHE_TAYLORSEER;
|
||||
cache_params.Fn_compute_blocks = 8;
|
||||
cache_params.Bn_compute_blocks = 0;
|
||||
cache_params.residual_diff_threshold = 0.08f;
|
||||
cache_params.max_warmup_steps = 8;
|
||||
} else if (cache_mode == "cache-dit") {
|
||||
cache_params.mode = SD_CACHE_CACHE_DIT;
|
||||
cache_params.Fn_compute_blocks = 8;
|
||||
cache_params.Bn_compute_blocks = 0;
|
||||
cache_params.residual_diff_threshold = 0.08f;
|
||||
cache_params.max_warmup_steps = 8;
|
||||
}
|
||||
if (values[0] < 0.0f) {
|
||||
LOG_ERROR("error: easycache threshold must be non-negative\n");
|
||||
return false;
|
||||
|
||||
if (!cache_option.empty()) {
|
||||
if (!parse_named_params(cache_option)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (values[1] < 0.0f || values[1] >= 1.0f || values[2] <= 0.0f || values[2] > 1.0f || values[1] >= values[2]) {
|
||||
LOG_ERROR("error: easycache start/end percents must satisfy 0.0 <= start < end <= 1.0\n");
|
||||
return false;
|
||||
|
||||
if (cache_mode == "easycache" || cache_mode == "ucache") {
|
||||
if (cache_params.reuse_threshold < 0.0f) {
|
||||
LOG_ERROR("error: cache threshold must be non-negative");
|
||||
return false;
|
||||
}
|
||||
if (cache_params.start_percent < 0.0f || cache_params.start_percent >= 1.0f ||
|
||||
cache_params.end_percent <= 0.0f || cache_params.end_percent > 1.0f ||
|
||||
cache_params.start_percent >= cache_params.end_percent) {
|
||||
LOG_ERROR("error: cache start/end percents must satisfy 0.0 <= start < end <= 1.0");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
easycache_params.enabled = true;
|
||||
easycache_params.reuse_threshold = values[0];
|
||||
easycache_params.start_percent = values[1];
|
||||
easycache_params.end_percent = values[2];
|
||||
} else {
|
||||
easycache_params.enabled = false;
|
||||
}
|
||||
|
||||
if (cache_params.mode == SD_CACHE_DBCACHE ||
|
||||
cache_params.mode == SD_CACHE_TAYLORSEER ||
|
||||
cache_params.mode == SD_CACHE_CACHE_DIT) {
|
||||
if (!scm_mask.empty()) {
|
||||
cache_params.scm_mask = scm_mask.c_str();
|
||||
}
|
||||
cache_params.scm_policy_dynamic = scm_policy_dynamic;
|
||||
}
|
||||
|
||||
sample_params.guidance.slg.layers = skip_layers.data();
|
||||
@ -1765,12 +1958,13 @@ struct SDGenerationParams {
|
||||
<< " high_noise_skip_layers: " << vec_to_string(high_noise_skip_layers) << ",\n"
|
||||
<< " high_noise_sample_params: " << high_noise_sample_params_str << ",\n"
|
||||
<< " custom_sigmas: " << vec_to_string(custom_sigmas) << ",\n"
|
||||
<< " easycache_option: \"" << easycache_option << "\",\n"
|
||||
<< " easycache: "
|
||||
<< (easycache_params.enabled ? "enabled" : "disabled")
|
||||
<< " (threshold=" << easycache_params.reuse_threshold
|
||||
<< ", start=" << easycache_params.start_percent
|
||||
<< ", end=" << easycache_params.end_percent << "),\n"
|
||||
<< " cache_mode: \"" << cache_mode << "\",\n"
|
||||
<< " cache_option: \"" << cache_option << "\",\n"
|
||||
<< " cache: "
|
||||
<< (cache_params.mode != SD_CACHE_DISABLED ? "enabled" : "disabled")
|
||||
<< " (threshold=" << cache_params.reuse_threshold
|
||||
<< ", start=" << cache_params.start_percent
|
||||
<< ", end=" << cache_params.end_percent << "),\n"
|
||||
<< " moe_boundary: " << moe_boundary << ",\n"
|
||||
<< " video_frames: " << video_frames << ",\n"
|
||||
<< " fps: " << fps << ",\n"
|
||||
@ -1903,6 +2097,22 @@ uint8_t* load_image_from_file(const char* image_path,
|
||||
return load_image_common(false, image_path, 0, width, height, expected_width, expected_height, expected_channel);
|
||||
}
|
||||
|
||||
bool load_sd_image_from_file(sd_image_t* image,
|
||||
const char* image_path,
|
||||
int expected_width = 0,
|
||||
int expected_height = 0,
|
||||
int expected_channel = 3) {
|
||||
int width;
|
||||
int height;
|
||||
image->data = load_image_common(false, image_path, 0, width, height, expected_width, expected_height, expected_channel);
|
||||
if (image->data == nullptr) {
|
||||
return false;
|
||||
}
|
||||
image->width = width;
|
||||
image->height = height;
|
||||
return true;
|
||||
}
|
||||
|
||||
uint8_t* load_image_from_memory(const char* image_bytes,
|
||||
int len,
|
||||
int& width,
|
||||
|
||||
@ -6,6 +6,7 @@ usage: ./bin/sd-server [options]
|
||||
Svr Options:
|
||||
-l, --listen-ip <string> server listen ip (default: 127.0.0.1)
|
||||
--listen-port <int> server listen port (default: 1234)
|
||||
--serve-html-path <string> path to HTML file to serve at root (optional)
|
||||
-v, --verbose print extra info
|
||||
--color colors the logging tags according to level
|
||||
-h, --help show this help message and exit
|
||||
@ -42,9 +43,14 @@ Context Options:
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--clip-on-cpu keep clip in cpu (for low vram)
|
||||
--vae-on-cpu keep vae in cpu (for low vram)
|
||||
--diffusion-fa use flash attention in the diffusion model
|
||||
--mmap whether to memory-map model
|
||||
--fa use flash attention
|
||||
--diffusion-fa use flash attention in the diffusion model only
|
||||
--diffusion-conv-direct use ggml_conv2d_direct in the diffusion model
|
||||
--vae-conv-direct use ggml_conv2d_direct in the vae model
|
||||
--circular enable circular padding for convolutions
|
||||
--circularx enable circular RoPE wrapping on x-axis (width) only
|
||||
--circulary enable circular RoPE wrapping on y-axis (height) only
|
||||
--chroma-disable-dit-mask disable dit mask for chroma
|
||||
--chroma-enable-t5-mask enable t5 mask for chroma
|
||||
--type weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K). If not specified, the default is the
|
||||
@ -94,14 +100,14 @@ Default Generation Options:
|
||||
medium
|
||||
--skip-layer-start <float> SLG enabling point (default: 0.01)
|
||||
--skip-layer-end <float> SLG disabling point (default: 0.2)
|
||||
--eta <float> eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--eta <float> eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--high-noise-cfg-scale <float> (high noise) unconditional guidance scale: (default: 7.0)
|
||||
--high-noise-img-cfg-scale <float> (high noise) image guidance scale for inpaint or instruct-pix2pix models (default: same as --cfg-scale)
|
||||
--high-noise-guidance <float> (high noise) distilled guidance scale for models with guidance input (default: 3.5)
|
||||
--high-noise-slg-scale <float> (high noise) skip layer guidance (SLG) scale, only for DiT models: (default: 0)
|
||||
--high-noise-skip-layer-start <float> (high noise) SLG enabling point (default: 0.01)
|
||||
--high-noise-skip-layer-end <float> (high noise) SLG disabling point (default: 0.2)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM and TCD (default: 0)
|
||||
--high-noise-eta <float> (high noise) eta in DDIM, only for DDIM/TCD/res_multistep/res_2s (default: 0)
|
||||
--strength <float> strength for noising/unnoising (default: 0.75)
|
||||
--pm-style-strength <float>
|
||||
--control-strength <float> strength to apply Control Net (default: 0.9). 1.0 corresponds to full destruction of information in init image
|
||||
@ -110,15 +116,21 @@ Default Generation Options:
|
||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||
--disable-auto-resize-ref-image disable auto resize of ref images
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm,
|
||||
ddim_trailing, tcd] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple, kl_optimal, lcm],
|
||||
default: discrete
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd,
|
||||
res_multistep, res_2s] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--high-noise-sampling-method (high noise) sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd, res_multistep, res_2s] default: euler for Flux/SD3/Wan, euler_a otherwise
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple,
|
||||
kl_optimal, lcm, bong_tangent], default: discrete
|
||||
--sigmas custom sigma values for the sampler, comma-separated (e.g., "14.61,7.8,3.5,0.0").
|
||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||
--high-noise-skip-layers (high noise) layers to skip for SLG steps (default: [7,8,9])
|
||||
-r, --ref-image reference image for Flux Kontext models (can be used multiple times)
|
||||
--easycache enable EasyCache for DiT models with optional "threshold,start_percent,end_percent" (default: 0.2,0.15,0.95)
|
||||
--cache-mode caching method: 'easycache' (DiT), 'ucache' (UNET), 'dbcache'/'taylorseer'/'cache-dit' (DiT block-level)
|
||||
--cache-option named cache params (key=value format, comma-separated). easycache/ucache:
|
||||
threshold=,start=,end=,decay=,relative=,reset=; dbcache/taylorseer/cache-dit: Fn=,Bn=,threshold=,warmup=. Examples:
|
||||
"threshold=0.25" or "threshold=1.5,reset=0"
|
||||
--cache-preset cache-dit preset: 'slow'/'s', 'medium'/'m', 'fast'/'f', 'ultra'/'u'
|
||||
--scm-mask SCM steps mask for cache-dit: comma-separated 0/1 (e.g., "1,1,1,0,0,1,0,0,1,0") - 1=compute, 0=can cache
|
||||
--scm-policy SCM policy: 'dynamic' (default) or 'static'
|
||||
```
|
||||
|
||||
@ -44,7 +44,7 @@ inline bool is_base64(unsigned char c) {
|
||||
}
|
||||
|
||||
std::vector<uint8_t> base64_decode(const std::string& encoded_string) {
|
||||
int in_len = encoded_string.size();
|
||||
int in_len = static_cast<int>(encoded_string.size());
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
int in_ = 0;
|
||||
@ -86,27 +86,13 @@ std::vector<uint8_t> base64_decode(const std::string& encoded_string) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string iso_timestamp_now() {
|
||||
using namespace std::chrono;
|
||||
auto now = system_clock::now();
|
||||
std::time_t t = system_clock::to_time_t(now);
|
||||
std::tm tm{};
|
||||
#ifdef _MSC_VER
|
||||
gmtime_s(&tm, &t);
|
||||
#else
|
||||
gmtime_r(&t, &tm);
|
||||
#endif
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(&tm, "%Y-%m-%dT%H:%M:%SZ");
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
struct SDSvrParams {
|
||||
std::string listen_ip = "127.0.0.1";
|
||||
int listen_port = 1234;
|
||||
bool normal_exit = false;
|
||||
bool verbose = false;
|
||||
bool color = false;
|
||||
std::string serve_html_path;
|
||||
bool normal_exit = false;
|
||||
bool verbose = false;
|
||||
bool color = false;
|
||||
|
||||
ArgOptions get_options() {
|
||||
ArgOptions options;
|
||||
@ -115,7 +101,11 @@ struct SDSvrParams {
|
||||
{"-l",
|
||||
"--listen-ip",
|
||||
"server listen ip (default: 127.0.0.1)",
|
||||
&listen_ip}};
|
||||
&listen_ip},
|
||||
{"",
|
||||
"--serve-html-path",
|
||||
"path to HTML file to serve at root (optional)",
|
||||
&serve_html_path}};
|
||||
|
||||
options.int_options = {
|
||||
{"",
|
||||
@ -159,6 +149,11 @@ struct SDSvrParams {
|
||||
LOG_ERROR("error: listen_port should be in the range [0, 65535]");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!serve_html_path.empty() && !fs::exists(serve_html_path)) {
|
||||
LOG_ERROR("error: serve_html_path file does not exist: %s", serve_html_path.c_str());
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -167,6 +162,7 @@ struct SDSvrParams {
|
||||
oss << "SDSvrParams {\n"
|
||||
<< " listen_ip: " << listen_ip << ",\n"
|
||||
<< " listen_port: \"" << listen_port << "\",\n"
|
||||
<< " serve_html_path: \"" << serve_html_path << "\",\n"
|
||||
<< "}";
|
||||
return oss.str();
|
||||
}
|
||||
@ -191,12 +187,18 @@ void parse_args(int argc, const char** argv, SDSvrParams& svr_params, SDContextP
|
||||
exit(svr_params.normal_exit ? 0 : 1);
|
||||
}
|
||||
|
||||
const bool random_seed_requested = default_gen_params.seed < 0;
|
||||
|
||||
if (!svr_params.process_and_check() ||
|
||||
!ctx_params.process_and_check(IMG_GEN) ||
|
||||
!default_gen_params.process_and_check(IMG_GEN, ctx_params.lora_model_dir)) {
|
||||
print_usage(argc, argv, options_vec);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (random_seed_requested) {
|
||||
default_gen_params.seed = -1;
|
||||
}
|
||||
}
|
||||
|
||||
std::string extract_and_remove_sd_cpp_extra_args(std::string& text) {
|
||||
@ -312,7 +314,18 @@ int main(int argc, const char** argv) {
|
||||
|
||||
// health
|
||||
svr.Get("/", [&](const httplib::Request&, httplib::Response& res) {
|
||||
res.set_content(R"({"ok":true,"service":"sd-cpp-http"})", "application/json");
|
||||
if (!svr_params.serve_html_path.empty()) {
|
||||
std::ifstream file(svr_params.serve_html_path);
|
||||
if (file) {
|
||||
std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
|
||||
res.set_content(content, "text/html");
|
||||
} else {
|
||||
res.status = 500;
|
||||
res.set_content("Error: Unable to read HTML file", "text/plain");
|
||||
}
|
||||
} else {
|
||||
res.set_content("Stable Diffusion Server is running", "text/plain");
|
||||
}
|
||||
});
|
||||
|
||||
// models endpoint (minimal)
|
||||
@ -376,7 +389,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
json out;
|
||||
out["created"] = iso_timestamp_now();
|
||||
out["created"] = static_cast<long long>(std::time(nullptr));
|
||||
out["data"] = json::array();
|
||||
out["output_format"] = output_format;
|
||||
|
||||
@ -392,6 +405,9 @@ int main(int argc, const char** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (gen_params.sample_params.sample_steps > 100)
|
||||
gen_params.sample_params.sample_steps = 100;
|
||||
|
||||
if (!gen_params.process_and_check(IMG_GEN, "")) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"invalid params"})", "application/json");
|
||||
@ -432,7 +448,7 @@ int main(int argc, const char** argv) {
|
||||
gen_params.pm_style_strength,
|
||||
}, // pm_params
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.easycache_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
sd_image_t* results = nullptr;
|
||||
@ -509,7 +525,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
std::vector<uint8_t> mask_bytes;
|
||||
if (req.form.has_field("mask")) {
|
||||
if (req.form.has_file("mask")) {
|
||||
auto file = req.form.get_file("mask");
|
||||
mask_bytes.assign(file.content.begin(), file.content.end());
|
||||
}
|
||||
@ -570,6 +586,9 @@ int main(int argc, const char** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (gen_params.sample_params.sample_steps > 100)
|
||||
gen_params.sample_params.sample_steps = 100;
|
||||
|
||||
if (!gen_params.process_and_check(IMG_GEN, "")) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"invalid params"})", "application/json");
|
||||
@ -589,7 +608,7 @@ int main(int argc, const char** argv) {
|
||||
int img_h = height;
|
||||
uint8_t* raw_pixels = load_image_from_memory(
|
||||
reinterpret_cast<const char*>(bytes.data()),
|
||||
bytes.size(),
|
||||
static_cast<int>(bytes.size()),
|
||||
img_w, img_h,
|
||||
width, height, 3);
|
||||
|
||||
@ -607,7 +626,7 @@ int main(int argc, const char** argv) {
|
||||
int mask_h = height;
|
||||
uint8_t* mask_raw = load_image_from_memory(
|
||||
reinterpret_cast<const char*>(mask_bytes.data()),
|
||||
mask_bytes.size(),
|
||||
static_cast<int>(mask_bytes.size()),
|
||||
mask_w, mask_h,
|
||||
width, height, 1);
|
||||
mask_image = {(uint32_t)mask_w, (uint32_t)mask_h, 1, mask_raw};
|
||||
@ -645,7 +664,7 @@ int main(int argc, const char** argv) {
|
||||
gen_params.pm_style_strength,
|
||||
}, // pm_params
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.easycache_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
sd_image_t* results = nullptr;
|
||||
@ -658,7 +677,7 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
|
||||
json out;
|
||||
out["created"] = iso_timestamp_now();
|
||||
out["created"] = static_cast<long long>(std::time(nullptr));
|
||||
out["data"] = json::array();
|
||||
out["output_format"] = output_format;
|
||||
|
||||
@ -698,6 +717,331 @@ int main(int argc, const char** argv) {
|
||||
}
|
||||
});
|
||||
|
||||
// sdapi endpoints (AUTOMATIC1111 / Forge)
|
||||
|
||||
auto sdapi_any2img = [&](const httplib::Request& req, httplib::Response& res, bool img2img) {
|
||||
try {
|
||||
if (req.body.empty()) {
|
||||
res.status = 400;
|
||||
res.set_content(R"({"error":"empty body"})", "application/json");
|
||||
return;
|
||||
}
|
||||
|
||||
json j = json::parse(req.body);
|
||||
|
||||
std::string prompt = j.value("prompt", "");
|
||||
std::string negative_prompt = j.value("negative_prompt", "");
|
||||
int width = j.value("width", 512);
|
||||
int height = j.value("height", 512);
|
||||
int steps = j.value("steps", -1);
|
||||
float cfg_scale = j.value("cfg_scale", 7.f);
|
||||
int64_t seed = j.value("seed", -1);
|
||||
int batch_size = j.value("batch_size", 1);
|
||||
int clip_skip = j.value("clip_skip", -1);
|
||||
std::string sampler_name = j.value("sampler_name", "");
|
||||
std::string scheduler_name = j.value("scheduler", "");
|
||||
|
||||
auto bad = [&](const std::string& msg) {
|
||||
res.status = 400;
|
||||
res.set_content("{\"error\":\"" + msg + "\"}", "application/json");
|
||||
return;
|
||||
};
|
||||
|
||||
if (width <= 0 || height <= 0) {
|
||||
return bad("width and height must be positive");
|
||||
}
|
||||
|
||||
if (steps < 1 || steps > 150) {
|
||||
return bad("steps must be in range [1, 150]");
|
||||
}
|
||||
|
||||
if (batch_size < 1 || batch_size > 8) {
|
||||
return bad("batch_size must be in range [1, 8]");
|
||||
}
|
||||
|
||||
if (cfg_scale < 0.f) {
|
||||
return bad("cfg_scale must be positive");
|
||||
}
|
||||
|
||||
if (prompt.empty()) {
|
||||
return bad("prompt required");
|
||||
}
|
||||
|
||||
auto get_sample_method = [](std::string name) -> enum sample_method_t {
|
||||
enum sample_method_t result = str_to_sample_method(name.c_str());
|
||||
if (result != SAMPLE_METHOD_COUNT) return result;
|
||||
// some applications use a hardcoded sampler list
|
||||
std::transform(name.begin(), name.end(), name.begin(),
|
||||
[](unsigned char c) { return std::tolower(c); });
|
||||
static const std::unordered_map<std::string_view, sample_method_t> hardcoded{
|
||||
{"euler a", EULER_A_SAMPLE_METHOD},
|
||||
{"k_euler_a", EULER_A_SAMPLE_METHOD},
|
||||
{"euler", EULER_SAMPLE_METHOD},
|
||||
{"k_euler", EULER_SAMPLE_METHOD},
|
||||
{"heun", HEUN_SAMPLE_METHOD},
|
||||
{"k_heun", HEUN_SAMPLE_METHOD},
|
||||
{"dpm2", DPM2_SAMPLE_METHOD},
|
||||
{"k_dpm_2", DPM2_SAMPLE_METHOD},
|
||||
{"lcm", LCM_SAMPLE_METHOD},
|
||||
{"ddim", DDIM_TRAILING_SAMPLE_METHOD},
|
||||
{"dpm++ 2m", DPMPP2M_SAMPLE_METHOD},
|
||||
{"k_dpmpp_2m", DPMPP2M_SAMPLE_METHOD},
|
||||
{"res multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||
{"k_res_multistep", RES_MULTISTEP_SAMPLE_METHOD},
|
||||
{"res 2s", RES_2S_SAMPLE_METHOD},
|
||||
{"k_res_2s", RES_2S_SAMPLE_METHOD}};
|
||||
auto it = hardcoded.find(name);
|
||||
if (it != hardcoded.end()) return it->second;
|
||||
return SAMPLE_METHOD_COUNT;
|
||||
};
|
||||
|
||||
enum sample_method_t sample_method = get_sample_method(sampler_name);
|
||||
|
||||
enum scheduler_t scheduler = str_to_scheduler(scheduler_name.c_str());
|
||||
|
||||
// avoid excessive resource usage
|
||||
|
||||
SDGenerationParams gen_params = default_gen_params;
|
||||
gen_params.prompt = prompt;
|
||||
gen_params.negative_prompt = negative_prompt;
|
||||
gen_params.width = width;
|
||||
gen_params.height = height;
|
||||
gen_params.seed = seed;
|
||||
gen_params.sample_params.sample_steps = steps;
|
||||
gen_params.batch_count = batch_size;
|
||||
|
||||
if (clip_skip > 0) {
|
||||
gen_params.clip_skip = clip_skip;
|
||||
}
|
||||
|
||||
if (sample_method != SAMPLE_METHOD_COUNT) {
|
||||
gen_params.sample_params.sample_method = sample_method;
|
||||
}
|
||||
|
||||
if (scheduler != SCHEDULER_COUNT) {
|
||||
gen_params.sample_params.scheduler = scheduler;
|
||||
}
|
||||
|
||||
LOG_DEBUG("%s\n", gen_params.to_string().c_str());
|
||||
|
||||
sd_image_t init_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t control_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
sd_image_t mask_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 1, nullptr};
|
||||
std::vector<uint8_t> mask_data;
|
||||
std::vector<sd_image_t> pmid_images;
|
||||
std::vector<sd_image_t> ref_images;
|
||||
|
||||
if (img2img) {
|
||||
auto decode_image = [](sd_image_t& image, std::string encoded) -> bool {
|
||||
// remove data URI prefix if present ("data:image/png;base64,")
|
||||
auto comma_pos = encoded.find(',');
|
||||
if (comma_pos != std::string::npos) {
|
||||
encoded = encoded.substr(comma_pos + 1);
|
||||
}
|
||||
std::vector<uint8_t> img_data = base64_decode(encoded);
|
||||
if (!img_data.empty()) {
|
||||
int img_w = image.width;
|
||||
int img_h = image.height;
|
||||
uint8_t* raw_data = load_image_from_memory(
|
||||
(const char*)img_data.data(), (int)img_data.size(),
|
||||
img_w, img_h,
|
||||
image.width, image.height, image.channel);
|
||||
if (raw_data) {
|
||||
image = {(uint32_t)img_w, (uint32_t)img_h, image.channel, raw_data};
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
if (j.contains("init_images") && j["init_images"].is_array() && !j["init_images"].empty()) {
|
||||
std::string encoded = j["init_images"][0].get<std::string>();
|
||||
decode_image(init_image, encoded);
|
||||
}
|
||||
|
||||
if (j.contains("mask") && j["mask"].is_string()) {
|
||||
std::string encoded = j["mask"].get<std::string>();
|
||||
decode_image(mask_image, encoded);
|
||||
bool inpainting_mask_invert = j.value("inpainting_mask_invert", 0) != 0;
|
||||
if (inpainting_mask_invert && mask_image.data != nullptr) {
|
||||
for (uint32_t i = 0; i < mask_image.width * mask_image.height; i++) {
|
||||
mask_image.data[i] = 255 - mask_image.data[i];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mask_data = std::vector<uint8_t>(width * height, 255);
|
||||
mask_image.width = width;
|
||||
mask_image.height = height;
|
||||
mask_image.channel = 1;
|
||||
mask_image.data = mask_data.data();
|
||||
}
|
||||
|
||||
if (j.contains("extra_images") && j["extra_images"].is_array()) {
|
||||
for (auto extra_image : j["extra_images"]) {
|
||||
std::string encoded = extra_image.get<std::string>();
|
||||
sd_image_t tmp_image = {(uint32_t)gen_params.width, (uint32_t)gen_params.height, 3, nullptr};
|
||||
if (decode_image(tmp_image, encoded)) {
|
||||
ref_images.push_back(tmp_image);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float denoising_strength = j.value("denoising_strength", -1.f);
|
||||
if (denoising_strength >= 0.f) {
|
||||
denoising_strength = std::min(denoising_strength, 1.0f);
|
||||
gen_params.strength = denoising_strength;
|
||||
}
|
||||
}
|
||||
|
||||
sd_img_gen_params_t img_gen_params = {
|
||||
gen_params.lora_vec.data(),
|
||||
static_cast<uint32_t>(gen_params.lora_vec.size()),
|
||||
gen_params.prompt.c_str(),
|
||||
gen_params.negative_prompt.c_str(),
|
||||
gen_params.clip_skip,
|
||||
init_image,
|
||||
ref_images.data(),
|
||||
(int)ref_images.size(),
|
||||
gen_params.auto_resize_ref_image,
|
||||
gen_params.increase_ref_index,
|
||||
mask_image,
|
||||
gen_params.width,
|
||||
gen_params.height,
|
||||
gen_params.sample_params,
|
||||
gen_params.strength,
|
||||
gen_params.seed,
|
||||
gen_params.batch_count,
|
||||
control_image,
|
||||
gen_params.control_strength,
|
||||
{
|
||||
pmid_images.data(),
|
||||
(int)pmid_images.size(),
|
||||
gen_params.pm_id_embed_path.c_str(),
|
||||
gen_params.pm_style_strength,
|
||||
}, // pm_params
|
||||
ctx_params.vae_tiling_params,
|
||||
gen_params.cache_params,
|
||||
};
|
||||
|
||||
sd_image_t* results = nullptr;
|
||||
int num_results = 0;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(sd_ctx_mutex);
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
num_results = gen_params.batch_count;
|
||||
}
|
||||
|
||||
json out;
|
||||
out["images"] = json::array();
|
||||
out["parameters"] = j; // TODO should return changed defaults
|
||||
out["info"] = "";
|
||||
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
if (results[i].data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto image_bytes = write_image_to_vector(ImageFormat::PNG,
|
||||
results[i].data,
|
||||
results[i].width,
|
||||
results[i].height,
|
||||
results[i].channel);
|
||||
|
||||
if (image_bytes.empty()) {
|
||||
LOG_ERROR("write image to mem failed");
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string b64 = base64_encode(image_bytes);
|
||||
out["images"].push_back(b64);
|
||||
}
|
||||
|
||||
res.set_content(out.dump(), "application/json");
|
||||
res.status = 200;
|
||||
|
||||
if (init_image.data) {
|
||||
stbi_image_free(init_image.data);
|
||||
}
|
||||
if (mask_image.data && mask_data.empty()) {
|
||||
stbi_image_free(mask_image.data);
|
||||
}
|
||||
for (auto ref_image : ref_images) {
|
||||
stbi_image_free(ref_image.data);
|
||||
}
|
||||
|
||||
} catch (const std::exception& e) {
|
||||
res.status = 500;
|
||||
json err;
|
||||
err["error"] = "server_error";
|
||||
err["message"] = e.what();
|
||||
res.set_content(err.dump(), "application/json");
|
||||
}
|
||||
};
|
||||
|
||||
svr.Post("/sdapi/v1/txt2img", [&](const httplib::Request& req, httplib::Response& res) {
|
||||
sdapi_any2img(req, res, false);
|
||||
});
|
||||
|
||||
svr.Post("/sdapi/v1/img2img", [&](const httplib::Request& req, httplib::Response& res) {
|
||||
sdapi_any2img(req, res, true);
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/samplers", [&](const httplib::Request&, httplib::Response& res) {
|
||||
std::vector<std::string> sampler_names;
|
||||
sampler_names.push_back("default");
|
||||
for (int i = 0; i < SAMPLE_METHOD_COUNT; i++) {
|
||||
sampler_names.push_back(sd_sample_method_name((sample_method_t)i));
|
||||
}
|
||||
json r = json::array();
|
||||
for (auto name : sampler_names) {
|
||||
json entry;
|
||||
entry["name"] = name;
|
||||
entry["aliases"] = json::array({name});
|
||||
entry["options"] = json::object();
|
||||
r.push_back(entry);
|
||||
}
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/schedulers", [&](const httplib::Request&, httplib::Response& res) {
|
||||
std::vector<std::string> scheduler_names;
|
||||
scheduler_names.push_back("default");
|
||||
for (int i = 0; i < SCHEDULER_COUNT; i++) {
|
||||
scheduler_names.push_back(sd_scheduler_name((scheduler_t)i));
|
||||
}
|
||||
json r = json::array();
|
||||
for (auto name : scheduler_names) {
|
||||
json entry;
|
||||
entry["name"] = name;
|
||||
entry["label"] = name;
|
||||
r.push_back(entry);
|
||||
}
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/sd-models", [&](const httplib::Request&, httplib::Response& res) {
|
||||
fs::path model_path = ctx_params.model_path;
|
||||
json entry;
|
||||
entry["title"] = model_path.stem();
|
||||
entry["model_name"] = model_path.stem();
|
||||
entry["filename"] = model_path.filename();
|
||||
entry["hash"] = "8888888888";
|
||||
entry["sha256"] = "8888888888888888888888888888888888888888888888888888888888888888";
|
||||
entry["config"] = nullptr;
|
||||
json r = json::array();
|
||||
r.push_back(entry);
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Get("/sdapi/v1/options", [&](const httplib::Request&, httplib::Response& res) {
|
||||
fs::path model_path = ctx_params.model_path;
|
||||
json r;
|
||||
r["samples_format"] = "png";
|
||||
r["sd_model_checkpoint"] = model_path.stem();
|
||||
res.set_content(r.dump(), "application/json");
|
||||
});
|
||||
|
||||
LOG_INFO("listening on: %s:%d\n", svr_params.listen_ip.c_str(), svr_params.listen_port);
|
||||
svr.listen(svr_params.listen_ip, svr_params.listen_port);
|
||||
|
||||
|
||||
320
flux.hpp
@ -103,7 +103,7 @@ namespace Flux {
|
||||
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x);
|
||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv);
|
||||
auto qkv_vec = ggml_ext_chunk(ctx->ggml_ctx, qkv, 3, 0, true);
|
||||
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]);
|
||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]);
|
||||
@ -153,7 +153,7 @@ namespace Flux {
|
||||
if (use_mlp_silu_act) {
|
||||
x = ggml_ext_silu_act(ctx->ggml_ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
}
|
||||
x = mlp_2->forward(ctx, x);
|
||||
return x;
|
||||
@ -233,14 +233,17 @@ namespace Flux {
|
||||
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* shift,
|
||||
struct ggml_tensor* scale) {
|
||||
struct ggml_tensor* scale,
|
||||
bool skip_reshape = false) {
|
||||
// x: [N, L, C]
|
||||
// scale: [N, C]
|
||||
// shift: [N, C]
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
x = ggml_add(ctx, x, shift);
|
||||
if (!skip_reshape) {
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
|
||||
}
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
x = ggml_add(ctx, x, shift);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -260,7 +263,7 @@ namespace Flux {
|
||||
bool use_yak_mlp = false,
|
||||
bool use_mlp_silu_act = false)
|
||||
: idx(idx), prune_mod(prune_mod) {
|
||||
int64_t mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
int64_t mlp_hidden_dim = static_cast<int64_t>(hidden_size * mlp_ratio);
|
||||
|
||||
if (!prune_mod && !share_modulation) {
|
||||
blocks["img_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true));
|
||||
@ -373,26 +376,23 @@ namespace Flux {
|
||||
auto k = ggml_concat(ctx->ggml_ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
txt->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_txt_token, N, hidden_size]
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
||||
0); // [N, n_txt_token, hidden_size]
|
||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
img->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
txt->ne[1] * attn->nb[1]); // [N, n_img_token, hidden_size]
|
||||
|
||||
// calculate the img bloks
|
||||
img = ggml_add(ctx->ggml_ctx, img, ggml_mul(ctx->ggml_ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate));
|
||||
@ -439,7 +439,7 @@ namespace Flux {
|
||||
if (scale <= 0.f) {
|
||||
scale = 1 / sqrt((float)head_dim);
|
||||
}
|
||||
mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
mlp_hidden_dim = static_cast<int64_t>(hidden_size * mlp_ratio);
|
||||
mlp_mult_factor = 1;
|
||||
if (use_yak_mlp || use_mlp_silu_act) {
|
||||
mlp_mult_factor = 2;
|
||||
@ -489,43 +489,29 @@ namespace Flux {
|
||||
}
|
||||
|
||||
auto x_mod = Flux::modulate(ctx->ggml_ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale);
|
||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim]
|
||||
qkv_mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv_mlp, 2, 0, 1, 3)); // [hidden_size * 3 + mlp_hidden_dim, N, n_token]
|
||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim*mlp_mult_factor]
|
||||
|
||||
auto qkv = ggml_view_3d(ctx->ggml_ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
hidden_size * 3,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
0); // [hidden_size * 3 , N, n_token]
|
||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, qkv, 1, 2, 0, 3)); // [N, n_token, hidden_size * 3]
|
||||
auto mlp = ggml_view_3d(ctx->ggml_ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
mlp_hidden_dim * mlp_mult_factor,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
qkv_mlp->nb[2] * hidden_size * 3); // [mlp_hidden_dim*mlp_mult_factor , N, n_token]
|
||||
mlp = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, mlp, 1, 2, 0, 3)); // [N, n_token, mlp_hidden_dim*mlp_mult_factor]
|
||||
auto q = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], 0);
|
||||
auto k = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * qkv_mlp->nb[0]);
|
||||
auto v = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, hidden_size, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 2 * qkv_mlp->nb[0]);
|
||||
|
||||
auto qkv_vec = split_qkv(ctx->ggml_ctx, qkv); // q,k,v: [N, n_token, hidden_size]
|
||||
int64_t head_dim = hidden_size / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto k = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto v = ggml_reshape_4d(ctx->ggml_ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
||||
|
||||
q = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, q), head_dim, num_heads, q->ne[1], q->ne[2]); // [N, n_token, n_head, d_head]
|
||||
k = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, k), head_dim, num_heads, k->ne[1], k->ne[2]); // [N, n_token, n_head, d_head]
|
||||
v = ggml_reshape_4d(ctx->ggml_ctx, ggml_cont(ctx->ggml_ctx, v), head_dim, num_heads, v->ne[1], v->ne[2]); // [N, n_token, n_head, d_head]
|
||||
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask); // [N, n_token, hidden_size]
|
||||
|
||||
auto mlp = ggml_view_3d(ctx->ggml_ctx, qkv_mlp, mlp_hidden_dim * mlp_mult_factor, qkv_mlp->ne[1], qkv_mlp->ne[2], qkv_mlp->nb[1], qkv_mlp->nb[2], hidden_size * 3 * qkv_mlp->nb[0]);
|
||||
if (use_yak_mlp) {
|
||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp, false);
|
||||
} else if (use_mlp_silu_act) {
|
||||
mlp = ggml_ext_silu_act(ctx->ggml_ctx, mlp);
|
||||
} else {
|
||||
mlp = ggml_gelu_inplace(ctx->ggml_ctx, mlp);
|
||||
mlp = ggml_ext_gelu(ctx->ggml_ctx, mlp, true);
|
||||
}
|
||||
auto attn_mlp = ggml_concat(ctx->ggml_ctx, attn, mlp, 0); // [N, n_token, hidden_size + mlp_hidden_dim]
|
||||
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
|
||||
@ -577,13 +563,10 @@ namespace Flux {
|
||||
} else {
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||
shift = m_vec[0]; // [N, hidden_size]
|
||||
scale = m_vec[1]; // [N, hidden_size]
|
||||
}
|
||||
|
||||
x = Flux::modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||
@ -741,36 +724,38 @@ namespace Flux {
|
||||
|
||||
struct ChromaRadianceParams {
|
||||
int64_t nerf_hidden_size = 64;
|
||||
int64_t nerf_mlp_ratio = 4;
|
||||
int64_t nerf_depth = 4;
|
||||
int64_t nerf_max_freqs = 8;
|
||||
int nerf_mlp_ratio = 4;
|
||||
int nerf_depth = 4;
|
||||
int nerf_max_freqs = 8;
|
||||
bool use_x0 = false;
|
||||
bool fake_patch_size_x2 = false;
|
||||
};
|
||||
|
||||
struct FluxParams {
|
||||
SDVersion version = VERSION_FLUX;
|
||||
bool is_chroma = false;
|
||||
int64_t patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 64;
|
||||
int64_t vec_in_dim = 768;
|
||||
int64_t context_in_dim = 4096;
|
||||
int64_t hidden_size = 3072;
|
||||
float mlp_ratio = 4.0f;
|
||||
int64_t num_heads = 24;
|
||||
int64_t depth = 19;
|
||||
int64_t depth_single_blocks = 38;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int64_t axes_dim_sum = 128;
|
||||
int theta = 10000;
|
||||
bool qkv_bias = true;
|
||||
bool guidance_embed = true;
|
||||
int64_t in_dim = 64;
|
||||
bool disable_bias = false;
|
||||
bool share_modulation = false;
|
||||
bool semantic_txt_norm = false;
|
||||
bool use_yak_mlp = false;
|
||||
bool use_mlp_silu_act = false;
|
||||
float ref_index_scale = 1.f;
|
||||
SDVersion version = VERSION_FLUX;
|
||||
bool is_chroma = false;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 64;
|
||||
int64_t vec_in_dim = 768;
|
||||
int64_t context_in_dim = 4096;
|
||||
int64_t hidden_size = 3072;
|
||||
float mlp_ratio = 4.0f;
|
||||
int num_heads = 24;
|
||||
int depth = 19;
|
||||
int depth_single_blocks = 38;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int axes_dim_sum = 128;
|
||||
int theta = 10000;
|
||||
bool qkv_bias = true;
|
||||
bool guidance_embed = true;
|
||||
int64_t in_dim = 64;
|
||||
bool disable_bias = false;
|
||||
bool share_modulation = false;
|
||||
bool semantic_txt_norm = false;
|
||||
bool use_yak_mlp = false;
|
||||
bool use_mlp_silu_act = false;
|
||||
float ref_index_scale = 1.f;
|
||||
ChromaRadianceParams chroma_radiance_params;
|
||||
};
|
||||
|
||||
@ -781,8 +766,11 @@ namespace Flux {
|
||||
Flux(FluxParams params)
|
||||
: params(params) {
|
||||
if (params.version == VERSION_CHROMA_RADIANCE) {
|
||||
std::pair<int, int> kernel_size = {(int)params.patch_size, (int)params.patch_size};
|
||||
std::pair<int, int> stride = kernel_size;
|
||||
std::pair<int, int> kernel_size = {params.patch_size, params.patch_size};
|
||||
if (params.chroma_radiance_params.fake_patch_size_x2) {
|
||||
kernel_size = {params.patch_size / 2, params.patch_size / 2};
|
||||
}
|
||||
std::pair<int, int> stride = kernel_size;
|
||||
|
||||
blocks["img_in_patch"] = std::make_shared<Conv2d>(params.in_channels,
|
||||
params.hidden_size,
|
||||
@ -858,14 +846,14 @@ namespace Flux {
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
struct ggml_tensor* pad_to_patch_size(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
|
||||
int pad_h = (params.patch_size - H % params.patch_size) % params.patch_size;
|
||||
int pad_w = (params.patch_size - W % params.patch_size) % params.patch_size;
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, pad_w, pad_h, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -891,11 +879,11 @@ namespace Flux {
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* process_img(struct ggml_context* ctx,
|
||||
struct ggml_tensor* process_img(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
x = pad_to_patch_size(ctx, x);
|
||||
x = patchify(ctx, x);
|
||||
x = patchify(ctx->ggml_ctx, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -964,7 +952,7 @@ namespace Flux {
|
||||
vec = approx->forward(ctx, vec); // [344, N, hidden_size]
|
||||
|
||||
if (y != nullptr) {
|
||||
txt_img_mask = ggml_pad(ctx->ggml_ctx, y, img->ne[1], 0, 0, 0);
|
||||
txt_img_mask = ggml_pad(ctx->ggml_ctx, y, static_cast<int>(img->ne[1]), 0, 0, 0);
|
||||
}
|
||||
} else {
|
||||
auto time_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["time_in"]);
|
||||
@ -1026,16 +1014,14 @@ namespace Flux {
|
||||
txt_img = block->forward(ctx, txt_img, vec, pe, txt_img_mask, ss_mods);
|
||||
}
|
||||
|
||||
txt_img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_img, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
img = ggml_view_3d(ctx->ggml_ctx,
|
||||
txt_img,
|
||||
txt_img->ne[0],
|
||||
txt_img->ne[1],
|
||||
img->ne[1],
|
||||
txt_img->nb[1],
|
||||
txt_img->nb[2],
|
||||
txt_img->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
img = ggml_view_3d(ctx->ggml_ctx,
|
||||
txt_img,
|
||||
txt_img->ne[0],
|
||||
img->ne[1],
|
||||
txt_img->ne[2],
|
||||
txt_img->nb[1],
|
||||
txt_img->nb[2],
|
||||
txt->ne[1] * txt_img->nb[1]); // [N, n_img_token, hidden_size]
|
||||
|
||||
if (final_layer) {
|
||||
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
|
||||
@ -1044,6 +1030,15 @@ namespace Flux {
|
||||
return img;
|
||||
}
|
||||
|
||||
struct ggml_tensor* _apply_x0_residual(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* predicted,
|
||||
struct ggml_tensor* noisy,
|
||||
struct ggml_tensor* timesteps) {
|
||||
auto x = ggml_sub(ctx->ggml_ctx, noisy, predicted);
|
||||
x = ggml_div(ctx->ggml_ctx, x, timesteps);
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward_chroma_radiance(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
@ -1058,16 +1053,23 @@ namespace Flux {
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
|
||||
auto img = pad_to_patch_size(ctx->ggml_ctx, x);
|
||||
auto img = pad_to_patch_size(ctx, x);
|
||||
auto orig_img = img;
|
||||
|
||||
if (params.chroma_radiance_params.fake_patch_size_x2) {
|
||||
// It's supposed to be using GGML_SCALE_MODE_NEAREST, but this seems more stable
|
||||
// Maybe the implementation of nearest-neighbor interpolation in ggml behaves differently than the one in PyTorch?
|
||||
// img = F.interpolate(img, size=(H//2, W//2), mode="nearest")
|
||||
img = ggml_interpolate(ctx->ggml_ctx, img, W / 2, H / 2, C, x->ne[3], GGML_SCALE_MODE_BILINEAR);
|
||||
}
|
||||
|
||||
auto img_in_patch = std::dynamic_pointer_cast<Conv2d>(blocks["img_in_patch"]);
|
||||
|
||||
img = img_in_patch->forward(ctx, img); // [N, hidden_size, H/patch_size, W/patch_size]
|
||||
@ -1104,6 +1106,10 @@ namespace Flux {
|
||||
|
||||
out = nerf_final_layer_conv->forward(ctx, img_dct); // [N, C, H, W]
|
||||
|
||||
if (params.chroma_radiance_params.use_x0) {
|
||||
out = _apply_x0_residual(ctx, out, orig_img, timestep);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -1121,23 +1127,23 @@ namespace Flux {
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int patch_size = params.patch_size;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
|
||||
auto img = process_img(ctx->ggml_ctx, x);
|
||||
uint64_t img_tokens = img->ne[1];
|
||||
auto img = process_img(ctx, x);
|
||||
int64_t img_tokens = img->ne[1];
|
||||
|
||||
if (params.version == VERSION_FLUX_FILL) {
|
||||
GGML_ASSERT(c_concat != nullptr);
|
||||
ggml_tensor* masked = ggml_view_4d(ctx->ggml_ctx, c_concat, c_concat->ne[0], c_concat->ne[1], C, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], 0);
|
||||
ggml_tensor* mask = ggml_view_4d(ctx->ggml_ctx, c_concat, c_concat->ne[0], c_concat->ne[1], 8 * 8, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * C);
|
||||
|
||||
masked = process_img(ctx->ggml_ctx, masked);
|
||||
mask = process_img(ctx->ggml_ctx, mask);
|
||||
masked = process_img(ctx, masked);
|
||||
mask = process_img(ctx, mask);
|
||||
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ggml_concat(ctx->ggml_ctx, masked, mask, 0), 0);
|
||||
} else if (params.version == VERSION_FLEX_2) {
|
||||
@ -1146,21 +1152,21 @@ namespace Flux {
|
||||
ggml_tensor* mask = ggml_view_4d(ctx->ggml_ctx, c_concat, c_concat->ne[0], c_concat->ne[1], 1, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * C);
|
||||
ggml_tensor* control = ggml_view_4d(ctx->ggml_ctx, c_concat, c_concat->ne[0], c_concat->ne[1], C, 1, c_concat->nb[1], c_concat->nb[2], c_concat->nb[3], c_concat->nb[2] * (C + 1));
|
||||
|
||||
masked = process_img(ctx->ggml_ctx, masked);
|
||||
mask = process_img(ctx->ggml_ctx, mask);
|
||||
control = process_img(ctx->ggml_ctx, control);
|
||||
masked = process_img(ctx, masked);
|
||||
mask = process_img(ctx, mask);
|
||||
control = process_img(ctx, control);
|
||||
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ggml_concat(ctx->ggml_ctx, ggml_concat(ctx->ggml_ctx, masked, mask, 0), control, 0), 0);
|
||||
} else if (params.version == VERSION_FLUX_CONTROLS) {
|
||||
GGML_ASSERT(c_concat != nullptr);
|
||||
|
||||
auto control = process_img(ctx->ggml_ctx, c_concat);
|
||||
auto control = process_img(ctx, c_concat);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, control, 0);
|
||||
}
|
||||
|
||||
if (ref_latents.size() > 0) {
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
ref = process_img(ctx->ggml_ctx, ref);
|
||||
ref = process_img(ctx, ref);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
|
||||
}
|
||||
}
|
||||
@ -1168,9 +1174,8 @@ namespace Flux {
|
||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
||||
|
||||
if (out->ne[1] > img_tokens) {
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
||||
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [N, h*w, C * patch_size * patch_size]
|
||||
out = ggml_view_3d(ctx->ggml_ctx, out, out->ne[0], img_tokens, out->ne[2], out->nb[1], out->nb[2], 0);
|
||||
out = ggml_cont(ctx->ggml_ctx, out);
|
||||
}
|
||||
|
||||
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
||||
@ -1263,13 +1268,9 @@ namespace Flux {
|
||||
} else if (version == VERSION_OVIS_IMAGE) {
|
||||
flux_params.semantic_txt_norm = true;
|
||||
flux_params.use_yak_mlp = true;
|
||||
flux_params.context_in_dim = 2048;
|
||||
flux_params.vec_in_dim = 0;
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
flux_params.context_in_dim = 15360;
|
||||
flux_params.in_channels = 128;
|
||||
flux_params.hidden_size = 6144;
|
||||
flux_params.num_heads = 48;
|
||||
flux_params.patch_size = 1;
|
||||
flux_params.out_channels = 128;
|
||||
flux_params.mlp_ratio = 3.f;
|
||||
@ -1282,14 +1283,27 @@ namespace Flux {
|
||||
flux_params.ref_index_scale = 10.f;
|
||||
flux_params.use_mlp_silu_act = true;
|
||||
}
|
||||
int64_t head_dim = 0;
|
||||
int64_t actual_radiance_patch_size = -1;
|
||||
for (auto pair : tensor_storage_map) {
|
||||
std::string tensor_name = pair.first;
|
||||
if (!starts_with(tensor_name, prefix))
|
||||
continue;
|
||||
if (tensor_name.find("guidance_in.in_layer.weight") != std::string::npos) {
|
||||
// not schnell
|
||||
flux_params.guidance_embed = true;
|
||||
}
|
||||
if (tensor_name.find("__x0__") != std::string::npos) {
|
||||
LOG_DEBUG("using x0 prediction");
|
||||
flux_params.chroma_radiance_params.use_x0 = true;
|
||||
}
|
||||
if (tensor_name.find("__32x32__") != std::string::npos) {
|
||||
LOG_DEBUG("using patch size 32");
|
||||
flux_params.patch_size = 32;
|
||||
}
|
||||
if (tensor_name.find("img_in_patch.weight") != std::string::npos) {
|
||||
actual_radiance_patch_size = pair.second.ne[0];
|
||||
LOG_DEBUG("actual radiance patch size: %d", actual_radiance_patch_size);
|
||||
}
|
||||
if (tensor_name.find("distilled_guidance_layer.in_proj.weight") != std::string::npos) {
|
||||
// Chroma
|
||||
flux_params.is_chroma = true;
|
||||
@ -1310,13 +1324,35 @@ namespace Flux {
|
||||
flux_params.depth_single_blocks = block_depth + 1;
|
||||
}
|
||||
}
|
||||
if (ends_with(tensor_name, "txt_in.weight")) {
|
||||
flux_params.context_in_dim = pair.second.ne[0];
|
||||
flux_params.hidden_size = pair.second.ne[1];
|
||||
}
|
||||
if (ends_with(tensor_name, "single_blocks.0.norm.key_norm.scale")) {
|
||||
head_dim = pair.second.ne[0];
|
||||
}
|
||||
if (ends_with(tensor_name, "double_blocks.0.txt_attn.norm.key_norm.scale")) {
|
||||
head_dim = pair.second.ne[0];
|
||||
}
|
||||
}
|
||||
if (actual_radiance_patch_size > 0 && actual_radiance_patch_size != flux_params.patch_size) {
|
||||
GGML_ASSERT(flux_params.patch_size == 2 * actual_radiance_patch_size);
|
||||
LOG_DEBUG("using fake x2 patch size");
|
||||
flux_params.chroma_radiance_params.fake_patch_size_x2 = true;
|
||||
}
|
||||
|
||||
LOG_INFO("Flux blocks: %d double, %d single", flux_params.depth, flux_params.depth_single_blocks);
|
||||
flux_params.num_heads = static_cast<int>(flux_params.hidden_size / head_dim);
|
||||
|
||||
LOG_INFO("flux: depth = %d, depth_single_blocks = %d, guidance_embed = %s, context_in_dim = %" PRId64
|
||||
", hidden_size = %" PRId64 ", num_heads = %d",
|
||||
flux_params.depth,
|
||||
flux_params.depth_single_blocks,
|
||||
flux_params.guidance_embed ? "true" : "false",
|
||||
flux_params.context_in_dim,
|
||||
flux_params.hidden_size,
|
||||
flux_params.num_heads);
|
||||
if (flux_params.is_chroma) {
|
||||
LOG_INFO("Using pruned modulation (Chroma)");
|
||||
} else if (!flux_params.guidance_embed) {
|
||||
LOG_INFO("Flux guidance is disabled (Schnell mode)");
|
||||
}
|
||||
|
||||
flux = Flux(flux_params);
|
||||
@ -1431,18 +1467,20 @@ namespace Flux {
|
||||
txt_arange_dims = {1, 2};
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_flux_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_flux_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
flux_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
txt_arange_dims,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
flux_params.ref_index_scale,
|
||||
flux_params.theta,
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
flux_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / flux_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, flux_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -1451,10 +1489,10 @@ namespace Flux {
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
|
||||
if (version == VERSION_CHROMA_RADIANCE) {
|
||||
int64_t patch_size = flux_params.patch_size;
|
||||
int64_t nerf_max_freqs = flux_params.chroma_radiance_params.nerf_max_freqs;
|
||||
dct_vec = fetch_dct_pos(patch_size, nerf_max_freqs);
|
||||
dct = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, nerf_max_freqs * nerf_max_freqs, patch_size * patch_size);
|
||||
int patch_size = flux_params.patch_size;
|
||||
int nerf_max_freqs = flux_params.chroma_radiance_params.nerf_max_freqs;
|
||||
dct_vec = fetch_dct_pos(patch_size, nerf_max_freqs);
|
||||
dct = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, nerf_max_freqs * nerf_max_freqs, patch_size * patch_size);
|
||||
// dct->data = dct_vec.data();
|
||||
// print_ggml_tensor(dct);
|
||||
// dct->data = nullptr;
|
||||
@ -1541,12 +1579,12 @@ namespace Flux {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, y, guidance, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("flux test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("flux test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
2
ggml
@ -1 +1 @@
|
||||
Subproject commit f5425c0ee5e582a7d64411f06139870bff3e52e0
|
||||
Subproject commit a8db410a252c8c8f2d120c6f2e7133ebe032f35d
|
||||
329
ggml_extend.hpp
@ -5,6 +5,7 @@
|
||||
#include <inttypes.h>
|
||||
#include <stdarg.h>
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <functional>
|
||||
@ -97,10 +98,10 @@ static_assert(GGML_MAX_NAME >= 128, "GGML_MAX_NAME must be at least 128");
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_mul_n_mode(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int mode = 0) {
|
||||
// reshape A
|
||||
// swap 0th and nth axis
|
||||
a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0));
|
||||
int ne1 = a->ne[1];
|
||||
int ne2 = a->ne[2];
|
||||
int ne3 = a->ne[3];
|
||||
a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0));
|
||||
int64_t ne1 = a->ne[1];
|
||||
int64_t ne2 = a->ne[2];
|
||||
int64_t ne3 = a->ne[3];
|
||||
// make 2D
|
||||
a = ggml_cont(ctx, ggml_reshape_2d(ctx, a, a->ne[0], (ne3 * ne2 * ne1)));
|
||||
|
||||
@ -166,12 +167,12 @@ __STATIC_INLINE__ void ggml_ext_im_set_randn_f32(struct ggml_tensor* tensor, std
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void ggml_ext_tensor_set_f32(struct ggml_tensor* tensor, float value, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ void ggml_ext_tensor_set_f32(struct ggml_tensor* tensor, float value, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||||
*(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]) = value;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
if (tensor->buffer != nullptr) {
|
||||
float value;
|
||||
ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(float));
|
||||
@ -181,9 +182,9 @@ __STATIC_INLINE__ float ggml_ext_tensor_get_f32(const ggml_tensor* tensor, int i
|
||||
return *(float*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
if (tensor->buffer != nullptr) {
|
||||
float value;
|
||||
int value;
|
||||
ggml_backend_tensor_get(tensor, &value, i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0], sizeof(int));
|
||||
return value;
|
||||
}
|
||||
@ -191,12 +192,12 @@ __STATIC_INLINE__ int ggml_ext_tensor_get_i32(const ggml_tensor* tensor, int i0,
|
||||
return *(int*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ ggml_fp16_t ggml_ext_tensor_get_f16(const ggml_tensor* tensor, int i0, int i1 = 0, int i2 = 0, int i3 = 0) {
|
||||
__STATIC_INLINE__ ggml_fp16_t ggml_ext_tensor_get_f16(const ggml_tensor* tensor, int64_t i0, int64_t i1 = 0, int64_t i2 = 0, int64_t i3 = 0) {
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
return *(ggml_fp16_t*)((char*)(tensor->data) + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] + i0 * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int ic, bool scale = true) {
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int64_t iw, int64_t ih, int64_t ic, bool scale = true) {
|
||||
float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
@ -204,7 +205,7 @@ __STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int i
|
||||
return value;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_f32_t image, int iw, int ih, int ic, bool scale = true) {
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_f32_t image, int64_t iw, int64_t ih, int64_t ic, bool scale = true) {
|
||||
float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
@ -449,8 +450,8 @@ __STATIC_INLINE__ void ggml_ext_tensor_apply_mask(struct ggml_tensor* image_data
|
||||
int64_t width = output->ne[0];
|
||||
int64_t height = output->ne[1];
|
||||
int64_t channels = output->ne[2];
|
||||
float rescale_mx = mask->ne[0] / output->ne[0];
|
||||
float rescale_my = mask->ne[1] / output->ne[1];
|
||||
float rescale_mx = 1.f * mask->ne[0] / output->ne[0];
|
||||
float rescale_my = 1.f * mask->ne[1] / output->ne[1];
|
||||
GGML_ASSERT(output->type == GGML_TYPE_F32);
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
@ -684,9 +685,10 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_torch_permute(struct ggml_context
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int64_t dim,
|
||||
int dim,
|
||||
int64_t start,
|
||||
int64_t end) {
|
||||
int64_t end,
|
||||
bool cont = true) {
|
||||
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||
if (x->ne[dim] == 1) {
|
||||
return x;
|
||||
@ -701,27 +703,15 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_slice(struct ggml_context* ctx,
|
||||
GGML_ASSERT(start >= 0 && start < x->ne[dim]);
|
||||
GGML_ASSERT(end > start && end <= x->ne[dim]);
|
||||
|
||||
int perm[4] = {0, 1, 2, 3};
|
||||
for (int i = dim; i < 3; ++i)
|
||||
perm[i] = perm[i + 1];
|
||||
perm[3] = dim;
|
||||
int64_t slice_size = end - start;
|
||||
int64_t slice_ne[4] = {x->ne[0], x->ne[1], x->ne[2], x->ne[3]};
|
||||
slice_ne[dim] = slice_size;
|
||||
|
||||
int inv_perm[4];
|
||||
for (int i = 0; i < 4; ++i)
|
||||
inv_perm[perm[i]] = i;
|
||||
x = ggml_view_4d(ctx, x,
|
||||
slice_ne[0], slice_ne[1], slice_ne[2], slice_ne[3],
|
||||
x->nb[1], x->nb[2], x->nb[3], start * x->nb[dim]);
|
||||
|
||||
if (dim != 3) {
|
||||
x = ggml_ext_torch_permute(ctx, x, perm[0], perm[1], perm[2], perm[3]);
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
|
||||
x = ggml_view_4d(
|
||||
ctx, x,
|
||||
x->ne[0], x->ne[1], x->ne[2], end - start,
|
||||
x->nb[1], x->nb[2], x->nb[3], x->nb[3] * start);
|
||||
|
||||
if (dim != 3) {
|
||||
x = ggml_ext_torch_permute(ctx, x, inv_perm[0], inv_perm[1], inv_perm[2], inv_perm[3]);
|
||||
if (cont) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
|
||||
@ -784,7 +774,7 @@ __STATIC_INLINE__ void sd_tiling_calc_tiles(int& num_tiles_dim,
|
||||
int small_dim,
|
||||
int tile_size,
|
||||
const float tile_overlap_factor) {
|
||||
int tile_overlap = (tile_size * tile_overlap_factor);
|
||||
int tile_overlap = static_cast<int>(tile_size * tile_overlap_factor);
|
||||
int non_tile_overlap = tile_size - tile_overlap;
|
||||
|
||||
num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap;
|
||||
@ -959,6 +949,49 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_group_norm_32(struct ggml_context
|
||||
return ggml_group_norm(ctx, a, 32, eps);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_scale(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
float factor,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_scale_inplace(ctx, x, factor);
|
||||
} else {
|
||||
x = ggml_scale(ctx, x, factor);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_gelu_inplace(ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu(ctx, x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_gelu_quick(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool inplace = false) {
|
||||
if (!ggml_is_contiguous(x)) {
|
||||
x = ggml_cont(ctx, x);
|
||||
}
|
||||
if (inplace) {
|
||||
x = ggml_gelu_quick_inplace(ctx, x);
|
||||
} else {
|
||||
x = ggml_gelu_quick(ctx, x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* w,
|
||||
@ -966,7 +999,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
bool force_prec_f32 = false,
|
||||
float scale = 1.f) {
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, scale);
|
||||
x = ggml_ext_scale(ctx, x, scale);
|
||||
}
|
||||
if (x->ne[2] * x->ne[3] > 1024) {
|
||||
// workaround: avoid ggml cuda error
|
||||
@ -985,7 +1018,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
}
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||
}
|
||||
if (b != nullptr) {
|
||||
x = ggml_add_inplace(ctx, x, b);
|
||||
@ -993,6 +1026,48 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_pad_ext(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int lp0,
|
||||
int rp0,
|
||||
int lp1,
|
||||
int rp1,
|
||||
int lp2,
|
||||
int rp2,
|
||||
int lp3,
|
||||
int rp3,
|
||||
bool circular_x = false,
|
||||
bool circular_y = false) {
|
||||
if (circular_x && circular_y) {
|
||||
return ggml_pad_ext_circular(ctx, x, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
|
||||
}
|
||||
|
||||
if (circular_x && (lp0 != 0 || rp0 != 0)) {
|
||||
x = ggml_pad_ext_circular(ctx, x, lp0, rp0, 0, 0, 0, 0, 0, 0);
|
||||
lp0 = rp0 = 0;
|
||||
}
|
||||
if (circular_y && (lp1 != 0 || rp1 != 0)) {
|
||||
x = ggml_pad_ext_circular(ctx, x, 0, 0, lp1, rp1, 0, 0, 0, 0);
|
||||
lp1 = rp1 = 0;
|
||||
}
|
||||
|
||||
if (lp0 != 0 || rp0 != 0 || lp1 != 0 || rp1 != 0 || lp2 != 0 || rp2 != 0 || lp3 != 0 || rp3 != 0) {
|
||||
x = ggml_pad_ext(ctx, x, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_pad(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2 = 0,
|
||||
int p3 = 0,
|
||||
bool circular_x = false,
|
||||
bool circular_y = false) {
|
||||
return ggml_ext_pad_ext(ctx, x, 0, p0, 0, p1, 0, p2, 0, p3, circular_x, circular_y);
|
||||
}
|
||||
|
||||
// w: [OC,IC, KH, KW]
|
||||
// x: [N, IC, IH, IW]
|
||||
// b: [OC,]
|
||||
@ -1001,27 +1076,36 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_conv_2d(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* w,
|
||||
struct ggml_tensor* b,
|
||||
int s0 = 1,
|
||||
int s1 = 1,
|
||||
int p0 = 0,
|
||||
int p1 = 0,
|
||||
int d0 = 1,
|
||||
int d1 = 1,
|
||||
bool direct = false,
|
||||
float scale = 1.f) {
|
||||
int s0 = 1,
|
||||
int s1 = 1,
|
||||
int p0 = 0,
|
||||
int p1 = 0,
|
||||
int d0 = 1,
|
||||
int d1 = 1,
|
||||
bool direct = false,
|
||||
bool circular_x = false,
|
||||
bool circular_y = false,
|
||||
float scale = 1.f) {
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, scale);
|
||||
x = ggml_ext_scale(ctx, x, scale);
|
||||
}
|
||||
if (w->ne[2] != x->ne[2] && ggml_n_dims(w) == 2) {
|
||||
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], w->ne[1]);
|
||||
}
|
||||
|
||||
if ((p0 != 0 || p1 != 0) && (circular_x || circular_y)) {
|
||||
x = ggml_ext_pad_ext(ctx, x, p0, p0, p1, p1, 0, 0, 0, 0, circular_x, circular_y);
|
||||
p0 = 0;
|
||||
p1 = 0;
|
||||
}
|
||||
|
||||
if (direct) {
|
||||
x = ggml_conv_2d_direct(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||
} else {
|
||||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
x = ggml_ext_scale(ctx, x, 1.f / scale);
|
||||
}
|
||||
if (b != nullptr) {
|
||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||||
@ -1119,7 +1203,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_full(struct ggml_context* ctx,
|
||||
int64_t ne2,
|
||||
int64_t ne3) {
|
||||
auto one = ggml_get_tensor(ctx, "ggml_runner_build_in_tensor:one");
|
||||
auto t = ggml_scale(ctx, one, value); // [1,]
|
||||
auto t = ggml_ext_scale(ctx, one, value); // [1,]
|
||||
t = ggml_repeat_4d(ctx, t, ne0, ne1, ne2, ne3); // [ne0, ne1, ne2, ne3]
|
||||
return t;
|
||||
}
|
||||
@ -1156,35 +1240,11 @@ __STATIC_INLINE__ ggml_tensor* ggml_ext_cast_f32(ggml_context* ctx, ggml_tensor*
|
||||
} else {
|
||||
out = ggml_mul_mat(ctx, out, one);
|
||||
}
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
#endif
|
||||
return out;
|
||||
}
|
||||
|
||||
// q: [N * n_head, n_token, d_head]
|
||||
// k: [N * n_head, n_k, d_head]
|
||||
// v: [N * n_head, d_head, n_k]
|
||||
// return: [N * n_head, n_token, d_head]
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention(struct ggml_context* ctx,
|
||||
struct ggml_tensor* q,
|
||||
struct ggml_tensor* k,
|
||||
struct ggml_tensor* v,
|
||||
bool mask = false) {
|
||||
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUDA) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL)
|
||||
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head]
|
||||
#else
|
||||
float d_head = (float)q->ne[0];
|
||||
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
|
||||
if (mask) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head]
|
||||
#endif
|
||||
return kqv;
|
||||
}
|
||||
|
||||
// q: [N, L_q, C(n_head*d_head)] or [N*n_head, L_q, d_head]
|
||||
// k: [N, L_k, n_kv_head*d_head] or [N*n_kv_head, L_k, d_head]
|
||||
// v: [N, L_k, n_kv_head*d_head] or [N, L_k, n_kv_head, d_head]
|
||||
@ -1197,7 +1257,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
struct ggml_tensor* v,
|
||||
int64_t n_head,
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
bool diag_mask_inf = false,
|
||||
bool skip_reshape = false,
|
||||
bool flash_attn = false,
|
||||
float kv_scale = 1.0f) { // avoid overflow
|
||||
@ -1243,7 +1302,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0);
|
||||
}
|
||||
if (kv_scale != 1.0f) {
|
||||
k_in = ggml_scale(ctx, k_in, kv_scale);
|
||||
k_in = ggml_ext_scale(ctx, k_in, kv_scale);
|
||||
}
|
||||
k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16);
|
||||
|
||||
@ -1253,7 +1312,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0);
|
||||
}
|
||||
if (kv_scale != 1.0f) {
|
||||
v_in = ggml_scale(ctx, v_in, kv_scale);
|
||||
v_in = ggml_ext_scale(ctx, v_in, kv_scale);
|
||||
}
|
||||
v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16);
|
||||
|
||||
@ -1285,7 +1344,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale / kv_scale, 0, 0);
|
||||
ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32);
|
||||
if (kv_scale != 1.0f) {
|
||||
out = ggml_scale(ctx, out, 1.0f / kv_scale);
|
||||
out = ggml_ext_scale(ctx, out, 1.0f / kv_scale);
|
||||
}
|
||||
return out;
|
||||
};
|
||||
@ -1294,7 +1353,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
// LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
|
||||
bool can_use_flash_attn = true;
|
||||
if (can_use_flash_attn && L_k % 256 != 0) {
|
||||
kv_pad = GGML_PAD(L_k, 256) - L_k;
|
||||
kv_pad = GGML_PAD(L_k, 256) - static_cast<int>(L_k);
|
||||
}
|
||||
|
||||
if (mask != nullptr) {
|
||||
@ -1320,13 +1379,11 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_attention_ext(struct ggml_context
|
||||
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_kv_head * N); // [N * n_kv_head, d_head, L_k]
|
||||
|
||||
auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
if (mask) {
|
||||
kq = ggml_add_inplace(ctx, kq, mask);
|
||||
}
|
||||
if (diag_mask_inf) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
|
||||
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||||
@ -1494,7 +1551,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_timestep_embedding(
|
||||
int dim,
|
||||
int max_period = 10000,
|
||||
float time_factor = 1.0f) {
|
||||
timesteps = ggml_scale(ctx, timesteps, time_factor);
|
||||
timesteps = ggml_ext_scale(ctx, timesteps, time_factor);
|
||||
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
||||
}
|
||||
|
||||
@ -1521,14 +1578,16 @@ struct WeightAdapter {
|
||||
float scale = 1.f;
|
||||
} linear;
|
||||
struct {
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
bool direct = false;
|
||||
float scale = 1.f;
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
bool direct = false;
|
||||
bool circular_x = false;
|
||||
bool circular_y = false;
|
||||
float scale = 1.f;
|
||||
} conv2d;
|
||||
};
|
||||
virtual ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) = 0;
|
||||
@ -1546,6 +1605,8 @@ struct GGMLRunnerContext {
|
||||
ggml_context* ggml_ctx = nullptr;
|
||||
bool flash_attn_enabled = false;
|
||||
bool conv2d_direct_enabled = false;
|
||||
bool circular_x_enabled = false;
|
||||
bool circular_y_enabled = false;
|
||||
std::shared_ptr<WeightAdapter> weight_adapter = nullptr;
|
||||
};
|
||||
|
||||
@ -1582,6 +1643,8 @@ protected:
|
||||
|
||||
bool flash_attn_enabled = false;
|
||||
bool conv2d_direct_enabled = false;
|
||||
bool circular_x_enabled = false;
|
||||
bool circular_y_enabled = false;
|
||||
|
||||
void alloc_params_ctx() {
|
||||
struct ggml_init_params params;
|
||||
@ -1859,6 +1922,8 @@ public:
|
||||
runner_ctx.backend = runtime_backend;
|
||||
runner_ctx.flash_attn_enabled = flash_attn_enabled;
|
||||
runner_ctx.conv2d_direct_enabled = conv2d_direct_enabled;
|
||||
runner_ctx.circular_x_enabled = circular_x_enabled;
|
||||
runner_ctx.circular_y_enabled = circular_y_enabled;
|
||||
runner_ctx.weight_adapter = weight_adapter;
|
||||
return runner_ctx;
|
||||
}
|
||||
@ -2003,6 +2068,11 @@ public:
|
||||
conv2d_direct_enabled = enabled;
|
||||
}
|
||||
|
||||
void set_circular_axes(bool circular_x, bool circular_y) {
|
||||
circular_x_enabled = circular_x;
|
||||
circular_y_enabled = circular_y;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||
weight_adapter = adapter;
|
||||
}
|
||||
@ -2266,15 +2336,17 @@ public:
|
||||
}
|
||||
if (ctx->weight_adapter) {
|
||||
WeightAdapter::ForwardParams forward_params;
|
||||
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
|
||||
forward_params.conv2d.s0 = stride.second;
|
||||
forward_params.conv2d.s1 = stride.first;
|
||||
forward_params.conv2d.p0 = padding.second;
|
||||
forward_params.conv2d.p1 = padding.first;
|
||||
forward_params.conv2d.d0 = dilation.second;
|
||||
forward_params.conv2d.d1 = dilation.first;
|
||||
forward_params.conv2d.direct = ctx->conv2d_direct_enabled;
|
||||
forward_params.conv2d.scale = scale;
|
||||
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
|
||||
forward_params.conv2d.s0 = stride.second;
|
||||
forward_params.conv2d.s1 = stride.first;
|
||||
forward_params.conv2d.p0 = padding.second;
|
||||
forward_params.conv2d.p1 = padding.first;
|
||||
forward_params.conv2d.d0 = dilation.second;
|
||||
forward_params.conv2d.d1 = dilation.first;
|
||||
forward_params.conv2d.direct = ctx->conv2d_direct_enabled;
|
||||
forward_params.conv2d.circular_x = ctx->circular_x_enabled;
|
||||
forward_params.conv2d.circular_y = ctx->circular_y_enabled;
|
||||
forward_params.conv2d.scale = scale;
|
||||
return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params);
|
||||
}
|
||||
return ggml_ext_conv_2d(ctx->ggml_ctx,
|
||||
@ -2288,57 +2360,12 @@ public:
|
||||
dilation.second,
|
||||
dilation.first,
|
||||
ctx->conv2d_direct_enabled,
|
||||
ctx->circular_x_enabled,
|
||||
ctx->circular_y_enabled,
|
||||
scale);
|
||||
}
|
||||
};
|
||||
|
||||
class Conv3dnx1x1 : public UnaryBlock {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
int64_t out_channels;
|
||||
int64_t kernel_size;
|
||||
int64_t stride;
|
||||
int64_t padding;
|
||||
int64_t dilation;
|
||||
bool bias;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = GGML_TYPE_F16;
|
||||
params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d
|
||||
if (bias) {
|
||||
enum ggml_type wtype = GGML_TYPE_F32;
|
||||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
Conv3dnx1x1(int64_t in_channels,
|
||||
int64_t out_channels,
|
||||
int64_t kernel_size,
|
||||
int64_t stride = 1,
|
||||
int64_t padding = 0,
|
||||
int64_t dilation = 1,
|
||||
bool bias = true)
|
||||
: in_channels(in_channels),
|
||||
out_channels(out_channels),
|
||||
kernel_size(kernel_size),
|
||||
stride(stride),
|
||||
padding(padding),
|
||||
dilation(dilation),
|
||||
bias(bias) {}
|
||||
|
||||
// x: [N, IC, ID, IH*IW]
|
||||
// result: [N, OC, OD, OH*OW]
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
struct ggml_tensor* b = nullptr;
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
return ggml_ext_conv_3d_nx1x1(ctx->ggml_ctx, x, w, b, stride, padding, dilation);
|
||||
}
|
||||
};
|
||||
|
||||
class Conv3d : public UnaryBlock {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
@ -2454,7 +2481,7 @@ public:
|
||||
|
||||
class GroupNorm : public GGMLBlock {
|
||||
protected:
|
||||
int64_t num_groups;
|
||||
int num_groups;
|
||||
int64_t num_channels;
|
||||
float eps;
|
||||
bool affine;
|
||||
@ -2471,7 +2498,7 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
GroupNorm(int64_t num_groups,
|
||||
GroupNorm(int num_groups,
|
||||
int64_t num_channels,
|
||||
float eps = 1e-05f,
|
||||
bool affine = true)
|
||||
@ -2573,7 +2600,7 @@ public:
|
||||
// x: [N, n_token, embed_dim]
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
bool mask = false) {
|
||||
struct ggml_tensor* mask = nullptr) {
|
||||
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);
|
||||
|
||||
ggml_tensor* q;
|
||||
@ -2596,7 +2623,7 @@ public:
|
||||
v = v_proj->forward(ctx, x);
|
||||
}
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, nullptr, mask); // [N, n_token, embed_dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, n_head, mask, false); // [N, n_token, embed_dim]
|
||||
|
||||
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
|
||||
return x;
|
||||
|
||||
@ -151,7 +151,7 @@ private:
|
||||
}
|
||||
|
||||
if (n_dims > GGML_MAX_DIMS) {
|
||||
for (int i = GGML_MAX_DIMS; i < n_dims; i++) {
|
||||
for (uint32_t i = GGML_MAX_DIMS; i < n_dims; i++) {
|
||||
info.shape[GGML_MAX_DIMS - 1] *= info.shape[i]; // stack to last dim;
|
||||
}
|
||||
info.shape.resize(GGML_MAX_DIMS);
|
||||
|
||||
@ -166,12 +166,12 @@ float sd_latent_rgb_bias[3] = {-0.017478f, -0.055834f, -0.105825f};
|
||||
void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const float (*latent_rgb_proj)[3], const float latent_rgb_bias[3], int patch_size) {
|
||||
size_t buffer_head = 0;
|
||||
|
||||
uint32_t latent_width = latents->ne[0];
|
||||
uint32_t latent_height = latents->ne[1];
|
||||
uint32_t dim = latents->ne[ggml_n_dims(latents) - 1];
|
||||
uint32_t latent_width = static_cast<uint32_t>(latents->ne[0]);
|
||||
uint32_t latent_height = static_cast<uint32_t>(latents->ne[1]);
|
||||
uint32_t dim = static_cast<uint32_t>(latents->ne[ggml_n_dims(latents) - 1]);
|
||||
uint32_t frames = 1;
|
||||
if (ggml_n_dims(latents) == 4) {
|
||||
frames = latents->ne[2];
|
||||
frames = static_cast<uint32_t>(latents->ne[2]);
|
||||
}
|
||||
|
||||
uint32_t rgb_width = latent_width * patch_size;
|
||||
@ -179,9 +179,9 @@ void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const fl
|
||||
|
||||
uint32_t unpatched_dim = dim / (patch_size * patch_size);
|
||||
|
||||
for (int k = 0; k < frames; k++) {
|
||||
for (int rgb_x = 0; rgb_x < rgb_width; rgb_x++) {
|
||||
for (int rgb_y = 0; rgb_y < rgb_height; rgb_y++) {
|
||||
for (uint32_t k = 0; k < frames; k++) {
|
||||
for (uint32_t rgb_x = 0; rgb_x < rgb_width; rgb_x++) {
|
||||
for (uint32_t rgb_y = 0; rgb_y < rgb_height; rgb_y++) {
|
||||
int latent_x = rgb_x / patch_size;
|
||||
int latent_y = rgb_y / patch_size;
|
||||
|
||||
@ -197,7 +197,7 @@ void preview_latent_video(uint8_t* buffer, struct ggml_tensor* latents, const fl
|
||||
|
||||
float r = 0, g = 0, b = 0;
|
||||
if (latent_rgb_proj != nullptr) {
|
||||
for (int d = 0; d < unpatched_dim; d++) {
|
||||
for (uint32_t d = 0; d < unpatched_dim; d++) {
|
||||
float value = *(float*)((char*)latents->data + latent_id + (d * patch_size * patch_size + channel_offset) * latents->nb[ggml_n_dims(latents) - 1]);
|
||||
r += value * latent_rgb_proj[d][0];
|
||||
g += value * latent_rgb_proj[d][1];
|
||||
|
||||
163
llm.hpp
@ -195,14 +195,14 @@ namespace LLM {
|
||||
tokens.insert(tokens.begin(), BOS_TOKEN_ID);
|
||||
}
|
||||
if (max_length > 0 && padding) {
|
||||
size_t n = std::ceil(tokens.size() * 1.0 / max_length);
|
||||
size_t n = static_cast<size_t>(std::ceil(tokens.size() * 1.f / max_length));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
size_t length = max_length * n;
|
||||
LOG_DEBUG("token length: %llu", length);
|
||||
tokens.insert(tokens.end(), length - tokens.size(), PAD_TOKEN_ID);
|
||||
weights.insert(weights.end(), length - weights.size(), 1.0);
|
||||
weights.insert(weights.end(), length - weights.size(), 1.f);
|
||||
}
|
||||
}
|
||||
|
||||
@ -377,7 +377,7 @@ namespace LLM {
|
||||
|
||||
try {
|
||||
vocab = nlohmann::json::parse(vocab_utf8_str);
|
||||
} catch (const nlohmann::json::parse_error& e) {
|
||||
} catch (const nlohmann::json::parse_error&) {
|
||||
GGML_ABORT("invalid vocab json str");
|
||||
}
|
||||
for (const auto& [key, value] : vocab.items()) {
|
||||
@ -386,7 +386,7 @@ namespace LLM {
|
||||
encoder[token] = i;
|
||||
decoder[i] = token;
|
||||
}
|
||||
encoder_len = vocab.size();
|
||||
encoder_len = static_cast<int>(vocab.size());
|
||||
LOG_DEBUG("vocab size: %d", encoder_len);
|
||||
|
||||
auto byte_unicode_pairs = bytes_to_unicode();
|
||||
@ -485,16 +485,16 @@ namespace LLM {
|
||||
};
|
||||
|
||||
struct LLMVisionParams {
|
||||
int64_t num_layers = 32;
|
||||
int num_layers = 32;
|
||||
int64_t hidden_size = 1280;
|
||||
int64_t intermediate_size = 3420;
|
||||
int64_t num_heads = 16;
|
||||
int num_heads = 16;
|
||||
int64_t in_channels = 3;
|
||||
int64_t out_hidden_size = 3584;
|
||||
int64_t temporal_patch_size = 2;
|
||||
int64_t patch_size = 14;
|
||||
int64_t spatial_merge_size = 2;
|
||||
int64_t window_size = 112;
|
||||
int temporal_patch_size = 2;
|
||||
int patch_size = 14;
|
||||
int spatial_merge_size = 2;
|
||||
int window_size = 112;
|
||||
std::set<int> fullatt_block_indexes = {7, 15, 23, 31};
|
||||
};
|
||||
|
||||
@ -503,9 +503,9 @@ namespace LLM {
|
||||
int64_t num_layers = 28;
|
||||
int64_t hidden_size = 3584;
|
||||
int64_t intermediate_size = 18944;
|
||||
int64_t num_heads = 28;
|
||||
int64_t num_kv_heads = 4;
|
||||
int64_t head_dim = 128;
|
||||
int num_heads = 28;
|
||||
int num_kv_heads = 4;
|
||||
int head_dim = 128;
|
||||
bool qkv_bias = true;
|
||||
bool qk_norm = false;
|
||||
int64_t vocab_size = 152064;
|
||||
@ -638,7 +638,7 @@ namespace LLM {
|
||||
x = ln_q->forward(ctx, x);
|
||||
x = ggml_reshape_2d(ctx->ggml_ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
|
||||
x = mlp_0->forward(ctx, x);
|
||||
x = ggml_gelu(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x);
|
||||
x = mlp_2->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
@ -647,15 +647,15 @@ namespace LLM {
|
||||
struct VisionAttention : public GGMLBlock {
|
||||
protected:
|
||||
bool llama_cpp_style;
|
||||
int64_t head_dim;
|
||||
int64_t num_heads;
|
||||
int head_dim;
|
||||
int num_heads;
|
||||
|
||||
public:
|
||||
VisionAttention(bool llama_cpp_style,
|
||||
int64_t hidden_size,
|
||||
int64_t num_heads)
|
||||
int num_heads)
|
||||
: llama_cpp_style(llama_cpp_style), num_heads(num_heads) {
|
||||
head_dim = hidden_size / num_heads;
|
||||
head_dim = static_cast<int>(hidden_size / num_heads);
|
||||
GGML_ASSERT(num_heads * head_dim == hidden_size);
|
||||
if (llama_cpp_style) {
|
||||
blocks["q_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
|
||||
@ -709,7 +709,7 @@ namespace LLM {
|
||||
VisionBlock(bool llama_cpp_style,
|
||||
int64_t hidden_size,
|
||||
int64_t intermediate_size,
|
||||
int64_t num_heads,
|
||||
int num_heads,
|
||||
float eps = 1e-6f) {
|
||||
blocks["attn"] = std::shared_ptr<GGMLBlock>(new VisionAttention(llama_cpp_style, hidden_size, num_heads));
|
||||
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new MLP(hidden_size, intermediate_size, true));
|
||||
@ -743,22 +743,22 @@ namespace LLM {
|
||||
|
||||
struct VisionModel : public GGMLBlock {
|
||||
protected:
|
||||
int64_t num_layers;
|
||||
int64_t spatial_merge_size;
|
||||
int num_layers;
|
||||
int spatial_merge_size;
|
||||
std::set<int> fullatt_block_indexes;
|
||||
|
||||
public:
|
||||
VisionModel(bool llama_cpp_style,
|
||||
int64_t num_layers,
|
||||
int num_layers,
|
||||
int64_t in_channels,
|
||||
int64_t hidden_size,
|
||||
int64_t out_hidden_size,
|
||||
int64_t intermediate_size,
|
||||
int64_t num_heads,
|
||||
int64_t spatial_merge_size,
|
||||
int64_t patch_size,
|
||||
int64_t temporal_patch_size,
|
||||
int64_t window_size,
|
||||
int num_heads,
|
||||
int spatial_merge_size,
|
||||
int patch_size,
|
||||
int temporal_patch_size,
|
||||
int window_size,
|
||||
std::set<int> fullatt_block_indexes = {7, 15, 23, 31},
|
||||
float eps = 1e-6f)
|
||||
: num_layers(num_layers), fullatt_block_indexes(std::move(fullatt_block_indexes)), spatial_merge_size(spatial_merge_size) {
|
||||
@ -817,7 +817,7 @@ namespace LLM {
|
||||
struct Attention : public GGMLBlock {
|
||||
protected:
|
||||
LLMArch arch;
|
||||
int64_t head_dim;
|
||||
int head_dim;
|
||||
int64_t num_heads;
|
||||
int64_t num_kv_heads;
|
||||
bool qk_norm;
|
||||
@ -837,7 +837,8 @@ namespace LLM {
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* input_pos) {
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask = nullptr) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
int64_t n_token = x->ne[1];
|
||||
int64_t N = x->ne[2];
|
||||
@ -880,7 +881,7 @@ namespace LLM {
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 2, 1, 3)); // [N, num_kv_heads, n_token, head_dim]
|
||||
k = ggml_reshape_3d(ctx->ggml_ctx, k, k->ne[0], k->ne[1], k->ne[2] * k->ne[3]); // [N*num_kv_heads, n_token, head_dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, true, true, false); // [N, n_token, hidden_size]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, attention_mask, true, false); // [N, n_token, hidden_size]
|
||||
|
||||
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
return x;
|
||||
@ -898,7 +899,8 @@ namespace LLM {
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* input_pos) {
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask = nullptr) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
auto self_attn = std::dynamic_pointer_cast<Attention>(blocks["self_attn"]);
|
||||
auto mlp = std::dynamic_pointer_cast<MLP>(blocks["mlp"]);
|
||||
@ -907,7 +909,7 @@ namespace LLM {
|
||||
|
||||
auto residual = x;
|
||||
x = input_layernorm->forward(ctx, x);
|
||||
x = self_attn->forward(ctx, x, input_pos);
|
||||
x = self_attn->forward(ctx, x, input_pos, attention_mask);
|
||||
x = ggml_add_inplace(ctx->ggml_ctx, x, residual);
|
||||
|
||||
residual = x;
|
||||
@ -936,6 +938,7 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
// input_ids: [N, n_token]
|
||||
@ -990,7 +993,7 @@ namespace LLM {
|
||||
for (int i = 0; i < num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<TransformerBlock>(blocks["layers." + std::to_string(i)]);
|
||||
|
||||
x = block->forward(ctx, x, input_pos);
|
||||
x = block->forward(ctx, x, input_pos, attention_mask);
|
||||
if (out_layers.find(i + 1) != out_layers.end()) {
|
||||
intermediate_outputs.push_back(x);
|
||||
}
|
||||
@ -1036,12 +1039,13 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
// input_ids: [N, n_token]
|
||||
auto model = std::dynamic_pointer_cast<TextModel>(blocks["model"]);
|
||||
|
||||
auto x = model->forward(ctx, input_ids, input_pos, image_embeds, out_layers);
|
||||
auto x = model->forward(ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -1063,6 +1067,7 @@ namespace LLM {
|
||||
LLM model;
|
||||
|
||||
std::vector<int> input_pos_vec;
|
||||
std::vector<float> attention_mask_vec;
|
||||
std::vector<float> window_mask_vec;
|
||||
std::vector<int> window_index_vec;
|
||||
std::vector<int> window_inverse_index_vec;
|
||||
@ -1157,9 +1162,10 @@ namespace LLM {
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* input_pos,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
auto hidden_states = model.forward(ctx, input_ids, input_pos, image_embeds, out_layers); // [N, n_token, hidden_size]
|
||||
auto hidden_states = model.forward(ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers); // [N, n_token, hidden_size]
|
||||
return hidden_states;
|
||||
}
|
||||
|
||||
@ -1174,6 +1180,7 @@ namespace LLM {
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
@ -1205,9 +1212,26 @@ namespace LLM {
|
||||
input_pos_vec.size());
|
||||
set_backend_tensor_data(input_pos, input_pos_vec.data());
|
||||
|
||||
if (attention_mask != nullptr) {
|
||||
attention_mask = to_backend(attention_mask);
|
||||
} else {
|
||||
attention_mask_vec.resize(n_tokens * n_tokens);
|
||||
for (int i0 = 0; i0 < n_tokens; i0++) {
|
||||
for (int i1 = 0; i1 < n_tokens; i1++) {
|
||||
float value = 0.f;
|
||||
if (i0 > i1) {
|
||||
value = -INFINITY;
|
||||
}
|
||||
attention_mask_vec[i1 * n_tokens + i0] = value;
|
||||
}
|
||||
}
|
||||
attention_mask = ggml_new_tensor_2d(compute_ctx, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||
set_backend_tensor_data(attention_mask, attention_mask_vec.data());
|
||||
}
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, input_pos, image_embeds, out_layers);
|
||||
struct ggml_tensor* hidden_states = forward(&runner_ctx, input_ids, input_pos, attention_mask, image_embeds, out_layers);
|
||||
|
||||
ggml_build_forward_expand(gf, hidden_states);
|
||||
|
||||
@ -1216,22 +1240,23 @@ namespace LLM {
|
||||
|
||||
bool compute(const int n_threads,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* attention_mask,
|
||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds,
|
||||
std::set<int> out_layers,
|
||||
ggml_tensor** output,
|
||||
ggml_context* output_ctx = nullptr) {
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(input_ids, image_embeds, out_layers);
|
||||
return build_graph(input_ids, attention_mask, image_embeds, out_layers);
|
||||
};
|
||||
return GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
|
||||
}
|
||||
|
||||
int64_t get_num_image_tokens(int64_t t, int64_t h, int64_t w) {
|
||||
int grid_t = 1;
|
||||
int grid_h = h / params.vision.patch_size;
|
||||
int grid_w = w / params.vision.patch_size;
|
||||
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
int64_t grid_t = 1;
|
||||
int64_t grid_h = h / params.vision.patch_size;
|
||||
int64_t grid_w = w / params.vision.patch_size;
|
||||
int64_t llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int64_t llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
return grid_t * grid_h * grid_w;
|
||||
}
|
||||
|
||||
@ -1269,8 +1294,8 @@ namespace LLM {
|
||||
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
|
||||
|
||||
int grid_t = 1;
|
||||
int grid_h = image->ne[1] / params.vision.patch_size;
|
||||
int grid_w = image->ne[0] / params.vision.patch_size;
|
||||
int grid_h = static_cast<int>(image->ne[1]) / params.vision.patch_size;
|
||||
int grid_w = static_cast<int>(image->ne[0]) / params.vision.patch_size;
|
||||
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
|
||||
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
|
||||
int vit_merger_window_size = params.vision.window_size / params.vision.patch_size / params.vision.spatial_merge_size;
|
||||
@ -1358,14 +1383,14 @@ namespace LLM {
|
||||
set_backend_tensor_data(window_mask, window_mask_vec.data());
|
||||
|
||||
// pe
|
||||
int head_dim = params.vision.hidden_size / params.vision.num_heads;
|
||||
int head_dim = static_cast<int>(params.vision.hidden_size / params.vision.num_heads);
|
||||
pe_vec = Rope::gen_qwen2vl_pe(grid_h,
|
||||
grid_w,
|
||||
params.vision.spatial_merge_size,
|
||||
window_inverse_index_vec,
|
||||
10000.f,
|
||||
10000,
|
||||
{head_dim / 2, head_dim / 2});
|
||||
int pos_len = pe_vec.size() / head_dim / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / head_dim / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, head_dim / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -1485,13 +1510,13 @@ namespace LLM {
|
||||
print_ggml_tensor(image, false, "image");
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.encode_image(8, image, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out, false, "image_embed");
|
||||
image_embed = out;
|
||||
LOG_DEBUG("llm encode_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm encode_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
|
||||
std::string placeholder = "<|image_pad|>";
|
||||
@ -1524,12 +1549,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, image_embeds, {}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, image_embeds, {}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_vit) {
|
||||
// auto image = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 280, 280, 3);
|
||||
// ggml_set_f32(image, 0.f);
|
||||
@ -1537,16 +1562,16 @@ namespace LLM {
|
||||
print_ggml_tensor(image, false, "image");
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.encode_image(8, image, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out, false, "out");
|
||||
|
||||
// auto ref_out = load_tensor_from_file(work_ctx, "qwen2vl.bin");
|
||||
// ggml_ext_tensor_diff(ref_out, out, 0.01f);
|
||||
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_mistral) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
@ -1564,12 +1589,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {10, 20, 30}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {10, 20, 30}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else if (test_qwen3) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>user\n";
|
||||
@ -1587,12 +1612,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {35}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {35}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
} else {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n";
|
||||
@ -1610,12 +1635,12 @@ namespace LLM {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, nullptr, {}, {}, &out, work_ctx);
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("llm test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
18
lora.hpp
@ -195,7 +195,7 @@ struct LoraModel : public GGMLRunner {
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -235,7 +235,7 @@ struct LoraModel : public GGMLRunner {
|
||||
float scale_value = 1.0f;
|
||||
scale_value *= multiplier;
|
||||
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -340,7 +340,7 @@ struct LoraModel : public GGMLRunner {
|
||||
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
|
||||
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
|
||||
auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
@ -456,7 +456,7 @@ struct LoraModel : public GGMLRunner {
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
curr_updown = ggml_ext_scale(ctx, curr_updown, scale_value, true);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
@ -599,6 +599,8 @@ struct LoraModel : public GGMLRunner {
|
||||
forward_params.conv2d.d0,
|
||||
forward_params.conv2d.d1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.circular_x,
|
||||
forward_params.conv2d.circular_y,
|
||||
forward_params.conv2d.scale);
|
||||
if (lora_mid) {
|
||||
lx = ggml_ext_conv_2d(ctx,
|
||||
@ -612,6 +614,8 @@ struct LoraModel : public GGMLRunner {
|
||||
1,
|
||||
1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.circular_x,
|
||||
forward_params.conv2d.circular_y,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
lx = ggml_ext_conv_2d(ctx,
|
||||
@ -625,10 +629,12 @@ struct LoraModel : public GGMLRunner {
|
||||
1,
|
||||
1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.circular_x,
|
||||
forward_params.conv2d.circular_y,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
|
||||
auto curr_out_diff = ggml_scale_inplace(ctx, lx, scale_value);
|
||||
auto curr_out_diff = ggml_ext_scale(ctx, lx, scale_value, true);
|
||||
|
||||
if (out_diff == nullptr) {
|
||||
out_diff = curr_out_diff;
|
||||
@ -779,6 +785,8 @@ public:
|
||||
forward_params.conv2d.d0,
|
||||
forward_params.conv2d.d1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.circular_x,
|
||||
forward_params.conv2d.circular_y,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
for (auto& lora_model : lora_models) {
|
||||
|
||||
111
mmdit.hpp
@ -33,7 +33,7 @@ public:
|
||||
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
|
||||
|
||||
x = fc1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = fc2->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
@ -97,12 +97,12 @@ public:
|
||||
struct TimestepEmbedder : public GGMLBlock {
|
||||
// Embeds scalar timesteps into vector representations.
|
||||
protected:
|
||||
int64_t frequency_embedding_size;
|
||||
int frequency_embedding_size;
|
||||
|
||||
public:
|
||||
TimestepEmbedder(int64_t hidden_size,
|
||||
int64_t frequency_embedding_size = 256,
|
||||
int64_t out_channels = 0)
|
||||
int frequency_embedding_size = 256,
|
||||
int64_t out_channels = 0)
|
||||
: frequency_embedding_size(frequency_embedding_size) {
|
||||
if (out_channels <= 0) {
|
||||
out_channels = hidden_size;
|
||||
@ -167,11 +167,11 @@ public:
|
||||
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
|
||||
}
|
||||
if (qk_norm == "rms") {
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6));
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6f));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new RMSNorm(d_head, 1.0e-6f));
|
||||
} else if (qk_norm == "ln") {
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6));
|
||||
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6f));
|
||||
blocks["ln_k"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_head, 1.0e-6f));
|
||||
}
|
||||
}
|
||||
|
||||
@ -211,8 +211,8 @@ public:
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
auto qkv = pre_attention(ctx, x);
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
}
|
||||
};
|
||||
@ -284,23 +284,19 @@ public:
|
||||
auto attn2 = std::dynamic_pointer_cast<SelfAttention>(blocks["attn2"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
int64_t n_mods = 9;
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
||||
int n_mods = 9;
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
||||
|
||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
||||
|
||||
auto shift_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 6); // [N, hidden_size]
|
||||
auto scale_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 7); // [N, hidden_size]
|
||||
auto gate_msa2 = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 8); // [N, hidden_size]
|
||||
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||
auto shift_msa2 = m_vec[6]; // [N, hidden_size]
|
||||
auto scale_msa2 = m_vec[7]; // [N, hidden_size]
|
||||
auto gate_msa2 = m_vec[8]; // [N, hidden_size]
|
||||
|
||||
auto x_norm = norm1->forward(ctx, x);
|
||||
|
||||
@ -322,22 +318,20 @@ public:
|
||||
auto attn = std::dynamic_pointer_cast<SelfAttention>(blocks["attn"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
int64_t n_mods = 6;
|
||||
int n_mods = 6;
|
||||
if (pre_only) {
|
||||
n_mods = 2;
|
||||
}
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], n_mods, c->ne[1]); // [N, n_mods, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [n_mods, N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, n_mods * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, n_mods, 0);
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto shift_msa = m_vec[0]; // [N, hidden_size]
|
||||
auto scale_msa = m_vec[1]; // [N, hidden_size]
|
||||
if (!pre_only) {
|
||||
auto gate_msa = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, hidden_size]
|
||||
auto shift_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, hidden_size]
|
||||
auto scale_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, hidden_size]
|
||||
auto gate_mlp = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, hidden_size]
|
||||
auto gate_msa = m_vec[2]; // [N, hidden_size]
|
||||
auto shift_mlp = m_vec[3]; // [N, hidden_size]
|
||||
auto scale_mlp = m_vec[4]; // [N, hidden_size]
|
||||
auto gate_mlp = m_vec[5]; // [N, hidden_size]
|
||||
|
||||
auto attn_in = modulate(ctx->ggml_ctx, norm1->forward(ctx, x), shift_msa, scale_msa);
|
||||
|
||||
@ -439,8 +433,8 @@ public:
|
||||
auto qkv2 = std::get<1>(qkv_intermediates);
|
||||
auto intermediates = std::get<2>(qkv_intermediates);
|
||||
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn2_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv2[0], qkv2[1], qkv2[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention_x(ctx,
|
||||
attn_out,
|
||||
attn2_out,
|
||||
@ -456,7 +450,7 @@ public:
|
||||
auto qkv = qkv_intermediates.first;
|
||||
auto intermediates = qkv_intermediates.second;
|
||||
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto attn_out = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = post_attention(ctx,
|
||||
attn_out,
|
||||
intermediates[0],
|
||||
@ -500,26 +494,24 @@ block_mixing(GGMLRunnerContext* ctx,
|
||||
qkv.push_back(ggml_concat(ctx->ggml_ctx, context_qkv[i], x_qkv[i], 1));
|
||||
}
|
||||
|
||||
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
|
||||
auto attn = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_context + n_token, hidden_size]
|
||||
|
||||
auto context_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
context->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_context, N, hidden_size]
|
||||
context_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, context_attn, 0, 2, 1, 3)); // [N, n_context, hidden_size]
|
||||
0); // [N, n_context, hidden_size]
|
||||
auto x_attn = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
x->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * context->ne[1]); // [n_token, N, hidden_size]
|
||||
x_attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x_attn, 0, 2, 1, 3)); // [N, n_token, hidden_size]
|
||||
context->ne[1] * attn->nb[1]); // [N, n_token, hidden_size]
|
||||
|
||||
if (!context_block->pre_only) {
|
||||
context = context_block->post_attention(ctx,
|
||||
@ -534,7 +526,7 @@ block_mixing(GGMLRunnerContext* ctx,
|
||||
}
|
||||
|
||||
if (x_block->self_attn) {
|
||||
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
||||
auto attn2 = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, hidden_size]
|
||||
|
||||
x = x_block->post_attention_x(ctx,
|
||||
x_attn,
|
||||
@ -604,13 +596,10 @@ public:
|
||||
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
m = ggml_reshape_3d(ctx->ggml_ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
||||
m = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale = ggml_view_2d(ctx->ggml_ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, 2 * hidden_size]
|
||||
auto m_vec = ggml_ext_chunk(ctx->ggml_ctx, m, 2, 0);
|
||||
auto shift = m_vec[0]; // [N, hidden_size]
|
||||
auto scale = m_vec[1]; // [N, hidden_size]
|
||||
|
||||
x = modulate(ctx->ggml_ctx, norm_final->forward(ctx, x), shift, scale);
|
||||
x = linear->forward(ctx, x);
|
||||
@ -623,7 +612,7 @@ struct MMDiT : public GGMLBlock {
|
||||
// Diffusion model with a Transformer backbone.
|
||||
protected:
|
||||
int64_t input_size = -1;
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 16;
|
||||
int64_t d_self = -1; // >=0 for MMdiT-X
|
||||
int64_t depth = 24;
|
||||
@ -943,12 +932,12 @@ struct MMDiTRunner : public GGMLRunner {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, y, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("mmdit test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("mmdit test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -983,4 +972,4 @@ struct MMDiTRunner : public GGMLRunner {
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
85
model.cpp
@ -376,7 +376,11 @@ bool ModelLoader::init_from_file(const std::string& file_path, const std::string
|
||||
LOG_INFO("load %s using checkpoint format", file_path.c_str());
|
||||
return init_from_ckpt_file(file_path, prefix);
|
||||
} else {
|
||||
LOG_WARN("unknown format %s", file_path.c_str());
|
||||
if (file_exists(file_path)) {
|
||||
LOG_WARN("unknown format %s", file_path.c_str());
|
||||
} else {
|
||||
LOG_WARN("file %s not found", file_path.c_str());
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -436,7 +440,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s
|
||||
name,
|
||||
gguf_tensor_info.type,
|
||||
gguf_tensor_info.shape.data(),
|
||||
gguf_tensor_info.shape.size(),
|
||||
static_cast<int>(gguf_tensor_info.shape.size()),
|
||||
file_index,
|
||||
data_offset + gguf_tensor_info.offset);
|
||||
|
||||
@ -448,7 +452,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s
|
||||
return true;
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf_);
|
||||
int n_tensors = static_cast<int>(gguf_get_n_tensors(ctx_gguf_));
|
||||
|
||||
size_t total_size = 0;
|
||||
size_t data_offset = gguf_get_data_offset(ctx_gguf_);
|
||||
@ -1034,10 +1038,14 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
|
||||
bool is_xl = false;
|
||||
bool is_flux = false;
|
||||
bool is_flux2 = false;
|
||||
bool has_single_block_47 = false;
|
||||
bool is_wan = false;
|
||||
int64_t patch_embedding_channels = 0;
|
||||
bool has_img_emb = false;
|
||||
bool has_middle_block_1 = false;
|
||||
bool has_output_block_311 = false;
|
||||
bool has_output_block_71 = false;
|
||||
|
||||
for (auto& [name, tensor_storage] : tensor_storage_map) {
|
||||
if (!(is_xl)) {
|
||||
@ -1054,7 +1062,10 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_QWEN_IMAGE;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_stream_modulation_img.lin.weight") != std::string::npos) {
|
||||
return VERSION_FLUX2;
|
||||
is_flux2 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("single_blocks.47.linear1.weight") != std::string::npos) {
|
||||
has_single_block_47 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_blocks.0.img_mlp.gate_proj.weight") != std::string::npos) {
|
||||
return VERSION_OVIS_IMAGE;
|
||||
@ -1094,6 +1105,12 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
tensor_storage.name.find("unet.mid_block.resnets.1.") != std::string::npos) {
|
||||
has_middle_block_1 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.output_blocks.3.1.transformer_blocks.1") != std::string::npos) {
|
||||
has_output_block_311 = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.output_blocks.7.1") != std::string::npos) {
|
||||
has_output_block_71 = true;
|
||||
}
|
||||
if (tensor_storage.name == "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight" ||
|
||||
tensor_storage.name == "cond_stage_model.model.token_embedding.weight" ||
|
||||
tensor_storage.name == "text_model.embeddings.token_embedding.weight" ||
|
||||
@ -1129,12 +1146,15 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_SDXL_PIX2PIX;
|
||||
}
|
||||
if (!has_middle_block_1) {
|
||||
if (!has_output_block_311) {
|
||||
return VERSION_SDXL_VEGA;
|
||||
}
|
||||
return VERSION_SDXL_SSD1B;
|
||||
}
|
||||
return VERSION_SDXL;
|
||||
}
|
||||
|
||||
if (is_flux) {
|
||||
if (is_flux && !is_flux2) {
|
||||
if (input_block_weight.ne[0] == 384) {
|
||||
return VERSION_FLUX_FILL;
|
||||
}
|
||||
@ -1147,6 +1167,13 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_FLUX;
|
||||
}
|
||||
|
||||
if (is_flux2) {
|
||||
if (has_single_block_47) {
|
||||
return VERSION_FLUX2;
|
||||
}
|
||||
return VERSION_FLUX2_KLEIN;
|
||||
}
|
||||
|
||||
if (token_embedding_weight.ne[0] == 768) {
|
||||
if (is_inpaint) {
|
||||
return VERSION_SD1_INPAINT;
|
||||
@ -1155,6 +1182,9 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
return VERSION_SD1_PIX2PIX;
|
||||
}
|
||||
if (!has_middle_block_1) {
|
||||
if (!has_output_block_71) {
|
||||
return VERSION_SDXS;
|
||||
}
|
||||
return VERSION_SD1_TINY_UNET;
|
||||
}
|
||||
return VERSION_SD1;
|
||||
@ -1340,7 +1370,7 @@ std::string ModelLoader::load_umt5_tokenizer_json() {
|
||||
return json_str;
|
||||
}
|
||||
|
||||
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads_p) {
|
||||
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads_p, bool enable_mmap) {
|
||||
int64_t process_time_ms = 0;
|
||||
std::atomic<int64_t> read_time_ms(0);
|
||||
std::atomic<int64_t> memcpy_time_ms(0);
|
||||
@ -1390,6 +1420,15 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<MmapWrapper> mmapped;
|
||||
if (enable_mmap && !is_zip) {
|
||||
LOG_DEBUG("using mmap for I/O");
|
||||
mmapped = MmapWrapper::create(file_path);
|
||||
if (!mmapped) {
|
||||
LOG_WARN("failed to memory-map '%s'", file_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
int n_threads = is_zip ? 1 : std::min(num_threads_to_use, (int)file_tensors.size());
|
||||
if (n_threads < 1) {
|
||||
n_threads = 1;
|
||||
@ -1411,7 +1450,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
failed = true;
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
} else if (!mmapped) {
|
||||
file.open(file_path, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
LOG_ERROR("failed to open '%s'", file_path.c_str());
|
||||
@ -1464,6 +1503,11 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
zip_entry_noallocread(zip, (void*)buf, n);
|
||||
}
|
||||
zip_entry_close(zip);
|
||||
} else if (mmapped) {
|
||||
if (!mmapped->copy_data(buf, n, tensor_storage.offset)) {
|
||||
LOG_ERROR("read tensor data failed: '%s'", file_path.c_str());
|
||||
failed = true;
|
||||
}
|
||||
} else {
|
||||
file.seekg(tensor_storage.offset);
|
||||
file.read(buf, n);
|
||||
@ -1556,7 +1600,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
break;
|
||||
}
|
||||
size_t curr_num = total_tensors_processed + current_idx;
|
||||
pretty_progress(curr_num, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (curr_num + 1e-6f));
|
||||
pretty_progress(static_cast<int>(curr_num), static_cast<int>(total_tensors_to_process), (ggml_time_ms() - t_start) / 1000.0f / (curr_num + 1e-6f));
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
||||
}
|
||||
|
||||
@ -1569,7 +1613,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
break;
|
||||
}
|
||||
total_tensors_processed += file_tensors.size();
|
||||
pretty_progress(total_tensors_processed, total_tensors_to_process, (ggml_time_ms() - t_start) / 1000.0f / (total_tensors_processed + 1e-6f));
|
||||
pretty_progress(static_cast<int>(total_tensors_processed), static_cast<int>(total_tensors_to_process), (ggml_time_ms() - t_start) / 1000.0f / (total_tensors_processed + 1e-6f));
|
||||
if (total_tensors_processed < total_tensors_to_process) {
|
||||
printf("\n");
|
||||
}
|
||||
@ -1588,7 +1632,8 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_thread
|
||||
|
||||
bool ModelLoader::load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
|
||||
std::set<std::string> ignore_tensors,
|
||||
int n_threads) {
|
||||
int n_threads,
|
||||
bool enable_mmap) {
|
||||
std::set<std::string> tensor_names_in_file;
|
||||
std::mutex tensor_names_mutex;
|
||||
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
|
||||
@ -1631,7 +1676,7 @@ bool ModelLoader::load_tensors(std::map<std::string, struct ggml_tensor*>& tenso
|
||||
return true;
|
||||
};
|
||||
|
||||
bool success = load_tensors(on_new_tensor_cb, n_threads);
|
||||
bool success = load_tensors(on_new_tensor_cb, n_threads, enable_mmap);
|
||||
if (!success) {
|
||||
LOG_ERROR("load tensors from file failed");
|
||||
return false;
|
||||
@ -1737,6 +1782,13 @@ bool ModelLoader::save_to_gguf_file(const std::string& file_path, ggml_type type
|
||||
// tensor_storage.ne[0], tensor_storage.ne[1], tensor_storage.ne[2], tensor_storage.ne[3],
|
||||
// tensor->n_dims, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||||
|
||||
if (!tensor->data) {
|
||||
GGML_ASSERT(ggml_nelements(tensor) == 0);
|
||||
// avoid crashing the gguf writer by setting a dummy pointer for zero-sized tensors
|
||||
LOG_DEBUG("setting dummy pointer for zero-sized tensor %s", name.c_str());
|
||||
tensor->data = ggml_get_mem_buffer(ggml_ctx);
|
||||
}
|
||||
|
||||
*dst_tensor = tensor;
|
||||
|
||||
gguf_add_tensor(gguf_ctx, tensor);
|
||||
@ -1776,7 +1828,12 @@ int64_t ModelLoader::get_params_mem_size(ggml_backend_t backend, ggml_type type)
|
||||
return mem_size;
|
||||
}
|
||||
|
||||
bool convert(const char* input_path, const char* vae_path, const char* output_path, sd_type_t output_type, const char* tensor_type_rules) {
|
||||
bool convert(const char* input_path,
|
||||
const char* vae_path,
|
||||
const char* output_path,
|
||||
sd_type_t output_type,
|
||||
const char* tensor_type_rules,
|
||||
bool convert_name) {
|
||||
ModelLoader model_loader;
|
||||
|
||||
if (!model_loader.init_from_file(input_path)) {
|
||||
@ -1790,7 +1847,9 @@ bool convert(const char* input_path, const char* vae_path, const char* output_pa
|
||||
return false;
|
||||
}
|
||||
}
|
||||
model_loader.convert_tensors_name();
|
||||
if (convert_name) {
|
||||
model_loader.convert_tensors_name();
|
||||
}
|
||||
bool success = model_loader.save_to_gguf_file(output_path, (ggml_type)output_type, tensor_type_rules);
|
||||
return success;
|
||||
}
|
||||
|
||||
14
model.h
@ -28,9 +28,11 @@ enum SDVersion {
|
||||
VERSION_SD2,
|
||||
VERSION_SD2_INPAINT,
|
||||
VERSION_SD2_TINY_UNET,
|
||||
VERSION_SDXS,
|
||||
VERSION_SDXL,
|
||||
VERSION_SDXL_INPAINT,
|
||||
VERSION_SDXL_PIX2PIX,
|
||||
VERSION_SDXL_VEGA,
|
||||
VERSION_SDXL_SSD1B,
|
||||
VERSION_SVD,
|
||||
VERSION_SD3,
|
||||
@ -44,13 +46,14 @@ enum SDVersion {
|
||||
VERSION_WAN2_2_TI2V,
|
||||
VERSION_QWEN_IMAGE,
|
||||
VERSION_FLUX2,
|
||||
VERSION_FLUX2_KLEIN,
|
||||
VERSION_Z_IMAGE,
|
||||
VERSION_OVIS_IMAGE,
|
||||
VERSION_COUNT,
|
||||
};
|
||||
|
||||
static inline bool sd_version_is_sd1(SDVersion version) {
|
||||
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX || version == VERSION_SD1_TINY_UNET) {
|
||||
if (version == VERSION_SD1 || version == VERSION_SD1_INPAINT || version == VERSION_SD1_PIX2PIX || version == VERSION_SD1_TINY_UNET || version == VERSION_SDXS) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -64,7 +67,7 @@ static inline bool sd_version_is_sd2(SDVersion version) {
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_sdxl(SDVersion version) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX || version == VERSION_SDXL_SSD1B) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SDXL_INPAINT || version == VERSION_SDXL_PIX2PIX || version == VERSION_SDXL_SSD1B || version == VERSION_SDXL_VEGA) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -99,7 +102,7 @@ static inline bool sd_version_is_flux(SDVersion version) {
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_flux2(SDVersion version) {
|
||||
if (version == VERSION_FLUX2) {
|
||||
if (version == VERSION_FLUX2 || version == VERSION_FLUX2_KLEIN) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -310,10 +313,11 @@ public:
|
||||
std::map<ggml_type, uint32_t> get_vae_wtype_stat();
|
||||
String2TensorStorage& get_tensor_storage_map() { return tensor_storage_map; }
|
||||
void set_wtype_override(ggml_type wtype, std::string tensor_type_rules = "");
|
||||
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads = 0);
|
||||
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, int n_threads = 0, bool use_mmap = false);
|
||||
bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
|
||||
std::set<std::string> ignore_tensors = {},
|
||||
int n_threads = 0);
|
||||
int n_threads = 0,
|
||||
bool use_mmap = false);
|
||||
|
||||
std::vector<std::string> get_tensor_names() const {
|
||||
std::vector<std::string> names;
|
||||
|
||||
@ -835,12 +835,14 @@ std::string convert_sep_to_dot(std::string name) {
|
||||
"proj_out",
|
||||
"transformer_blocks",
|
||||
"single_transformer_blocks",
|
||||
"single_blocks",
|
||||
"diffusion_model",
|
||||
"cond_stage_model",
|
||||
"first_stage_model",
|
||||
"conv_in",
|
||||
"conv_out",
|
||||
"lora_down",
|
||||
"lora_mid",
|
||||
"lora_up",
|
||||
"diff_b",
|
||||
"hada_w1_a",
|
||||
@ -876,7 +878,18 @@ std::string convert_sep_to_dot(std::string name) {
|
||||
"ff_context",
|
||||
"norm_added_q",
|
||||
"norm_added_v",
|
||||
"to_add_out"};
|
||||
"to_add_out",
|
||||
"txt_mod",
|
||||
"img_mod",
|
||||
"txt_mlp",
|
||||
"img_mlp",
|
||||
"proj_mlp",
|
||||
"wi_0",
|
||||
"wi_1",
|
||||
"norm1_context",
|
||||
"ff_context",
|
||||
"x_embedder",
|
||||
};
|
||||
|
||||
// record the positions of underscores that should NOT be replaced
|
||||
std::unordered_set<size_t> protected_positions;
|
||||
@ -948,6 +961,7 @@ bool is_first_stage_model_name(const std::string& name) {
|
||||
std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
bool is_lora = false;
|
||||
bool is_lycoris_underline = false;
|
||||
bool is_underline = false;
|
||||
std::vector<std::string> lora_prefix_vec = {
|
||||
"lora.lora.",
|
||||
"lora.lora_",
|
||||
@ -955,12 +969,27 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
"lora.lycoris.",
|
||||
"lora.",
|
||||
};
|
||||
std::vector<std::string> underline_lora_prefix_vec = {
|
||||
"unet_",
|
||||
"te_",
|
||||
"te1_",
|
||||
"te2_",
|
||||
"te3_",
|
||||
"vae_",
|
||||
};
|
||||
for (const auto& prefix : lora_prefix_vec) {
|
||||
if (starts_with(name, prefix)) {
|
||||
is_lora = true;
|
||||
name = name.substr(prefix.size());
|
||||
if (contains(prefix, "lycoris_")) {
|
||||
is_lycoris_underline = true;
|
||||
} else {
|
||||
for (const auto& underline_lora_prefix : underline_lora_prefix_vec) {
|
||||
if (starts_with(name, underline_lora_prefix)) {
|
||||
is_underline = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -969,10 +998,13 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
if (is_lora) {
|
||||
std::map<std::string, std::string> lora_suffix_map = {
|
||||
{".lora_down.weight", ".weight.lora_down"},
|
||||
{".lora_mid.weight", ".weight.lora_mid"},
|
||||
{".lora_up.weight", ".weight.lora_up"},
|
||||
{".lora.down.weight", ".weight.lora_down"},
|
||||
{".lora.mid.weight", ".weight.lora_mid"},
|
||||
{".lora.up.weight", ".weight.lora_up"},
|
||||
{"_lora.down.weight", ".weight.lora_down"},
|
||||
{"_lora.mid.weight", ".weight.lora_mid"},
|
||||
{"_lora.up.weight", ".weight.lora_up"},
|
||||
{".lora_A.weight", ".weight.lora_down"},
|
||||
{".lora_B.weight", ".weight.lora_up"},
|
||||
@ -1020,12 +1052,14 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
}
|
||||
}
|
||||
|
||||
if (sd_version_is_unet(version) || is_lycoris_underline) {
|
||||
// LOG_DEBUG("name %s %d", name.c_str(), version);
|
||||
|
||||
if (sd_version_is_unet(version) || is_underline || is_lycoris_underline) {
|
||||
name = convert_sep_to_dot(name);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> prefix_map = {
|
||||
std::unordered_map<std::string, std::string> prefix_map = {
|
||||
{"diffusion_model.", "model.diffusion_model."},
|
||||
{"unet.", "model.diffusion_model."},
|
||||
{"transformer.", "model.diffusion_model."}, // dit
|
||||
@ -1040,8 +1074,13 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
// {"te2.text_model.encoder.layers.", "cond_stage_model.1.model.transformer.resblocks."},
|
||||
{"te2.", "cond_stage_model.1.transformer."},
|
||||
{"te1.", "cond_stage_model.transformer."},
|
||||
{"te3.", "text_encoders.t5xxl.transformer."},
|
||||
};
|
||||
|
||||
if (sd_version_is_flux(version)) {
|
||||
prefix_map["te1."] = "text_encoders.clip_l.transformer.";
|
||||
}
|
||||
|
||||
replace_with_prefix_map(name, prefix_map);
|
||||
|
||||
// diffusion model
|
||||
|
||||
8
pmid.hpp
@ -33,7 +33,7 @@ public:
|
||||
x = layer_norm->forward(ctx, x);
|
||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
|
||||
x = fc1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = fc2->forward(ctx, x);
|
||||
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
|
||||
if (use_residue)
|
||||
@ -72,7 +72,7 @@ struct PerceiverAttention : public GGMLBlock {
|
||||
int heads; // = heads
|
||||
public:
|
||||
PerceiverAttention(int dim, int dim_h = 64, int h = 8)
|
||||
: scale(powf(dim_h, -0.5)), dim_head(dim_h), heads(h) {
|
||||
: scale(powf(static_cast<float>(dim_h), -0.5f)), dim_head(dim_h), heads(h) {
|
||||
int inner_dim = dim_head * heads;
|
||||
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
|
||||
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim));
|
||||
@ -129,8 +129,8 @@ public:
|
||||
k = reshape_tensor(ctx->ggml_ctx, k, heads);
|
||||
v = reshape_tensor(ctx->ggml_ctx, v, heads);
|
||||
scale = 1.f / sqrt(sqrt((float)dim_head));
|
||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, scale);
|
||||
q = ggml_scale_inplace(ctx->ggml_ctx, q, scale);
|
||||
k = ggml_ext_scale(ctx->ggml_ctx, k, scale, true);
|
||||
q = ggml_ext_scale(ctx->ggml_ctx, q, scale, true);
|
||||
// auto weight = ggml_mul_mat(ctx, q, k);
|
||||
auto weight = ggml_mul_mat(ctx->ggml_ctx, k, q); // NOTE order of mul is opposite to pytorch
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
#define __PREPROCESSING_HPP__
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#define M_PI_ 3.14159265358979323846
|
||||
#define M_PI_ 3.14159265358979323846f
|
||||
|
||||
void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) {
|
||||
struct ggml_init_params params;
|
||||
@ -20,13 +20,13 @@ void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml
|
||||
}
|
||||
|
||||
void gaussian_kernel(struct ggml_tensor* kernel) {
|
||||
int ks_mid = kernel->ne[0] / 2;
|
||||
int ks_mid = static_cast<int>(kernel->ne[0] / 2);
|
||||
float sigma = 1.4f;
|
||||
float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f));
|
||||
for (int y = 0; y < kernel->ne[0]; y++) {
|
||||
float gx = -ks_mid + y;
|
||||
float gx = static_cast<float>(-ks_mid + y);
|
||||
for (int x = 0; x < kernel->ne[1]; x++) {
|
||||
float gy = -ks_mid + x;
|
||||
float gy = static_cast<float>(-ks_mid + x);
|
||||
float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal;
|
||||
ggml_ext_tensor_set_f32(kernel, k_, x, y);
|
||||
}
|
||||
@ -46,7 +46,7 @@ void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) {
|
||||
}
|
||||
|
||||
void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
int n_elements = static_cast<int>(ggml_nelements(h));
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
@ -56,7 +56,7 @@ void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor
|
||||
}
|
||||
|
||||
void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
int n_elements = static_cast<int>(ggml_nelements(h));
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
@ -66,7 +66,7 @@ void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tens
|
||||
}
|
||||
|
||||
void normalize_tensor(struct ggml_tensor* g) {
|
||||
int n_elements = ggml_nelements(g);
|
||||
int n_elements = static_cast<int>(ggml_nelements(g));
|
||||
float* dg = (float*)g->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
@ -118,7 +118,7 @@ void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struc
|
||||
}
|
||||
|
||||
void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) {
|
||||
int n_elements = ggml_nelements(img);
|
||||
int n_elements = static_cast<int>(ggml_nelements(img));
|
||||
float* imd = (float*)img->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
@ -209,8 +209,8 @@ bool preprocess_canny(sd_image_t img, float high_threshold, float low_threshold,
|
||||
non_max_supression(image_gray, G, tetha);
|
||||
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
|
||||
// to RGB channels
|
||||
for (int iy = 0; iy < img.height; iy++) {
|
||||
for (int ix = 0; ix < img.width; ix++) {
|
||||
for (uint32_t iy = 0; iy < img.height; iy++) {
|
||||
for (uint32_t ix = 0; ix < img.width; ix++) {
|
||||
float gray = ggml_ext_tensor_get_f32(image_gray, ix, iy);
|
||||
gray = inverse ? 1.0f - gray : gray;
|
||||
ggml_ext_tensor_set_f32(image, gray, ix, iy);
|
||||
|
||||
175
qwen_image.hpp
@ -162,26 +162,25 @@ namespace Qwen {
|
||||
auto k = ggml_concat(ctx->ggml_ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto v = ggml_concat(ctx->ggml_ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
attn = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
auto attn = Rope::attention(ctx, q, k, v, pe, mask, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
auto txt_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
txt->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_txt_token, N, hidden_size]
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
||||
0); // [N, n_txt_token, n_head*d_head]
|
||||
auto img_attn_out = ggml_view_3d(ctx->ggml_ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
img->ne[1],
|
||||
attn->ne[2],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
txt->ne[1] * attn->nb[1]); // [N, n_img_token, n_head*d_head]
|
||||
img_attn_out = ggml_cont(ctx->ggml_ctx, img_attn_out);
|
||||
txt_attn_out = ggml_cont(ctx->ggml_ctx, txt_attn_out);
|
||||
|
||||
img_attn_out = to_out_0->forward(ctx, img_attn_out);
|
||||
txt_attn_out = to_add_out->forward(ctx, txt_attn_out);
|
||||
@ -191,11 +190,16 @@ namespace Qwen {
|
||||
};
|
||||
|
||||
class QwenImageTransformerBlock : public GGMLBlock {
|
||||
protected:
|
||||
bool zero_cond_t;
|
||||
|
||||
public:
|
||||
QwenImageTransformerBlock(int64_t dim,
|
||||
int64_t num_attention_heads,
|
||||
int64_t attention_head_dim,
|
||||
float eps = 1e-6) {
|
||||
float eps = 1e-6,
|
||||
bool zero_cond_t = false)
|
||||
: zero_cond_t(zero_cond_t) {
|
||||
// img_mod.0 is nn.SiLU()
|
||||
blocks["img_mod.1"] = std::shared_ptr<GGMLBlock>(new Linear(dim, 6 * dim, true));
|
||||
|
||||
@ -208,7 +212,7 @@ namespace Qwen {
|
||||
|
||||
blocks["txt_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim, eps, false));
|
||||
blocks["txt_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim, eps, false));
|
||||
blocks["txt_mlp"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim, 4, FeedForward::Activation::GELU));
|
||||
blocks["txt_mlp"] = std::shared_ptr<GGMLBlock>(new FeedForward(dim, dim, 4, FeedForward::Activation::GELU, true));
|
||||
|
||||
blocks["attn"] = std::shared_ptr<GGMLBlock>(new QwenImageAttention(dim,
|
||||
attention_head_dim,
|
||||
@ -220,11 +224,37 @@ namespace Qwen {
|
||||
eps));
|
||||
}
|
||||
|
||||
std::vector<ggml_tensor*> get_mod_params_vec(ggml_context* ctx, ggml_tensor* mod_params, ggml_tensor* index = nullptr) {
|
||||
// index: [N, n_img_token]
|
||||
// mod_params: [N, hidden_size * 12]
|
||||
if (index == nullptr) {
|
||||
return ggml_ext_chunk(ctx, mod_params, 6, 0);
|
||||
}
|
||||
mod_params = ggml_reshape_1d(ctx, mod_params, ggml_nelements(mod_params));
|
||||
auto mod_params_vec = ggml_ext_chunk(ctx, mod_params, 12, 0);
|
||||
index = ggml_reshape_3d(ctx, index, 1, index->ne[0], index->ne[1]); // [N, n_img_token, 1]
|
||||
index = ggml_repeat_4d(ctx, index, mod_params_vec[0]->ne[0], index->ne[1], index->ne[2], index->ne[3]); // [N, n_img_token, hidden_size]
|
||||
std::vector<ggml_tensor*> mod_results;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
auto mod_0 = mod_params_vec[i];
|
||||
auto mod_1 = mod_params_vec[i + 6];
|
||||
|
||||
// mod_result = torch.where(index == 0, mod_0, mod_1)
|
||||
// mod_result = (1 - index)*mod_0 + index*mod_1
|
||||
mod_0 = ggml_sub(ctx, ggml_repeat(ctx, mod_0, index), ggml_mul(ctx, index, mod_0)); // [N, n_img_token, hidden_size]
|
||||
mod_1 = ggml_mul(ctx, index, mod_1); // [N, n_img_token, hidden_size]
|
||||
auto mod_result = ggml_add(ctx, mod_0, mod_1);
|
||||
mod_results.push_back(mod_result);
|
||||
}
|
||||
return mod_results;
|
||||
}
|
||||
|
||||
virtual std::pair<ggml_tensor*, ggml_tensor*> forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* img,
|
||||
struct ggml_tensor* txt,
|
||||
struct ggml_tensor* t_emb,
|
||||
struct ggml_tensor* pe) {
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
// img: [N, n_img_token, hidden_size]
|
||||
// txt: [N, n_txt_token, hidden_size]
|
||||
// pe: [n_img_token + n_txt_token, d_head/2, 2, 2]
|
||||
@ -244,14 +274,18 @@ namespace Qwen {
|
||||
|
||||
auto img_mod_params = ggml_silu(ctx->ggml_ctx, t_emb);
|
||||
img_mod_params = img_mod_1->forward(ctx, img_mod_params);
|
||||
auto img_mod_param_vec = ggml_ext_chunk(ctx->ggml_ctx, img_mod_params, 6, 0);
|
||||
auto img_mod_param_vec = get_mod_params_vec(ctx->ggml_ctx, img_mod_params, modulate_index);
|
||||
|
||||
if (zero_cond_t) {
|
||||
t_emb = ggml_ext_chunk(ctx->ggml_ctx, t_emb, 2, 1)[0];
|
||||
}
|
||||
|
||||
auto txt_mod_params = ggml_silu(ctx->ggml_ctx, t_emb);
|
||||
txt_mod_params = txt_mod_1->forward(ctx, txt_mod_params);
|
||||
auto txt_mod_param_vec = ggml_ext_chunk(ctx->ggml_ctx, txt_mod_params, 6, 0);
|
||||
auto txt_mod_param_vec = get_mod_params_vec(ctx->ggml_ctx, txt_mod_params);
|
||||
|
||||
auto img_normed = img_norm1->forward(ctx, img);
|
||||
auto img_modulated = Flux::modulate(ctx->ggml_ctx, img_normed, img_mod_param_vec[0], img_mod_param_vec[1]);
|
||||
auto img_modulated = Flux::modulate(ctx->ggml_ctx, img_normed, img_mod_param_vec[0], img_mod_param_vec[1], modulate_index != nullptr);
|
||||
auto img_gate1 = img_mod_param_vec[2];
|
||||
|
||||
auto txt_normed = txt_norm1->forward(ctx, txt);
|
||||
@ -264,7 +298,7 @@ namespace Qwen {
|
||||
txt = ggml_add(ctx->ggml_ctx, txt, ggml_mul(ctx->ggml_ctx, txt_attn_output, txt_gate1));
|
||||
|
||||
auto img_normed2 = img_norm2->forward(ctx, img);
|
||||
auto img_modulated2 = Flux::modulate(ctx->ggml_ctx, img_normed2, img_mod_param_vec[3], img_mod_param_vec[4]);
|
||||
auto img_modulated2 = Flux::modulate(ctx->ggml_ctx, img_normed2, img_mod_param_vec[3], img_mod_param_vec[4], modulate_index != nullptr);
|
||||
auto img_gate2 = img_mod_param_vec[5];
|
||||
|
||||
auto txt_normed2 = txt_norm2->forward(ctx, txt);
|
||||
@ -315,16 +349,17 @@ namespace Qwen {
|
||||
};
|
||||
|
||||
struct QwenImageParams {
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t in_channels = 64;
|
||||
int64_t out_channels = 16;
|
||||
int64_t num_layers = 60;
|
||||
int num_layers = 60;
|
||||
int64_t attention_head_dim = 128;
|
||||
int64_t num_attention_heads = 24;
|
||||
int64_t joint_attention_dim = 3584;
|
||||
float theta = 10000;
|
||||
int theta = 10000;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int64_t axes_dim_sum = 128;
|
||||
int axes_dim_sum = 128;
|
||||
bool zero_cond_t = false;
|
||||
};
|
||||
|
||||
class QwenImageModel : public GGMLBlock {
|
||||
@ -346,7 +381,8 @@ namespace Qwen {
|
||||
auto block = std::shared_ptr<GGMLBlock>(new QwenImageTransformerBlock(inner_dim,
|
||||
params.num_attention_heads,
|
||||
params.attention_head_dim,
|
||||
1e-6f));
|
||||
1e-6f,
|
||||
params.zero_cond_t));
|
||||
blocks["transformer_blocks." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
@ -354,14 +390,14 @@ namespace Qwen {
|
||||
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, params.patch_size * params.patch_size * params.out_channels));
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
struct ggml_tensor* pad_to_patch_size(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
|
||||
int pad_h = (params.patch_size - H % params.patch_size) % params.patch_size;
|
||||
int pad_w = (params.patch_size - W % params.patch_size) % params.patch_size;
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, pad_w, pad_h, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -387,10 +423,10 @@ namespace Qwen {
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* process_img(struct ggml_context* ctx,
|
||||
struct ggml_tensor* process_img(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
x = pad_to_patch_size(ctx, x);
|
||||
x = patchify(ctx, x);
|
||||
x = patchify(ctx->ggml_ctx, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -421,7 +457,8 @@ namespace Qwen {
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe) {
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
auto time_text_embed = std::dynamic_pointer_cast<QwenTimestepProjEmbeddings>(blocks["time_text_embed"]);
|
||||
auto txt_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["txt_norm"]);
|
||||
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]);
|
||||
@ -430,18 +467,26 @@ namespace Qwen {
|
||||
auto proj_out = std::dynamic_pointer_cast<Linear>(blocks["proj_out"]);
|
||||
|
||||
auto t_emb = time_text_embed->forward(ctx, timestep);
|
||||
auto img = img_in->forward(ctx, x);
|
||||
auto txt = txt_norm->forward(ctx, context);
|
||||
txt = txt_in->forward(ctx, txt);
|
||||
if (params.zero_cond_t) {
|
||||
auto t_emb_0 = time_text_embed->forward(ctx, ggml_ext_zeros(ctx->ggml_ctx, timestep->ne[0], timestep->ne[1], timestep->ne[2], timestep->ne[3]));
|
||||
t_emb = ggml_concat(ctx->ggml_ctx, t_emb, t_emb_0, 1);
|
||||
}
|
||||
auto img = img_in->forward(ctx, x);
|
||||
auto txt = txt_norm->forward(ctx, context);
|
||||
txt = txt_in->forward(ctx, txt);
|
||||
|
||||
for (int i = 0; i < params.num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<QwenImageTransformerBlock>(blocks["transformer_blocks." + std::to_string(i)]);
|
||||
|
||||
auto result = block->forward(ctx, img, txt, t_emb, pe);
|
||||
auto result = block->forward(ctx, img, txt, t_emb, pe, modulate_index);
|
||||
img = result.first;
|
||||
txt = result.second;
|
||||
}
|
||||
|
||||
if (params.zero_cond_t) {
|
||||
t_emb = ggml_ext_chunk(ctx->ggml_ctx, t_emb, 2, 1)[0];
|
||||
}
|
||||
|
||||
img = norm_out->forward(ctx, img, t_emb);
|
||||
img = proj_out->forward(ctx, img);
|
||||
|
||||
@ -453,7 +498,8 @@ namespace Qwen {
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe,
|
||||
std::vector<ggml_tensor*> ref_latents = {}) {
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
struct ggml_tensor* modulate_index = nullptr) {
|
||||
// Forward pass of DiT.
|
||||
// x: [N, C, H, W]
|
||||
// timestep: [N,]
|
||||
@ -466,12 +512,12 @@ namespace Qwen {
|
||||
int64_t C = x->ne[2];
|
||||
int64_t N = x->ne[3];
|
||||
|
||||
auto img = process_img(ctx->ggml_ctx, x);
|
||||
uint64_t img_tokens = img->ne[1];
|
||||
auto img = process_img(ctx, x);
|
||||
int64_t img_tokens = img->ne[1];
|
||||
|
||||
if (ref_latents.size() > 0) {
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
ref = process_img(ctx->ggml_ctx, ref);
|
||||
ref = process_img(ctx, ref);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
|
||||
}
|
||||
}
|
||||
@ -479,7 +525,7 @@ namespace Qwen {
|
||||
int64_t h_len = ((H + (params.patch_size / 2)) / params.patch_size);
|
||||
int64_t w_len = ((W + (params.patch_size / 2)) / params.patch_size);
|
||||
|
||||
auto out = forward_orig(ctx, img, timestep, context, pe); // [N, h_len*w_len, ph*pw*C]
|
||||
auto out = forward_orig(ctx, img, timestep, context, pe, modulate_index); // [N, h_len*w_len, ph*pw*C]
|
||||
|
||||
if (out->ne[1] > img_tokens) {
|
||||
out = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
||||
@ -502,19 +548,25 @@ namespace Qwen {
|
||||
QwenImageParams qwen_image_params;
|
||||
QwenImageModel qwen_image;
|
||||
std::vector<float> pe_vec;
|
||||
std::vector<float> modulate_index_vec;
|
||||
SDVersion version;
|
||||
|
||||
QwenImageRunner(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "",
|
||||
SDVersion version = VERSION_QWEN_IMAGE)
|
||||
SDVersion version = VERSION_QWEN_IMAGE,
|
||||
bool zero_cond_t = false)
|
||||
: GGMLRunner(backend, offload_params_to_cpu) {
|
||||
qwen_image_params.num_layers = 0;
|
||||
qwen_image_params.num_layers = 0;
|
||||
qwen_image_params.zero_cond_t = zero_cond_t;
|
||||
for (auto pair : tensor_storage_map) {
|
||||
std::string tensor_name = pair.first;
|
||||
if (tensor_name.find(prefix) == std::string::npos)
|
||||
continue;
|
||||
if (tensor_name.find("__index_timestep_zero__") != std::string::npos) {
|
||||
qwen_image_params.zero_cond_t = true;
|
||||
}
|
||||
size_t pos = tensor_name.find("transformer_blocks.");
|
||||
if (pos != std::string::npos) {
|
||||
tensor_name = tensor_name.substr(pos); // remove prefix
|
||||
@ -529,6 +581,9 @@ namespace Qwen {
|
||||
}
|
||||
}
|
||||
LOG_INFO("qwen_image_params.num_layers: %ld", qwen_image_params.num_layers);
|
||||
if (qwen_image_params.zero_cond_t) {
|
||||
LOG_INFO("use zero_cond_t");
|
||||
}
|
||||
qwen_image = QwenImageModel(qwen_image_params);
|
||||
qwen_image.init(params_ctx, tensor_storage_map, prefix);
|
||||
}
|
||||
@ -557,16 +612,18 @@ namespace Qwen {
|
||||
ref_latents[i] = to_backend(ref_latents[i]);
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_qwen_image_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_qwen_image_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
qwen_image_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
qwen_image_params.theta,
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
qwen_image_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / qwen_image_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / qwen_image_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, qwen_image_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -574,6 +631,31 @@ namespace Qwen {
|
||||
// pe->data = nullptr;
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
|
||||
ggml_tensor* modulate_index = nullptr;
|
||||
if (qwen_image_params.zero_cond_t) {
|
||||
modulate_index_vec.clear();
|
||||
|
||||
int64_t h_len = ((x->ne[1] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t w_len = ((x->ne[0] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t num_img_tokens = h_len * w_len;
|
||||
|
||||
modulate_index_vec.insert(modulate_index_vec.end(), num_img_tokens, 0.f);
|
||||
int64_t num_ref_img_tokens = 0;
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
int64_t h_len = ((ref->ne[1] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
int64_t w_len = ((ref->ne[0] + (qwen_image_params.patch_size / 2)) / qwen_image_params.patch_size);
|
||||
|
||||
num_ref_img_tokens += h_len * w_len;
|
||||
}
|
||||
|
||||
if (num_ref_img_tokens > 0) {
|
||||
modulate_index_vec.insert(modulate_index_vec.end(), num_ref_img_tokens, 1.f);
|
||||
}
|
||||
|
||||
modulate_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_F32, modulate_index_vec.size());
|
||||
set_backend_tensor_data(modulate_index, modulate_index_vec.data());
|
||||
}
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* out = qwen_image.forward(&runner_ctx,
|
||||
@ -581,7 +663,8 @@ namespace Qwen {
|
||||
timesteps,
|
||||
context,
|
||||
pe,
|
||||
ref_latents);
|
||||
ref_latents,
|
||||
modulate_index);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
@ -631,12 +714,12 @@ namespace Qwen {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("qwen_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("qwen_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -684,4 +767,4 @@ namespace Qwen {
|
||||
|
||||
} // namespace name
|
||||
|
||||
#endif // __QWEN_IMAGE_HPP__
|
||||
#endif // __QWEN_IMAGE_HPP__
|
||||
|
||||
@ -90,7 +90,7 @@ class MT19937RNG : public RNG {
|
||||
float u1 = 1.0f - data[j];
|
||||
float u2 = data[j + 8];
|
||||
float r = std::sqrt(-2.0f * std::log(u1));
|
||||
float theta = 2.0f * 3.14159265358979323846 * u2;
|
||||
float theta = 2.0f * 3.14159265358979323846f * u2;
|
||||
data[j] = r * std::cos(theta) * std + mean;
|
||||
data[j + 8] = r * std::sin(theta) * std + mean;
|
||||
}
|
||||
|
||||
246
rope.hpp
@ -1,6 +1,8 @@
|
||||
#ifndef __ROPE_HPP__
|
||||
#define __ROPE_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include "ggml_extend.hpp"
|
||||
|
||||
@ -20,11 +22,11 @@ namespace Rope {
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) {
|
||||
int rows = mat.size();
|
||||
int cols = mat[0].size();
|
||||
size_t rows = mat.size();
|
||||
size_t cols = mat[0].size();
|
||||
std::vector<std::vector<float>> transposed(cols, std::vector<float>(rows));
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
for (size_t i = 0; i < rows; ++i) {
|
||||
for (size_t j = 0; j < cols; ++j) {
|
||||
transposed[j][i] = mat[i][j];
|
||||
}
|
||||
}
|
||||
@ -39,7 +41,10 @@ namespace Rope {
|
||||
return flat_vec;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> rope(const std::vector<float>& pos, int dim, int theta) {
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> rope(const std::vector<float>& pos,
|
||||
int dim,
|
||||
int theta,
|
||||
const std::vector<int>& axis_wrap_dims = {}) {
|
||||
assert(dim % 2 == 0);
|
||||
int half_dim = dim / 2;
|
||||
|
||||
@ -47,14 +52,31 @@ namespace Rope {
|
||||
|
||||
std::vector<float> omega(half_dim);
|
||||
for (int i = 0; i < half_dim; ++i) {
|
||||
omega[i] = 1.0 / std::pow(theta, scale[i]);
|
||||
omega[i] = 1.0f / ::powf(1.f * theta, scale[i]);
|
||||
}
|
||||
|
||||
int pos_size = pos.size();
|
||||
size_t pos_size = pos.size();
|
||||
std::vector<std::vector<float>> out(pos_size, std::vector<float>(half_dim));
|
||||
for (int i = 0; i < pos_size; ++i) {
|
||||
for (int j = 0; j < half_dim; ++j) {
|
||||
out[i][j] = pos[i] * omega[j];
|
||||
for (size_t i = 0; i < pos_size; ++i) {
|
||||
for (size_t j = 0; j < half_dim; ++j) {
|
||||
float angle = pos[i] * omega[j];
|
||||
if (!axis_wrap_dims.empty()) {
|
||||
size_t wrap_size = axis_wrap_dims.size();
|
||||
// mod batch size since we only store this for one item in the batch
|
||||
size_t wrap_idx = wrap_size > 0 ? (i % wrap_size) : 0;
|
||||
int wrap_dim = axis_wrap_dims[wrap_idx];
|
||||
if (wrap_dim > 0) {
|
||||
constexpr float TWO_PI = 6.28318530717958647692f;
|
||||
float cycles = omega[j] * wrap_dim / TWO_PI;
|
||||
// closest periodic harmonic, necessary to ensure things neatly tile
|
||||
// without this round, things don't tile at the boundaries and you end up
|
||||
// with the model knowing what is "center"
|
||||
float rounded = std::round(cycles);
|
||||
angle = pos[i] * TWO_PI * rounded / wrap_dim;
|
||||
}
|
||||
}
|
||||
|
||||
out[i][j] = angle;
|
||||
}
|
||||
}
|
||||
|
||||
@ -77,7 +99,7 @@ namespace Rope {
|
||||
for (int dim = 0; dim < axes_dim_num; dim++) {
|
||||
if (arange_dims.find(dim) != arange_dims.end()) {
|
||||
for (int i = 0; i < bs * context_len; i++) {
|
||||
txt_ids[i][dim] = (i % context_len);
|
||||
txt_ids[i][dim] = 1.f * (i % context_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -89,20 +111,29 @@ namespace Rope {
|
||||
int patch_size,
|
||||
int bs,
|
||||
int axes_dim_num,
|
||||
int index = 0,
|
||||
int h_offset = 0,
|
||||
int w_offset = 0) {
|
||||
int index = 0,
|
||||
int h_offset = 0,
|
||||
int w_offset = 0,
|
||||
bool scale_rope = false) {
|
||||
int h_len = (h + (patch_size / 2)) / patch_size;
|
||||
int w_len = (w + (patch_size / 2)) / patch_size;
|
||||
|
||||
std::vector<std::vector<float>> img_ids(h_len * w_len, std::vector<float>(axes_dim_num, 0.0));
|
||||
|
||||
std::vector<float> row_ids = linspace<float>(h_offset, h_len - 1 + h_offset, h_len);
|
||||
std::vector<float> col_ids = linspace<float>(w_offset, w_len - 1 + w_offset, w_len);
|
||||
int h_start = h_offset;
|
||||
int w_start = w_offset;
|
||||
|
||||
if (scale_rope) {
|
||||
h_start -= h_len / 2;
|
||||
w_start -= w_len / 2;
|
||||
}
|
||||
|
||||
std::vector<float> row_ids = linspace<float>(1.f * h_start, 1.f * h_start + h_len - 1, h_len);
|
||||
std::vector<float> col_ids = linspace<float>(1.f * w_start, 1.f * w_start + w_len - 1, w_len);
|
||||
|
||||
for (int i = 0; i < h_len; ++i) {
|
||||
for (int j = 0; j < w_len; ++j) {
|
||||
img_ids[i * w_len + j][0] = index;
|
||||
img_ids[i * w_len + j][0] = 1.f * index;
|
||||
img_ids[i * w_len + j][1] = row_ids[i];
|
||||
img_ids[i * w_len + j][2] = col_ids[j];
|
||||
}
|
||||
@ -137,10 +168,11 @@ namespace Rope {
|
||||
__STATIC_INLINE__ std::vector<float> embed_nd(const std::vector<std::vector<float>>& ids,
|
||||
int bs,
|
||||
int theta,
|
||||
const std::vector<int>& axes_dim) {
|
||||
const std::vector<int>& axes_dim,
|
||||
const std::vector<std::vector<int>>& wrap_dims = {}) {
|
||||
std::vector<std::vector<float>> trans_ids = transpose(ids);
|
||||
size_t pos_len = ids.size() / bs;
|
||||
int num_axes = axes_dim.size();
|
||||
size_t num_axes = axes_dim.size();
|
||||
// for (int i = 0; i < pos_len; i++) {
|
||||
// std::cout << trans_ids[0][i] << " " << trans_ids[1][i] << " " << trans_ids[2][i] << std::endl;
|
||||
// }
|
||||
@ -150,9 +182,14 @@ namespace Rope {
|
||||
emb_dim += d / 2;
|
||||
|
||||
std::vector<std::vector<float>> emb(bs * pos_len, std::vector<float>(emb_dim * 2 * 2, 0.0));
|
||||
int offset = 0;
|
||||
for (int i = 0; i < num_axes; ++i) {
|
||||
std::vector<std::vector<float>> rope_emb = rope(trans_ids[i], axes_dim[i], theta); // [bs*pos_len, axes_dim[i]/2 * 2 * 2]
|
||||
size_t offset = 0;
|
||||
for (size_t i = 0; i < num_axes; ++i) {
|
||||
std::vector<int> axis_wrap_dims;
|
||||
if (!wrap_dims.empty() && i < (int)wrap_dims.size()) {
|
||||
axis_wrap_dims = wrap_dims[i];
|
||||
}
|
||||
std::vector<std::vector<float>> rope_emb =
|
||||
rope(trans_ids[i], axes_dim[i], theta, axis_wrap_dims); // [bs*pos_len, axes_dim[i]/2 * 2 * 2]
|
||||
for (int b = 0; b < bs; ++b) {
|
||||
for (int j = 0; j < pos_len; ++j) {
|
||||
for (int k = 0; k < rope_emb[0].size(); ++k) {
|
||||
@ -171,38 +208,41 @@ namespace Rope {
|
||||
int axes_dim_num,
|
||||
const std::vector<ggml_tensor*>& ref_latents,
|
||||
bool increase_ref_index,
|
||||
float ref_index_scale) {
|
||||
float ref_index_scale,
|
||||
bool scale_rope) {
|
||||
std::vector<std::vector<float>> ids;
|
||||
uint64_t curr_h_offset = 0;
|
||||
uint64_t curr_w_offset = 0;
|
||||
int index = 1;
|
||||
int curr_h_offset = 0;
|
||||
int curr_w_offset = 0;
|
||||
int index = 1;
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
uint64_t h_offset = 0;
|
||||
uint64_t w_offset = 0;
|
||||
int h_offset = 0;
|
||||
int w_offset = 0;
|
||||
if (!increase_ref_index) {
|
||||
if (ref->ne[1] + curr_h_offset > ref->ne[0] + curr_w_offset) {
|
||||
w_offset = curr_w_offset;
|
||||
} else {
|
||||
h_offset = curr_h_offset;
|
||||
}
|
||||
scale_rope = false;
|
||||
}
|
||||
|
||||
auto ref_ids = gen_flux_img_ids(ref->ne[1],
|
||||
ref->ne[0],
|
||||
auto ref_ids = gen_flux_img_ids(static_cast<int>(ref->ne[1]),
|
||||
static_cast<int>(ref->ne[0]),
|
||||
patch_size,
|
||||
bs,
|
||||
axes_dim_num,
|
||||
static_cast<int>(index * ref_index_scale),
|
||||
h_offset,
|
||||
w_offset);
|
||||
w_offset,
|
||||
scale_rope);
|
||||
ids = concat_ids(ids, ref_ids, bs);
|
||||
|
||||
if (increase_ref_index) {
|
||||
index++;
|
||||
}
|
||||
|
||||
curr_h_offset = std::max(curr_h_offset, ref->ne[1] + h_offset);
|
||||
curr_w_offset = std::max(curr_w_offset, ref->ne[0] + w_offset);
|
||||
curr_h_offset = std::max(curr_h_offset, static_cast<int>(ref->ne[1]) + h_offset);
|
||||
curr_w_offset = std::max(curr_w_offset, static_cast<int>(ref->ne[0]) + w_offset);
|
||||
}
|
||||
return ids;
|
||||
}
|
||||
@ -222,7 +262,7 @@ namespace Rope {
|
||||
|
||||
auto ids = concat_ids(txt_ids, img_ids, bs);
|
||||
if (ref_latents.size() > 0) {
|
||||
auto refs_ids = gen_refs_ids(patch_size, bs, axes_dim_num, ref_latents, increase_ref_index, ref_index_scale);
|
||||
auto refs_ids = gen_refs_ids(patch_size, bs, axes_dim_num, ref_latents, increase_ref_index, ref_index_scale, false);
|
||||
ids = concat_ids(ids, refs_ids, bs);
|
||||
}
|
||||
return ids;
|
||||
@ -239,6 +279,8 @@ namespace Rope {
|
||||
bool increase_ref_index,
|
||||
float ref_index_scale,
|
||||
int theta,
|
||||
bool circular_h,
|
||||
bool circular_w,
|
||||
const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_flux_ids(h,
|
||||
w,
|
||||
@ -250,7 +292,47 @@ namespace Rope {
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
ref_index_scale);
|
||||
return embed_nd(ids, bs, theta, axes_dim);
|
||||
std::vector<std::vector<int>> wrap_dims;
|
||||
if ((circular_h || circular_w) && bs > 0 && axes_dim.size() >= 3) {
|
||||
int h_len = (h + (patch_size / 2)) / patch_size;
|
||||
int w_len = (w + (patch_size / 2)) / patch_size;
|
||||
if (h_len > 0 && w_len > 0) {
|
||||
size_t pos_len = ids.size() / bs;
|
||||
wrap_dims.assign(axes_dim.size(), std::vector<int>(pos_len, 0));
|
||||
size_t cursor = context_len; // text first
|
||||
const size_t img_tokens = static_cast<size_t>(h_len) * static_cast<size_t>(w_len);
|
||||
for (size_t token_i = 0; token_i < img_tokens; ++token_i) {
|
||||
if (circular_h) {
|
||||
wrap_dims[1][cursor + token_i] = h_len;
|
||||
}
|
||||
if (circular_w) {
|
||||
wrap_dims[2][cursor + token_i] = w_len;
|
||||
}
|
||||
}
|
||||
cursor += img_tokens;
|
||||
// reference latents
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
if (ref == nullptr) {
|
||||
continue;
|
||||
}
|
||||
int ref_h = static_cast<int>(ref->ne[1]);
|
||||
int ref_w = static_cast<int>(ref->ne[0]);
|
||||
int ref_h_l = (ref_h + (patch_size / 2)) / patch_size;
|
||||
int ref_w_l = (ref_w + (patch_size / 2)) / patch_size;
|
||||
size_t ref_tokens = static_cast<size_t>(ref_h_l) * static_cast<size_t>(ref_w_l);
|
||||
for (size_t token_i = 0; token_i < ref_tokens; ++token_i) {
|
||||
if (circular_h) {
|
||||
wrap_dims[1][cursor + token_i] = ref_h_l;
|
||||
}
|
||||
if (circular_w) {
|
||||
wrap_dims[2][cursor + token_i] = ref_w_l;
|
||||
}
|
||||
}
|
||||
cursor += ref_tokens;
|
||||
}
|
||||
}
|
||||
}
|
||||
return embed_nd(ids, bs, theta, axes_dim, wrap_dims);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> gen_qwen_image_ids(int h,
|
||||
@ -263,7 +345,7 @@ namespace Rope {
|
||||
int h_len = (h + (patch_size / 2)) / patch_size;
|
||||
int w_len = (w + (patch_size / 2)) / patch_size;
|
||||
int txt_id_start = std::max(h_len, w_len);
|
||||
auto txt_ids = linspace<float>(txt_id_start, context_len + txt_id_start, context_len);
|
||||
auto txt_ids = linspace<float>(1.f * txt_id_start, 1.f * context_len + txt_id_start, context_len);
|
||||
std::vector<std::vector<float>> txt_ids_repeated(bs * context_len, std::vector<float>(3));
|
||||
for (int i = 0; i < bs; ++i) {
|
||||
for (int j = 0; j < txt_ids.size(); ++j) {
|
||||
@ -271,10 +353,10 @@ namespace Rope {
|
||||
}
|
||||
}
|
||||
int axes_dim_num = 3;
|
||||
auto img_ids = gen_flux_img_ids(h, w, patch_size, bs, axes_dim_num);
|
||||
auto img_ids = gen_flux_img_ids(h, w, patch_size, bs, axes_dim_num, 0, 0, 0, true);
|
||||
auto ids = concat_ids(txt_ids_repeated, img_ids, bs);
|
||||
if (ref_latents.size() > 0) {
|
||||
auto refs_ids = gen_refs_ids(patch_size, bs, axes_dim_num, ref_latents, increase_ref_index, 1.f);
|
||||
auto refs_ids = gen_refs_ids(patch_size, bs, axes_dim_num, ref_latents, increase_ref_index, 1.f, true);
|
||||
ids = concat_ids(ids, refs_ids, bs);
|
||||
}
|
||||
return ids;
|
||||
@ -289,9 +371,57 @@ namespace Rope {
|
||||
const std::vector<ggml_tensor*>& ref_latents,
|
||||
bool increase_ref_index,
|
||||
int theta,
|
||||
bool circular_h,
|
||||
bool circular_w,
|
||||
const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_qwen_image_ids(h, w, patch_size, bs, context_len, ref_latents, increase_ref_index);
|
||||
return embed_nd(ids, bs, theta, axes_dim);
|
||||
std::vector<std::vector<int>> wrap_dims;
|
||||
// This logic simply stores the (pad and patch_adjusted) sizes of images so we can make sure rope correctly tiles
|
||||
if ((circular_h || circular_w) && bs > 0 && axes_dim.size() >= 3) {
|
||||
int pad_h = (patch_size - (h % patch_size)) % patch_size;
|
||||
int pad_w = (patch_size - (w % patch_size)) % patch_size;
|
||||
int h_len = (h + pad_h) / patch_size;
|
||||
int w_len = (w + pad_w) / patch_size;
|
||||
if (h_len > 0 && w_len > 0) {
|
||||
const size_t total_tokens = ids.size();
|
||||
// Track per-token wrap lengths for the row/column axes so only spatial tokens become periodic.
|
||||
wrap_dims.assign(axes_dim.size(), std::vector<int>(total_tokens / bs, 0));
|
||||
size_t cursor = context_len; // ignore text tokens
|
||||
const size_t img_tokens = static_cast<size_t>(h_len) * static_cast<size_t>(w_len);
|
||||
for (size_t token_i = 0; token_i < img_tokens; ++token_i) {
|
||||
if (circular_h) {
|
||||
wrap_dims[1][cursor + token_i] = h_len;
|
||||
}
|
||||
if (circular_w) {
|
||||
wrap_dims[2][cursor + token_i] = w_len;
|
||||
}
|
||||
}
|
||||
cursor += img_tokens;
|
||||
// For each reference image, store wrap sizes as well
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
if (ref == nullptr) {
|
||||
continue;
|
||||
}
|
||||
int ref_h = static_cast<int>(ref->ne[1]);
|
||||
int ref_w = static_cast<int>(ref->ne[0]);
|
||||
int ref_pad_h = (patch_size - (ref_h % patch_size)) % patch_size;
|
||||
int ref_pad_w = (patch_size - (ref_w % patch_size)) % patch_size;
|
||||
int ref_h_len = (ref_h + ref_pad_h) / patch_size;
|
||||
int ref_w_len = (ref_w + ref_pad_w) / patch_size;
|
||||
size_t ref_n_tokens = static_cast<size_t>(ref_h_len) * static_cast<size_t>(ref_w_len);
|
||||
for (size_t token_i = 0; token_i < ref_n_tokens; ++token_i) {
|
||||
if (circular_h) {
|
||||
wrap_dims[1][cursor + token_i] = ref_h_len;
|
||||
}
|
||||
if (circular_w) {
|
||||
wrap_dims[2][cursor + token_i] = ref_w_len;
|
||||
}
|
||||
}
|
||||
cursor += ref_n_tokens;
|
||||
}
|
||||
}
|
||||
}
|
||||
return embed_nd(ids, bs, theta, axes_dim, wrap_dims);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> gen_vid_ids(int t,
|
||||
@ -310,9 +440,9 @@ namespace Rope {
|
||||
|
||||
std::vector<std::vector<float>> vid_ids(t_len * h_len * w_len, std::vector<float>(3, 0.0));
|
||||
|
||||
std::vector<float> t_ids = linspace<float>(t_offset, t_len - 1 + t_offset, t_len);
|
||||
std::vector<float> h_ids = linspace<float>(h_offset, h_len - 1 + h_offset, h_len);
|
||||
std::vector<float> w_ids = linspace<float>(w_offset, w_len - 1 + w_offset, w_len);
|
||||
std::vector<float> t_ids = linspace<float>(1.f * t_offset, 1.f * t_len - 1 + t_offset, t_len);
|
||||
std::vector<float> h_ids = linspace<float>(1.f * h_offset, 1.f * h_len - 1 + h_offset, h_len);
|
||||
std::vector<float> w_ids = linspace<float>(1.f * w_offset, 1.f * w_len - 1 + w_offset, w_len);
|
||||
|
||||
for (int i = 0; i < t_len; ++i) {
|
||||
for (int j = 0; j < h_len; ++j) {
|
||||
@ -363,8 +493,8 @@ namespace Rope {
|
||||
|
||||
GGML_ASSERT(i < grid_h * grid_w);
|
||||
|
||||
ids[i][0] = ih + iy;
|
||||
ids[i][1] = iw + ix;
|
||||
ids[i][0] = static_cast<float>(ih + iy);
|
||||
ids[i][1] = static_cast<float>(iw + ix);
|
||||
index++;
|
||||
}
|
||||
}
|
||||
@ -428,9 +558,33 @@ namespace Rope {
|
||||
const std::vector<ggml_tensor*>& ref_latents,
|
||||
bool increase_ref_index,
|
||||
int theta,
|
||||
bool circular_h,
|
||||
bool circular_w,
|
||||
const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_z_image_ids(h, w, patch_size, bs, context_len, seq_multi_of, ref_latents, increase_ref_index);
|
||||
return embed_nd(ids, bs, theta, axes_dim);
|
||||
std::vector<std::vector<int>> wrap_dims;
|
||||
if ((circular_h || circular_w) && bs > 0 && axes_dim.size() >= 3) {
|
||||
int pad_h = (patch_size - (h % patch_size)) % patch_size;
|
||||
int pad_w = (patch_size - (w % patch_size)) % patch_size;
|
||||
int h_len = (h + pad_h) / patch_size;
|
||||
int w_len = (w + pad_w) / patch_size;
|
||||
if (h_len > 0 && w_len > 0) {
|
||||
size_t pos_len = ids.size() / bs;
|
||||
wrap_dims.assign(axes_dim.size(), std::vector<int>(pos_len, 0));
|
||||
size_t cursor = context_len + bound_mod(context_len, seq_multi_of); // skip text (and its padding)
|
||||
size_t img_tokens = static_cast<size_t>(h_len) * static_cast<size_t>(w_len);
|
||||
for (size_t token_i = 0; token_i < img_tokens; ++token_i) {
|
||||
if (circular_h) {
|
||||
wrap_dims[1][cursor + token_i] = h_len;
|
||||
}
|
||||
if (circular_w) {
|
||||
wrap_dims[2][cursor + token_i] = w_len;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return embed_nd(ids, bs, theta, axes_dim, wrap_dims);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx,
|
||||
@ -488,7 +642,7 @@ namespace Rope {
|
||||
q = apply_rope(ctx->ggml_ctx, q, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||
k = apply_rope(ctx->ggml_ctx, k, pe, rope_interleaved); // [N*n_head, L, d_head]
|
||||
|
||||
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, false, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
||||
auto x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, v->ne[1], mask, true, ctx->flash_attn_enabled, kv_scale); // [N, L, n_head*d_head]
|
||||
return x;
|
||||
}
|
||||
}; // namespace Rope
|
||||
|
||||
@ -48,6 +48,8 @@ enum sample_method_t {
|
||||
LCM_SAMPLE_METHOD,
|
||||
DDIM_TRAILING_SAMPLE_METHOD,
|
||||
TCD_SAMPLE_METHOD,
|
||||
RES_MULTISTEP_SAMPLE_METHOD,
|
||||
RES_2S_SAMPLE_METHOD,
|
||||
SAMPLE_METHOD_COUNT
|
||||
};
|
||||
|
||||
@ -62,6 +64,7 @@ enum scheduler_t {
|
||||
SMOOTHSTEP_SCHEDULER,
|
||||
KL_OPTIMAL_SCHEDULER,
|
||||
LCM_SCHEDULER,
|
||||
BONG_TANGENT_SCHEDULER,
|
||||
SCHEDULER_COUNT
|
||||
};
|
||||
|
||||
@ -182,17 +185,22 @@ typedef struct {
|
||||
enum prediction_t prediction;
|
||||
enum lora_apply_mode_t lora_apply_mode;
|
||||
bool offload_params_to_cpu;
|
||||
bool enable_mmap;
|
||||
bool keep_clip_on_cpu;
|
||||
bool keep_control_net_on_cpu;
|
||||
bool keep_vae_on_cpu;
|
||||
bool flash_attn;
|
||||
bool diffusion_flash_attn;
|
||||
bool tae_preview_only;
|
||||
bool diffusion_conv_direct;
|
||||
bool vae_conv_direct;
|
||||
bool circular_x;
|
||||
bool circular_y;
|
||||
bool force_sdxl_vae_conv_scale;
|
||||
bool chroma_use_dit_mask;
|
||||
bool chroma_use_t5_mask;
|
||||
int chroma_t5_mask_pad;
|
||||
bool qwen_image_zero_cond_t;
|
||||
float flow_shift;
|
||||
} sd_ctx_params_t;
|
||||
|
||||
@ -236,12 +244,34 @@ typedef struct {
|
||||
float style_strength;
|
||||
} sd_pm_params_t; // photo maker
|
||||
|
||||
enum sd_cache_mode_t {
|
||||
SD_CACHE_DISABLED = 0,
|
||||
SD_CACHE_EASYCACHE,
|
||||
SD_CACHE_UCACHE,
|
||||
SD_CACHE_DBCACHE,
|
||||
SD_CACHE_TAYLORSEER,
|
||||
SD_CACHE_CACHE_DIT,
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
bool enabled;
|
||||
enum sd_cache_mode_t mode;
|
||||
float reuse_threshold;
|
||||
float start_percent;
|
||||
float end_percent;
|
||||
} sd_easycache_params_t;
|
||||
float error_decay_rate;
|
||||
bool use_relative_threshold;
|
||||
bool reset_error_on_compute;
|
||||
int Fn_compute_blocks;
|
||||
int Bn_compute_blocks;
|
||||
float residual_diff_threshold;
|
||||
int max_warmup_steps;
|
||||
int max_cached_steps;
|
||||
int max_continuous_cached_steps;
|
||||
int taylorseer_n_derivatives;
|
||||
int taylorseer_skip_interval;
|
||||
const char* scm_mask;
|
||||
bool scm_policy_dynamic;
|
||||
} sd_cache_params_t;
|
||||
|
||||
typedef struct {
|
||||
bool is_high_noise;
|
||||
@ -271,7 +301,7 @@ typedef struct {
|
||||
float control_strength;
|
||||
sd_pm_params_t pm_params;
|
||||
sd_tiling_params_t vae_tiling_params;
|
||||
sd_easycache_params_t easycache;
|
||||
sd_cache_params_t cache;
|
||||
} sd_img_gen_params_t;
|
||||
|
||||
typedef struct {
|
||||
@ -293,7 +323,8 @@ typedef struct {
|
||||
int64_t seed;
|
||||
int video_frames;
|
||||
float vace_strength;
|
||||
sd_easycache_params_t easycache;
|
||||
sd_tiling_params_t vae_tiling_params;
|
||||
sd_cache_params_t cache;
|
||||
} sd_vid_gen_params_t;
|
||||
|
||||
typedef struct sd_ctx_t sd_ctx_t;
|
||||
@ -323,7 +354,7 @@ SD_API enum preview_t str_to_preview(const char* str);
|
||||
SD_API const char* sd_lora_apply_mode_name(enum lora_apply_mode_t mode);
|
||||
SD_API enum lora_apply_mode_t str_to_lora_apply_mode(const char* str);
|
||||
|
||||
SD_API void sd_easycache_params_init(sd_easycache_params_t* easycache_params);
|
||||
SD_API void sd_cache_params_init(sd_cache_params_t* cache_params);
|
||||
|
||||
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
|
||||
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
|
||||
@ -363,7 +394,8 @@ SD_API bool convert(const char* input_path,
|
||||
const char* vae_path,
|
||||
const char* output_path,
|
||||
enum sd_type_t output_type,
|
||||
const char* tensor_type_rules);
|
||||
const char* tensor_type_rules,
|
||||
bool convert_name);
|
||||
|
||||
SD_API bool preprocess_canny(sd_image_t image,
|
||||
float high_threshold,
|
||||
|
||||
26
t5.hpp
@ -96,7 +96,7 @@ protected:
|
||||
|
||||
try {
|
||||
data = nlohmann::json::parse(json_str);
|
||||
} catch (const nlohmann::json::parse_error& e) {
|
||||
} catch (const nlohmann::json::parse_error&) {
|
||||
status_ = INVLIAD_JSON;
|
||||
return;
|
||||
}
|
||||
@ -168,9 +168,9 @@ protected:
|
||||
kMaxTrieResultsSize);
|
||||
trie_results_size_ = 0;
|
||||
for (const auto& p : *pieces) {
|
||||
const int num_nodes = trie_->commonPrefixSearch(
|
||||
const size_t num_nodes = trie_->commonPrefixSearch(
|
||||
p.first.data(), results.data(), results.size(), p.first.size());
|
||||
trie_results_size_ = std::max(trie_results_size_, num_nodes);
|
||||
trie_results_size_ = std::max(trie_results_size_, static_cast<int>(num_nodes));
|
||||
}
|
||||
|
||||
if (trie_results_size_ == 0)
|
||||
@ -268,7 +268,7 @@ protected:
|
||||
-1; // The starting position (in utf-8) of this node. The entire best
|
||||
// path can be constructed by backtracking along this link.
|
||||
};
|
||||
const int size = normalized.size();
|
||||
const int size = static_cast<int>(normalized.size());
|
||||
const float unk_score = min_score() - kUnkPenalty;
|
||||
// The ends are exclusive.
|
||||
std::vector<BestPathNode> best_path_ends_at(size + 1);
|
||||
@ -281,7 +281,7 @@ protected:
|
||||
best_path_ends_at[starts_at].best_path_score;
|
||||
bool has_single_node = false;
|
||||
const int mblen =
|
||||
std::min<int>(OneCharLen(normalized.data() + starts_at),
|
||||
std::min<int>(static_cast<int>(OneCharLen(normalized.data() + starts_at)),
|
||||
size - starts_at);
|
||||
while (key_pos < size) {
|
||||
const int ret =
|
||||
@ -302,7 +302,7 @@ protected:
|
||||
score + best_path_score_till_here;
|
||||
if (target_node.starts_at == -1 ||
|
||||
candidate_best_path_score > target_node.best_path_score) {
|
||||
target_node.best_path_score = candidate_best_path_score;
|
||||
target_node.best_path_score = static_cast<float>(candidate_best_path_score);
|
||||
target_node.starts_at = starts_at;
|
||||
target_node.id = ret;
|
||||
}
|
||||
@ -394,7 +394,7 @@ public:
|
||||
bool padding = false) {
|
||||
if (max_length > 0 && padding) {
|
||||
size_t orig_token_num = tokens.size() - 1;
|
||||
size_t n = std::ceil(orig_token_num * 1.0 / (max_length - 1));
|
||||
size_t n = static_cast<size_t>(std::ceil(orig_token_num * 1.0 / (max_length - 1)));
|
||||
if (n == 0) {
|
||||
n = 1;
|
||||
}
|
||||
@ -515,7 +515,7 @@ public:
|
||||
auto wi_1 = std::dynamic_pointer_cast<Linear>(blocks["wi_1"]);
|
||||
auto wo = std::dynamic_pointer_cast<Linear>(blocks["wo"]);
|
||||
|
||||
auto hidden_gelu = ggml_gelu_inplace(ctx->ggml_ctx, wi_0->forward(ctx, x));
|
||||
auto hidden_gelu = ggml_ext_gelu(ctx->ggml_ctx, wi_0->forward(ctx, x), true);
|
||||
auto hidden_linear = wi_1->forward(ctx, x);
|
||||
x = ggml_mul_inplace(ctx->ggml_ctx, hidden_gelu, hidden_linear);
|
||||
x = wo->forward(ctx, x);
|
||||
@ -608,7 +608,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
k = ggml_scale_inplace(ctx->ggml_ctx, k, sqrt(d_head));
|
||||
k = ggml_ext_scale(ctx->ggml_ctx, k, ::sqrtf(static_cast<float>(d_head)), true);
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
|
||||
|
||||
@ -797,7 +797,7 @@ struct T5Runner : public GGMLRunner {
|
||||
input_ids = to_backend(input_ids);
|
||||
attention_mask = to_backend(attention_mask);
|
||||
|
||||
relative_position_bucket_vec = compute_relative_position_bucket(input_ids->ne[0], input_ids->ne[0]);
|
||||
relative_position_bucket_vec = compute_relative_position_bucket(static_cast<int>(input_ids->ne[0]), static_cast<int>(input_ids->ne[0]));
|
||||
|
||||
// for (int i = 0; i < relative_position_bucket_vec.size(); i++) {
|
||||
// if (i % 77 == 0) {
|
||||
@ -984,12 +984,12 @@ struct T5Embedder {
|
||||
auto attention_mask = vector_to_ggml_tensor(work_ctx, masks);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, attention_mask, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("t5 test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("t5 test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
80
tae.hpp
@ -17,22 +17,43 @@ class TAEBlock : public UnaryBlock {
|
||||
protected:
|
||||
int n_in;
|
||||
int n_out;
|
||||
bool use_midblock_gn;
|
||||
|
||||
public:
|
||||
TAEBlock(int n_in, int n_out)
|
||||
: n_in(n_in), n_out(n_out) {
|
||||
TAEBlock(int n_in, int n_out, bool use_midblock_gn = false)
|
||||
: n_in(n_in), n_out(n_out), use_midblock_gn(use_midblock_gn) {
|
||||
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
|
||||
if (n_in != n_out) {
|
||||
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {1, 1}, {1, 1}, {1, 1}, {1, 1}, false));
|
||||
}
|
||||
if (use_midblock_gn) {
|
||||
int n_gn = n_in * 4;
|
||||
blocks["pool.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_gn, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
|
||||
blocks["pool.1"] = std::shared_ptr<GGMLBlock>(new GroupNorm(4, n_gn));
|
||||
// pool.2 is ReLU, handled in forward
|
||||
blocks["pool.3"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_gn, n_in, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
|
||||
// x: [n, n_in, h, w]
|
||||
// return: [n, n_out, h, w]
|
||||
|
||||
if (use_midblock_gn) {
|
||||
auto pool_0 = std::dynamic_pointer_cast<Conv2d>(blocks["pool.0"]);
|
||||
auto pool_1 = std::dynamic_pointer_cast<GroupNorm>(blocks["pool.1"]);
|
||||
auto pool_3 = std::dynamic_pointer_cast<Conv2d>(blocks["pool.3"]);
|
||||
|
||||
auto p = pool_0->forward(ctx, x);
|
||||
p = pool_1->forward(ctx, p);
|
||||
p = ggml_relu_inplace(ctx->ggml_ctx, p);
|
||||
p = pool_3->forward(ctx, p);
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, p);
|
||||
}
|
||||
|
||||
auto conv_0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]);
|
||||
auto conv_2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]);
|
||||
auto conv_4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]);
|
||||
@ -62,7 +83,7 @@ class TinyEncoder : public UnaryBlock {
|
||||
int num_blocks = 3;
|
||||
|
||||
public:
|
||||
TinyEncoder(int z_channels = 4)
|
||||
TinyEncoder(int z_channels = 4, bool use_midblock_gn = false)
|
||||
: z_channels(z_channels) {
|
||||
int index = 0;
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, channels, {3, 3}, {1, 1}, {1, 1}));
|
||||
@ -80,7 +101,7 @@ public:
|
||||
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels, use_midblock_gn));
|
||||
}
|
||||
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, z_channels, {3, 3}, {1, 1}, {1, 1}));
|
||||
@ -107,7 +128,7 @@ class TinyDecoder : public UnaryBlock {
|
||||
int num_blocks = 3;
|
||||
|
||||
public:
|
||||
TinyDecoder(int z_channels = 4)
|
||||
TinyDecoder(int z_channels = 4, bool use_midblock_gn = false)
|
||||
: z_channels(z_channels) {
|
||||
int index = 0;
|
||||
|
||||
@ -115,7 +136,7 @@ public:
|
||||
index++; // nn.ReLU()
|
||||
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels, use_midblock_gn));
|
||||
}
|
||||
index++; // nn.Upsample()
|
||||
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
|
||||
@ -140,9 +161,9 @@ public:
|
||||
// z: [n, z_channels, h, w]
|
||||
// return: [n, out_channels, h*8, w*8]
|
||||
|
||||
auto h = ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
||||
auto h = ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f);
|
||||
h = ggml_tanh_inplace(ctx->ggml_ctx, h);
|
||||
h = ggml_scale(ctx->ggml_ctx, h, 3.0f);
|
||||
h = ggml_ext_scale(ctx->ggml_ctx, h, 3.0f);
|
||||
|
||||
for (int i = 0; i < num_blocks * 3 + 10; i++) {
|
||||
if (blocks.find(std::to_string(i)) == blocks.end()) {
|
||||
@ -379,10 +400,11 @@ public:
|
||||
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["1"]);
|
||||
|
||||
// Clamp()
|
||||
auto h = ggml_scale_inplace(ctx->ggml_ctx,
|
||||
ggml_tanh_inplace(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
||||
3.0f);
|
||||
auto h = ggml_ext_scale(ctx->ggml_ctx,
|
||||
ggml_tanh_inplace(ctx->ggml_ctx,
|
||||
ggml_ext_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
|
||||
3.0f,
|
||||
true);
|
||||
|
||||
h = first_conv->forward(ctx, h);
|
||||
h = ggml_relu_inplace(ctx->ggml_ctx, h);
|
||||
@ -470,29 +492,44 @@ public:
|
||||
class TAESD : public GGMLBlock {
|
||||
protected:
|
||||
bool decode_only;
|
||||
bool taef2 = false;
|
||||
|
||||
public:
|
||||
TAESD(bool decode_only = true, SDVersion version = VERSION_SD1)
|
||||
: decode_only(decode_only) {
|
||||
int z_channels = 4;
|
||||
int z_channels = 4;
|
||||
bool use_midblock_gn = false;
|
||||
taef2 = sd_version_is_flux2(version);
|
||||
|
||||
if (sd_version_is_dit(version)) {
|
||||
z_channels = 16;
|
||||
}
|
||||
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels));
|
||||
if (taef2) {
|
||||
z_channels = 32;
|
||||
use_midblock_gn = true;
|
||||
}
|
||||
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels, use_midblock_gn));
|
||||
|
||||
if (!decode_only) {
|
||||
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels));
|
||||
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels, use_midblock_gn));
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* decode(GGMLRunnerContext* ctx, struct ggml_tensor* z) {
|
||||
auto decoder = std::dynamic_pointer_cast<TinyDecoder>(blocks["decoder.layers"]);
|
||||
if (taef2) {
|
||||
z = unpatchify(ctx->ggml_ctx, z, 2);
|
||||
}
|
||||
return decoder->forward(ctx, z);
|
||||
}
|
||||
|
||||
struct ggml_tensor* encode(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
auto encoder = std::dynamic_pointer_cast<TinyEncoder>(blocks["encoder.layers"]);
|
||||
return encoder->forward(ctx, x);
|
||||
auto z = encoder->forward(ctx, x);
|
||||
if (taef2) {
|
||||
z = patchify(ctx->ggml_ctx, z, 2);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
};
|
||||
|
||||
@ -505,7 +542,8 @@ struct TinyAutoEncoder : public GGMLRunner {
|
||||
struct ggml_tensor** output,
|
||||
struct ggml_context* output_ctx = nullptr) = 0;
|
||||
|
||||
virtual bool load_from_file(const std::string& file_path, int n_threads) = 0;
|
||||
virtual bool load_from_file(const std::string& file_path, int n_threads) = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) = 0;
|
||||
};
|
||||
|
||||
struct TinyImageAutoEncoder : public TinyAutoEncoder {
|
||||
@ -555,6 +593,10 @@ struct TinyImageAutoEncoder : public TinyAutoEncoder {
|
||||
return success;
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
taesd.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
z = to_backend(z);
|
||||
@ -624,6 +666,10 @@ struct TinyVideoAutoEncoder : public TinyAutoEncoder {
|
||||
return success;
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
taehv.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
z = to_backend(z);
|
||||
|
||||
18
thirdparty/darts.h
vendored
@ -845,7 +845,7 @@ inline void BitVector::build() {
|
||||
|
||||
num_ones_ = 0;
|
||||
for (std::size_t i = 0; i < units_.size(); ++i) {
|
||||
ranks_[i] = num_ones_;
|
||||
ranks_[i] = static_cast<id_type>(num_ones_);
|
||||
num_ones_ += pop_count(units_[i]);
|
||||
}
|
||||
}
|
||||
@ -1769,7 +1769,7 @@ id_type DoubleArrayBuilder::arrange_from_keyset(const Keyset<T> &keyset,
|
||||
|
||||
inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
|
||||
if (extras_head_ >= units_.size()) {
|
||||
return units_.size() | (id & LOWER_MASK);
|
||||
return static_cast<id_type>(units_.size()) | (id & LOWER_MASK);
|
||||
}
|
||||
|
||||
id_type unfixed_id = extras_head_;
|
||||
@ -1781,7 +1781,7 @@ inline id_type DoubleArrayBuilder::find_valid_offset(id_type id) const {
|
||||
unfixed_id = extras(unfixed_id).next();
|
||||
} while (unfixed_id != extras_head_);
|
||||
|
||||
return units_.size() | (id & LOWER_MASK);
|
||||
return static_cast<id_type>(units_.size()) | (id & LOWER_MASK);
|
||||
}
|
||||
|
||||
inline bool DoubleArrayBuilder::is_valid_offset(id_type id,
|
||||
@ -1812,7 +1812,7 @@ inline void DoubleArrayBuilder::reserve_id(id_type id) {
|
||||
if (id == extras_head_) {
|
||||
extras_head_ = extras(id).next();
|
||||
if (extras_head_ == id) {
|
||||
extras_head_ = units_.size();
|
||||
extras_head_ = static_cast<id_type>(units_.size());
|
||||
}
|
||||
}
|
||||
extras(extras(id).prev()).set_next(extras(id).next());
|
||||
@ -1821,8 +1821,8 @@ inline void DoubleArrayBuilder::reserve_id(id_type id) {
|
||||
}
|
||||
|
||||
inline void DoubleArrayBuilder::expand_units() {
|
||||
id_type src_num_units = units_.size();
|
||||
id_type src_num_blocks = num_blocks();
|
||||
id_type src_num_units = static_cast<id_type>(units_.size());
|
||||
id_type src_num_blocks = static_cast<id_type>(num_blocks());
|
||||
|
||||
id_type dest_num_units = src_num_units + BLOCK_SIZE;
|
||||
id_type dest_num_blocks = src_num_blocks + 1;
|
||||
@ -1834,7 +1834,7 @@ inline void DoubleArrayBuilder::expand_units() {
|
||||
units_.resize(dest_num_units);
|
||||
|
||||
if (dest_num_blocks > NUM_EXTRA_BLOCKS) {
|
||||
for (std::size_t id = src_num_units; id < dest_num_units; ++id) {
|
||||
for (id_type id = src_num_units; id < dest_num_units; ++id) {
|
||||
extras(id).set_is_used(false);
|
||||
extras(id).set_is_fixed(false);
|
||||
}
|
||||
@ -1858,9 +1858,9 @@ inline void DoubleArrayBuilder::expand_units() {
|
||||
inline void DoubleArrayBuilder::fix_all_blocks() {
|
||||
id_type begin = 0;
|
||||
if (num_blocks() > NUM_EXTRA_BLOCKS) {
|
||||
begin = num_blocks() - NUM_EXTRA_BLOCKS;
|
||||
begin = static_cast<id_type>(num_blocks() - NUM_EXTRA_BLOCKS);
|
||||
}
|
||||
id_type end = num_blocks();
|
||||
id_type end = static_cast<id_type>(num_blocks());
|
||||
|
||||
for (id_type block_id = begin; block_id != end; ++block_id) {
|
||||
fix_block(block_id);
|
||||
|
||||
14
thirdparty/stb_image_write.h
vendored
@ -257,6 +257,10 @@ int stbi_write_tga_with_rle = 1;
|
||||
int stbi_write_force_png_filter = -1;
|
||||
#endif
|
||||
|
||||
#ifndef STBMIN
|
||||
#define STBMIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif // STBMIN
|
||||
|
||||
static int stbi__flip_vertically_on_write = 0;
|
||||
|
||||
STBIWDEF void stbi_flip_vertically_on_write(int flag)
|
||||
@ -1179,8 +1183,8 @@ STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int s
|
||||
if (!zlib) return 0;
|
||||
|
||||
if(parameters != NULL) {
|
||||
param_length = strlen(parameters);
|
||||
param_length += strlen("parameters") + 1; // For the name and the null-byte
|
||||
param_length = (int)strlen(parameters);
|
||||
param_length += (int)strlen("parameters") + 1; // For the name and the null-byte
|
||||
}
|
||||
|
||||
// each tag requires 12 bytes of overhead
|
||||
@ -1526,11 +1530,11 @@ static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, in
|
||||
if(parameters != NULL) {
|
||||
stbiw__putc(s, 0xFF /* comnent */ );
|
||||
stbiw__putc(s, 0xFE /* marker */ );
|
||||
size_t param_length = std::min(2 + strlen("parameters") + 1 + strlen(parameters) + 1, (size_t) 0xFFFF);
|
||||
int param_length = STBMIN(2 + (int)strlen("parameters") + 1 + (int)strlen(parameters) + 1, 0xFFFF);
|
||||
stbiw__putc(s, param_length >> 8); // no need to mask, length < 65536
|
||||
stbiw__putc(s, param_length & 0xFF);
|
||||
s->func(s->context, (void*)"parameters", strlen("parameters") + 1); // std::string is zero-terminated
|
||||
s->func(s->context, (void*)parameters, std::min(param_length, (size_t) 65534) - 2 - strlen("parameters") - 1);
|
||||
s->func(s->context, (void*)"parameters", (int)strlen("parameters") + 1); // std::string is zero-terminated
|
||||
s->func(s->context, (void*)parameters, STBMIN(param_length, 65534) - 2 - (int)strlen("parameters") - 1);
|
||||
if(param_length > 65534) stbiw__putc(s, 0); // always zero-terminate for safety
|
||||
if(param_length & 1) stbiw__putc(s, 0xFF); // pad to even length
|
||||
}
|
||||
|
||||
404
ucache.hpp
Normal file
@ -0,0 +1,404 @@
|
||||
#ifndef __UCACHE_HPP__
|
||||
#define __UCACHE_HPP__
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "denoiser.hpp"
|
||||
#include "ggml_extend.hpp"
|
||||
|
||||
struct UCacheConfig {
|
||||
bool enabled = false;
|
||||
float reuse_threshold = 1.0f;
|
||||
float start_percent = 0.15f;
|
||||
float end_percent = 0.95f;
|
||||
float error_decay_rate = 1.0f;
|
||||
bool use_relative_threshold = true;
|
||||
bool adaptive_threshold = true;
|
||||
float early_step_multiplier = 0.5f;
|
||||
float late_step_multiplier = 1.5f;
|
||||
bool reset_error_on_compute = true;
|
||||
};
|
||||
|
||||
struct UCacheCacheEntry {
|
||||
std::vector<float> diff;
|
||||
};
|
||||
|
||||
struct UCacheState {
|
||||
UCacheConfig config;
|
||||
Denoiser* denoiser = nullptr;
|
||||
float start_sigma = std::numeric_limits<float>::max();
|
||||
float end_sigma = 0.0f;
|
||||
bool initialized = false;
|
||||
bool initial_step = true;
|
||||
bool skip_current_step = false;
|
||||
bool step_active = false;
|
||||
const SDCondition* anchor_condition = nullptr;
|
||||
std::unordered_map<const SDCondition*, UCacheCacheEntry> cache_diffs;
|
||||
std::vector<float> prev_input;
|
||||
std::vector<float> prev_output;
|
||||
float output_prev_norm = 0.0f;
|
||||
bool has_prev_input = false;
|
||||
bool has_prev_output = false;
|
||||
bool has_output_prev_norm = false;
|
||||
bool has_relative_transformation_rate = false;
|
||||
float relative_transformation_rate = 0.0f;
|
||||
float cumulative_change_rate = 0.0f;
|
||||
float last_input_change = 0.0f;
|
||||
bool has_last_input_change = false;
|
||||
int total_steps_skipped = 0;
|
||||
int current_step_index = -1;
|
||||
int steps_computed_since_active = 0;
|
||||
float accumulated_error = 0.0f;
|
||||
float reference_output_norm = 0.0f;
|
||||
|
||||
struct BlockMetrics {
|
||||
float sum_transformation_rate = 0.0f;
|
||||
float sum_output_norm = 0.0f;
|
||||
int sample_count = 0;
|
||||
float min_change_rate = std::numeric_limits<float>::max();
|
||||
float max_change_rate = 0.0f;
|
||||
|
||||
void reset() {
|
||||
sum_transformation_rate = 0.0f;
|
||||
sum_output_norm = 0.0f;
|
||||
sample_count = 0;
|
||||
min_change_rate = std::numeric_limits<float>::max();
|
||||
max_change_rate = 0.0f;
|
||||
}
|
||||
|
||||
void record(float change_rate, float output_norm) {
|
||||
if (std::isfinite(change_rate) && change_rate > 0.0f) {
|
||||
sum_transformation_rate += change_rate;
|
||||
sum_output_norm += output_norm;
|
||||
sample_count++;
|
||||
if (change_rate < min_change_rate)
|
||||
min_change_rate = change_rate;
|
||||
if (change_rate > max_change_rate)
|
||||
max_change_rate = change_rate;
|
||||
}
|
||||
}
|
||||
|
||||
float avg_transformation_rate() const {
|
||||
return (sample_count > 0) ? (sum_transformation_rate / sample_count) : 0.0f;
|
||||
}
|
||||
|
||||
float avg_output_norm() const {
|
||||
return (sample_count > 0) ? (sum_output_norm / sample_count) : 0.0f;
|
||||
}
|
||||
};
|
||||
BlockMetrics block_metrics;
|
||||
int total_active_steps = 0;
|
||||
|
||||
void reset_runtime() {
|
||||
initial_step = true;
|
||||
skip_current_step = false;
|
||||
step_active = false;
|
||||
anchor_condition = nullptr;
|
||||
cache_diffs.clear();
|
||||
prev_input.clear();
|
||||
prev_output.clear();
|
||||
output_prev_norm = 0.0f;
|
||||
has_prev_input = false;
|
||||
has_prev_output = false;
|
||||
has_output_prev_norm = false;
|
||||
has_relative_transformation_rate = false;
|
||||
relative_transformation_rate = 0.0f;
|
||||
cumulative_change_rate = 0.0f;
|
||||
last_input_change = 0.0f;
|
||||
has_last_input_change = false;
|
||||
total_steps_skipped = 0;
|
||||
current_step_index = -1;
|
||||
steps_computed_since_active = 0;
|
||||
accumulated_error = 0.0f;
|
||||
reference_output_norm = 0.0f;
|
||||
block_metrics.reset();
|
||||
total_active_steps = 0;
|
||||
}
|
||||
|
||||
void init(const UCacheConfig& cfg, Denoiser* d) {
|
||||
config = cfg;
|
||||
denoiser = d;
|
||||
initialized = cfg.enabled && d != nullptr;
|
||||
reset_runtime();
|
||||
if (initialized) {
|
||||
start_sigma = percent_to_sigma(config.start_percent);
|
||||
end_sigma = percent_to_sigma(config.end_percent);
|
||||
}
|
||||
}
|
||||
|
||||
void set_sigmas(const std::vector<float>& sigmas) {
|
||||
if (!initialized || sigmas.size() < 2) {
|
||||
return;
|
||||
}
|
||||
size_t n_steps = sigmas.size() - 1;
|
||||
|
||||
size_t start_step = static_cast<size_t>(config.start_percent * n_steps);
|
||||
size_t end_step = static_cast<size_t>(config.end_percent * n_steps);
|
||||
|
||||
if (start_step >= n_steps)
|
||||
start_step = n_steps - 1;
|
||||
if (end_step >= n_steps)
|
||||
end_step = n_steps - 1;
|
||||
|
||||
start_sigma = sigmas[start_step];
|
||||
end_sigma = sigmas[end_step];
|
||||
|
||||
if (start_sigma < end_sigma) {
|
||||
std::swap(start_sigma, end_sigma);
|
||||
}
|
||||
}
|
||||
|
||||
bool enabled() const {
|
||||
return initialized && config.enabled;
|
||||
}
|
||||
|
||||
float percent_to_sigma(float percent) const {
|
||||
if (!denoiser) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (percent <= 0.0f) {
|
||||
return std::numeric_limits<float>::max();
|
||||
}
|
||||
if (percent >= 1.0f) {
|
||||
return 0.0f;
|
||||
}
|
||||
float t = (1.0f - percent) * (TIMESTEPS - 1);
|
||||
return denoiser->t_to_sigma(t);
|
||||
}
|
||||
|
||||
void begin_step(int step_index, float sigma) {
|
||||
if (!enabled()) {
|
||||
return;
|
||||
}
|
||||
if (step_index == current_step_index) {
|
||||
return;
|
||||
}
|
||||
current_step_index = step_index;
|
||||
skip_current_step = false;
|
||||
has_last_input_change = false;
|
||||
step_active = false;
|
||||
|
||||
if (sigma > start_sigma) {
|
||||
return;
|
||||
}
|
||||
if (!(sigma > end_sigma)) {
|
||||
return;
|
||||
}
|
||||
step_active = true;
|
||||
total_active_steps++;
|
||||
}
|
||||
|
||||
bool step_is_active() const {
|
||||
return enabled() && step_active;
|
||||
}
|
||||
|
||||
bool is_step_skipped() const {
|
||||
return enabled() && step_active && skip_current_step;
|
||||
}
|
||||
|
||||
float get_adaptive_threshold(int estimated_total_steps = 0) const {
|
||||
float base_threshold = config.reuse_threshold;
|
||||
|
||||
if (!config.adaptive_threshold) {
|
||||
return base_threshold;
|
||||
}
|
||||
|
||||
int effective_total = estimated_total_steps;
|
||||
if (effective_total <= 0) {
|
||||
effective_total = std::max(20, steps_computed_since_active * 2);
|
||||
}
|
||||
|
||||
float progress = (effective_total > 0) ? (static_cast<float>(steps_computed_since_active) / effective_total) : 0.0f;
|
||||
|
||||
float multiplier = 1.0f;
|
||||
if (progress < 0.2f) {
|
||||
multiplier = config.early_step_multiplier;
|
||||
} else if (progress > 0.8f) {
|
||||
multiplier = config.late_step_multiplier;
|
||||
}
|
||||
|
||||
return base_threshold * multiplier;
|
||||
}
|
||||
|
||||
bool has_cache(const SDCondition* cond) const {
|
||||
auto it = cache_diffs.find(cond);
|
||||
return it != cache_diffs.end() && !it->second.diff.empty();
|
||||
}
|
||||
|
||||
void update_cache(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
|
||||
UCacheCacheEntry& entry = cache_diffs[cond];
|
||||
size_t ne = static_cast<size_t>(ggml_nelements(output));
|
||||
entry.diff.resize(ne);
|
||||
float* out_data = (float*)output->data;
|
||||
float* in_data = (float*)input->data;
|
||||
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
entry.diff[i] = out_data[i] - in_data[i];
|
||||
}
|
||||
}
|
||||
|
||||
void apply_cache(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
|
||||
auto it = cache_diffs.find(cond);
|
||||
if (it == cache_diffs.end() || it->second.diff.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
copy_ggml_tensor(output, input);
|
||||
float* out_data = (float*)output->data;
|
||||
const std::vector<float>& diff = it->second.diff;
|
||||
for (size_t i = 0; i < diff.size(); ++i) {
|
||||
out_data[i] += diff[i];
|
||||
}
|
||||
}
|
||||
|
||||
bool before_condition(const SDCondition* cond,
|
||||
ggml_tensor* input,
|
||||
ggml_tensor* output,
|
||||
float sigma,
|
||||
int step_index) {
|
||||
if (!enabled() || step_index < 0) {
|
||||
return false;
|
||||
}
|
||||
if (step_index != current_step_index) {
|
||||
begin_step(step_index, sigma);
|
||||
}
|
||||
if (!step_active) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (initial_step) {
|
||||
anchor_condition = cond;
|
||||
initial_step = false;
|
||||
}
|
||||
|
||||
bool is_anchor = (cond == anchor_condition);
|
||||
|
||||
if (skip_current_step) {
|
||||
if (has_cache(cond)) {
|
||||
apply_cache(cond, input, output);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!is_anchor) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!has_prev_input || !has_prev_output || !has_cache(cond)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t ne = static_cast<size_t>(ggml_nelements(input));
|
||||
if (prev_input.size() != ne) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float* input_data = (float*)input->data;
|
||||
last_input_change = 0.0f;
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
last_input_change += std::fabs(input_data[i] - prev_input[i]);
|
||||
}
|
||||
if (ne > 0) {
|
||||
last_input_change /= static_cast<float>(ne);
|
||||
}
|
||||
has_last_input_change = true;
|
||||
|
||||
if (has_output_prev_norm && has_relative_transformation_rate &&
|
||||
last_input_change > 0.0f && output_prev_norm > 0.0f) {
|
||||
float approx_output_change_rate = (relative_transformation_rate * last_input_change) / output_prev_norm;
|
||||
accumulated_error = accumulated_error * config.error_decay_rate + approx_output_change_rate;
|
||||
|
||||
float effective_threshold = get_adaptive_threshold();
|
||||
if (config.use_relative_threshold && reference_output_norm > 0.0f) {
|
||||
effective_threshold = effective_threshold * reference_output_norm;
|
||||
}
|
||||
|
||||
if (accumulated_error < effective_threshold) {
|
||||
skip_current_step = true;
|
||||
total_steps_skipped++;
|
||||
apply_cache(cond, input, output);
|
||||
return true;
|
||||
} else if (config.reset_error_on_compute) {
|
||||
accumulated_error = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void after_condition(const SDCondition* cond, ggml_tensor* input, ggml_tensor* output) {
|
||||
if (!step_is_active()) {
|
||||
return;
|
||||
}
|
||||
|
||||
update_cache(cond, input, output);
|
||||
|
||||
if (cond != anchor_condition) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t ne = static_cast<size_t>(ggml_nelements(input));
|
||||
float* in_data = (float*)input->data;
|
||||
prev_input.resize(ne);
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
prev_input[i] = in_data[i];
|
||||
}
|
||||
has_prev_input = true;
|
||||
|
||||
float* out_data = (float*)output->data;
|
||||
float output_change = 0.0f;
|
||||
if (has_prev_output && prev_output.size() == ne) {
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
output_change += std::fabs(out_data[i] - prev_output[i]);
|
||||
}
|
||||
if (ne > 0) {
|
||||
output_change /= static_cast<float>(ne);
|
||||
}
|
||||
}
|
||||
|
||||
prev_output.resize(ne);
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
prev_output[i] = out_data[i];
|
||||
}
|
||||
has_prev_output = true;
|
||||
|
||||
float mean_abs = 0.0f;
|
||||
for (size_t i = 0; i < ne; ++i) {
|
||||
mean_abs += std::fabs(out_data[i]);
|
||||
}
|
||||
output_prev_norm = (ne > 0) ? (mean_abs / static_cast<float>(ne)) : 0.0f;
|
||||
has_output_prev_norm = output_prev_norm > 0.0f;
|
||||
|
||||
if (reference_output_norm == 0.0f) {
|
||||
reference_output_norm = output_prev_norm;
|
||||
}
|
||||
|
||||
if (has_last_input_change && last_input_change > 0.0f && output_change > 0.0f) {
|
||||
float rate = output_change / last_input_change;
|
||||
if (std::isfinite(rate)) {
|
||||
relative_transformation_rate = rate;
|
||||
has_relative_transformation_rate = true;
|
||||
block_metrics.record(rate, output_prev_norm);
|
||||
}
|
||||
}
|
||||
|
||||
has_last_input_change = false;
|
||||
}
|
||||
|
||||
void log_block_metrics() const {
|
||||
if (block_metrics.sample_count > 0) {
|
||||
LOG_INFO("UCacheBlockMetrics: samples=%d, avg_rate=%.4f, min=%.4f, max=%.4f, avg_norm=%.4f",
|
||||
block_metrics.sample_count,
|
||||
block_metrics.avg_transformation_rate(),
|
||||
block_metrics.min_change_rate,
|
||||
block_metrics.max_change_rate,
|
||||
block_metrics.avg_output_norm());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __UCACHE_HPP__
|
||||
36
unet.hpp
@ -12,7 +12,7 @@
|
||||
class SpatialVideoTransformer : public SpatialTransformer {
|
||||
protected:
|
||||
int64_t time_depth;
|
||||
int64_t max_time_embed_period;
|
||||
int max_time_embed_period;
|
||||
|
||||
public:
|
||||
SpatialVideoTransformer(int64_t in_channels,
|
||||
@ -21,8 +21,8 @@ public:
|
||||
int64_t depth,
|
||||
int64_t context_dim,
|
||||
bool use_linear,
|
||||
int64_t time_depth = 1,
|
||||
int64_t max_time_embed_period = 10000)
|
||||
int64_t time_depth = 1,
|
||||
int max_time_embed_period = 10000)
|
||||
: SpatialTransformer(in_channels, n_head, d_head, depth, context_dim, use_linear),
|
||||
max_time_embed_period(max_time_embed_period) {
|
||||
// We will convert unet transformer linear to conv2d 1x1 when loading the weights, so use_linear is always False
|
||||
@ -112,9 +112,9 @@ public:
|
||||
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 2, 0, 3)); // [N, h, w, inner_dim]
|
||||
x = ggml_reshape_3d(ctx->ggml_ctx, x, inner_dim, w * h, n); // [N, h * w, inner_dim]
|
||||
|
||||
auto num_frames = ggml_arange(ctx->ggml_ctx, 0, timesteps, 1);
|
||||
auto num_frames = ggml_arange(ctx->ggml_ctx, 0.f, static_cast<float>(timesteps), 1.f);
|
||||
// since b is 1, no need to do repeat
|
||||
auto t_emb = ggml_ext_timestep_embedding(ctx->ggml_ctx, num_frames, in_channels, max_time_embed_period); // [N, in_channels]
|
||||
auto t_emb = ggml_ext_timestep_embedding(ctx->ggml_ctx, num_frames, static_cast<int>(in_channels), max_time_embed_period); // [N, in_channels]
|
||||
|
||||
auto emb = time_pos_embed_0->forward(ctx, t_emb);
|
||||
emb = ggml_silu_inplace(ctx->ggml_ctx, emb);
|
||||
@ -201,6 +201,9 @@ public:
|
||||
num_head_channels = 64;
|
||||
num_heads = -1;
|
||||
use_linear_projection = true;
|
||||
if (version == VERSION_SDXL_VEGA) {
|
||||
transformer_depth = {1, 1, 2};
|
||||
}
|
||||
} else if (version == VERSION_SVD) {
|
||||
in_channels = 8;
|
||||
out_channels = 4;
|
||||
@ -215,10 +218,13 @@ public:
|
||||
} else if (sd_version_is_unet_edit(version)) {
|
||||
in_channels = 8;
|
||||
}
|
||||
if (version == VERSION_SD1_TINY_UNET || version == VERSION_SD2_TINY_UNET) {
|
||||
if (version == VERSION_SD1_TINY_UNET || version == VERSION_SD2_TINY_UNET || version == VERSION_SDXS) {
|
||||
num_res_blocks = 1;
|
||||
channel_mult = {1, 2, 4};
|
||||
tiny_unet = true;
|
||||
if (version == VERSION_SDXS) {
|
||||
attention_resolutions = {4, 2}; // here just like SDXL
|
||||
}
|
||||
}
|
||||
|
||||
// dims is always 2
|
||||
@ -316,7 +322,7 @@ public:
|
||||
}
|
||||
if (!tiny_unet) {
|
||||
blocks["middle_block.0"] = std::shared_ptr<GGMLBlock>(get_resblock(ch, time_embed_dim, ch));
|
||||
if (version != VERSION_SDXL_SSD1B) {
|
||||
if (version != VERSION_SDXL_SSD1B && version != VERSION_SDXL_VEGA) {
|
||||
blocks["middle_block.1"] = std::shared_ptr<GGMLBlock>(get_attention_layer(ch,
|
||||
n_head,
|
||||
d_head,
|
||||
@ -517,16 +523,16 @@ public:
|
||||
// middle_block
|
||||
if (!tiny_unet) {
|
||||
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
if (version != VERSION_SDXL_SSD1B) {
|
||||
if (version != VERSION_SDXL_SSD1B && version != VERSION_SDXL_VEGA) {
|
||||
h = attention_layer_forward("middle_block.1", ctx, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
|
||||
}
|
||||
}
|
||||
if (controls.size() > 0) {
|
||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[controls.size() - 1], control_strength);
|
||||
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[controls.size() - 1], control_strength, true);
|
||||
h = ggml_add(ctx->ggml_ctx, h, cs); // middle control
|
||||
}
|
||||
int control_offset = controls.size() - 2;
|
||||
int control_offset = static_cast<int>(controls.size() - 2);
|
||||
|
||||
// output_blocks
|
||||
int output_block_idx = 0;
|
||||
@ -536,7 +542,7 @@ public:
|
||||
hs.pop_back();
|
||||
|
||||
if (controls.size() > 0) {
|
||||
auto cs = ggml_scale_inplace(ctx->ggml_ctx, controls[control_offset], control_strength);
|
||||
auto cs = ggml_ext_scale(ctx->ggml_ctx, controls[control_offset], control_strength, true);
|
||||
h_skip = ggml_add(ctx->ggml_ctx, h_skip, cs); // control net condition
|
||||
control_offset--;
|
||||
}
|
||||
@ -615,7 +621,7 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
struct ggml_cgraph* gf = new_graph_custom(UNET_GRAPH_SIZE);
|
||||
|
||||
if (num_video_frames == -1) {
|
||||
num_video_frames = x->ne[3];
|
||||
num_video_frames = static_cast<int>(x->ne[3]);
|
||||
}
|
||||
|
||||
x = to_backend(x);
|
||||
@ -700,12 +706,12 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, y, num_video_frames, {}, 0.f, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("unet test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("unet test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
150
util.cpp
@ -95,9 +95,71 @@ bool is_directory(const std::string& path) {
|
||||
return (attributes != INVALID_FILE_ATTRIBUTES && (attributes & FILE_ATTRIBUTE_DIRECTORY));
|
||||
}
|
||||
|
||||
class MmapWrapperImpl : public MmapWrapper {
|
||||
public:
|
||||
MmapWrapperImpl(void* data, size_t size, HANDLE hfile, HANDLE hmapping)
|
||||
: MmapWrapper(data, size), hfile_(hfile), hmapping_(hmapping) {}
|
||||
|
||||
~MmapWrapperImpl() override {
|
||||
UnmapViewOfFile(data_);
|
||||
CloseHandle(hmapping_);
|
||||
CloseHandle(hfile_);
|
||||
}
|
||||
|
||||
private:
|
||||
HANDLE hfile_;
|
||||
HANDLE hmapping_;
|
||||
};
|
||||
|
||||
std::unique_ptr<MmapWrapper> MmapWrapper::create(const std::string& filename) {
|
||||
void* mapped_data = nullptr;
|
||||
size_t file_size = 0;
|
||||
|
||||
HANDLE file_handle = CreateFileA(
|
||||
filename.c_str(),
|
||||
GENERIC_READ,
|
||||
FILE_SHARE_READ,
|
||||
NULL,
|
||||
OPEN_EXISTING,
|
||||
FILE_ATTRIBUTE_NORMAL,
|
||||
NULL);
|
||||
|
||||
if (file_handle == INVALID_HANDLE_VALUE) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
LARGE_INTEGER size;
|
||||
if (!GetFileSizeEx(file_handle, &size)) {
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
file_size = static_cast<size_t>(size.QuadPart);
|
||||
|
||||
HANDLE mapping_handle = CreateFileMapping(file_handle, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
|
||||
if (mapping_handle == NULL) {
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
mapped_data = MapViewOfFile(mapping_handle, FILE_MAP_READ, 0, 0, file_size);
|
||||
|
||||
if (mapped_data == NULL) {
|
||||
CloseHandle(mapping_handle);
|
||||
CloseHandle(file_handle);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_unique<MmapWrapperImpl>(mapped_data, file_size, file_handle, mapping_handle);
|
||||
}
|
||||
|
||||
#else // Unix
|
||||
#include <dirent.h>
|
||||
#include <fcntl.h>
|
||||
#include <sys/mman.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
bool file_exists(const std::string& filename) {
|
||||
struct stat buffer;
|
||||
@ -109,8 +171,64 @@ bool is_directory(const std::string& path) {
|
||||
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode));
|
||||
}
|
||||
|
||||
class MmapWrapperImpl : public MmapWrapper {
|
||||
public:
|
||||
MmapWrapperImpl(void* data, size_t size)
|
||||
: MmapWrapper(data, size) {}
|
||||
|
||||
~MmapWrapperImpl() override {
|
||||
munmap(data_, size_);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<MmapWrapper> MmapWrapper::create(const std::string& filename) {
|
||||
int file_descriptor = open(filename.c_str(), O_RDONLY);
|
||||
if (file_descriptor == -1) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
int mmap_flags = MAP_PRIVATE;
|
||||
|
||||
#ifdef __linux__
|
||||
// performance flags used by llama.cpp
|
||||
// posix_fadvise(file_descriptor, 0, 0, POSIX_FADV_SEQUENTIAL);
|
||||
// mmap_flags |= MAP_POPULATE;
|
||||
#endif
|
||||
|
||||
struct stat sb;
|
||||
if (fstat(file_descriptor, &sb) == -1) {
|
||||
close(file_descriptor);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
size_t file_size = sb.st_size;
|
||||
|
||||
void* mapped_data = mmap(NULL, file_size, PROT_READ, mmap_flags, file_descriptor, 0);
|
||||
|
||||
close(file_descriptor);
|
||||
|
||||
if (mapped_data == MAP_FAILED) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#ifdef __linux__
|
||||
// performance flags used by llama.cpp
|
||||
// posix_madvise(mapped_data, file_size, POSIX_MADV_WILLNEED);
|
||||
#endif
|
||||
|
||||
return std::make_unique<MmapWrapperImpl>(mapped_data, file_size);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
bool MmapWrapper::copy_data(void* buf, size_t n, size_t offset) const {
|
||||
if (offset >= size_ || n > (size_ - offset)) {
|
||||
return false;
|
||||
}
|
||||
std::memcpy(buf, data() + offset, n);
|
||||
return true;
|
||||
}
|
||||
|
||||
// get_num_physical_cores is copy from
|
||||
// https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
|
||||
// LICENSE: https://github.com/ggerganov/llama.cpp/blob/master/LICENSE
|
||||
@ -370,7 +488,7 @@ sd_image_f32_t sd_image_t_to_sd_image_f32_t(sd_image_t image) {
|
||||
// Allocate memory for float data
|
||||
converted_image.data = (float*)malloc(image.width * image.height * image.channel * sizeof(float));
|
||||
|
||||
for (int i = 0; i < image.width * image.height * image.channel; i++) {
|
||||
for (uint32_t i = 0; i < image.width * image.height * image.channel; i++) {
|
||||
// Convert uint8_t to float
|
||||
converted_image.data[i] = (float)image.data[i];
|
||||
}
|
||||
@ -402,7 +520,7 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
uint32_t x2 = std::min(x1 + 1, image.width - 1);
|
||||
uint32_t y2 = std::min(y1 + 1, image.height - 1);
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
|
||||
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
|
||||
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
|
||||
@ -422,9 +540,9 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
}
|
||||
|
||||
void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3]) {
|
||||
for (int y = 0; y < image.height; y++) {
|
||||
for (int x = 0; x < image.width; x++) {
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t y = 0; y < image.height; y++) {
|
||||
for (uint32_t x = 0; x < image.width; x++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
int index = (y * image.width + x) * image.channel + k;
|
||||
image.data[index] = (image.data[index] - means[k]) / stds[k];
|
||||
}
|
||||
@ -433,8 +551,8 @@ void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3
|
||||
}
|
||||
|
||||
// Constants for means and std
|
||||
float means[3] = {0.48145466, 0.4578275, 0.40821073};
|
||||
float stds[3] = {0.26862954, 0.26130258, 0.27577711};
|
||||
float means[3] = {0.48145466f, 0.4578275f, 0.40821073f};
|
||||
float stds[3] = {0.26862954f, 0.26130258f, 0.27577711f};
|
||||
|
||||
// Function to clip and preprocess sd_image_f32_t
|
||||
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int target_height) {
|
||||
@ -458,7 +576,7 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
uint32_t x2 = std::min(x1 + 1, image.width - 1);
|
||||
uint32_t y2 = std::min(y1 + 1, image.height - 1);
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
|
||||
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
|
||||
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
|
||||
@ -484,11 +602,11 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
result.channel = image.channel;
|
||||
result.data = (float*)malloc(target_height * target_width * image.channel * sizeof(float));
|
||||
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (int i = 0; i < result.height; i++) {
|
||||
for (int j = 0; j < result.width; j++) {
|
||||
int src_y = std::min(i + h_offset, resized_height - 1);
|
||||
int src_x = std::min(j + w_offset, resized_width - 1);
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
for (uint32_t i = 0; i < result.height; i++) {
|
||||
for (uint32_t j = 0; j < result.width; j++) {
|
||||
int src_y = std::min(static_cast<int>(i + h_offset), resized_height - 1);
|
||||
int src_x = std::min(static_cast<int>(j + w_offset), resized_width - 1);
|
||||
*(result.data + i * result.width * image.channel + j * image.channel + k) =
|
||||
fmin(fmax(*(resized_data + src_y * resized_width * image.channel + src_x * image.channel + k), 0.0f), 255.0f) / 255.0f;
|
||||
}
|
||||
@ -499,9 +617,9 @@ sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int targe
|
||||
free(resized_data);
|
||||
|
||||
// Normalize
|
||||
for (int k = 0; k < image.channel; k++) {
|
||||
for (int i = 0; i < result.height; i++) {
|
||||
for (int j = 0; j < result.width; j++) {
|
||||
for (uint32_t k = 0; k < image.channel; k++) {
|
||||
for (uint32_t i = 0; i < result.height; i++) {
|
||||
for (uint32_t j = 0; j < result.width; j++) {
|
||||
// *(result.data + i * size * image.channel + j * image.channel + k) = 0.5f;
|
||||
int offset = i * result.width * image.channel + j * image.channel + k;
|
||||
float value = *(result.data + offset);
|
||||
|
||||
23
util.h
@ -2,6 +2,7 @@
|
||||
#define __UTIL_H__
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
@ -43,6 +44,28 @@ sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int
|
||||
|
||||
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int target_width, int target_height);
|
||||
|
||||
class MmapWrapper {
|
||||
public:
|
||||
static std::unique_ptr<MmapWrapper> create(const std::string& filename);
|
||||
|
||||
virtual ~MmapWrapper() = default;
|
||||
|
||||
MmapWrapper(const MmapWrapper&) = delete;
|
||||
MmapWrapper& operator=(const MmapWrapper&) = delete;
|
||||
MmapWrapper(MmapWrapper&&) = delete;
|
||||
MmapWrapper& operator=(MmapWrapper&&) = delete;
|
||||
|
||||
const uint8_t* data() const { return static_cast<uint8_t*>(data_); }
|
||||
size_t size() const { return size_; }
|
||||
bool copy_data(void* buf, size_t n, size_t offset) const;
|
||||
|
||||
protected:
|
||||
MmapWrapper(void* data, size_t size)
|
||||
: data_(data), size_(size) {}
|
||||
void* data_ = nullptr;
|
||||
size_t size_ = 0;
|
||||
};
|
||||
|
||||
std::string path_join(const std::string& p1, const std::string& p2);
|
||||
std::vector<std::string> split_string(const std::string& str, char delimiter);
|
||||
void pretty_progress(int step, int steps, float time);
|
||||
|
||||
47
vae.hpp
@ -127,8 +127,6 @@ public:
|
||||
q = q_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
k = k_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
v = v_proj->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [N, in_channels, h * w]
|
||||
} else {
|
||||
q = q_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
q = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, q, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
@ -138,11 +136,12 @@ public:
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, k, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
k = ggml_reshape_3d(ctx->ggml_ctx, k, c, h * w, n); // [N, h * w, in_channels]
|
||||
|
||||
v = v_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [N, in_channels, h * w]
|
||||
v = v_proj->forward(ctx, h_); // [N, in_channels, h, w]
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, v, 1, 2, 0, 3)); // [N, h, w, in_channels]
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, c, h * w, n); // [N, h * w, in_channels]
|
||||
}
|
||||
|
||||
h_ = ggml_ext_attention(ctx->ggml_ctx, q, k, v, false); // [N, h * w, in_channels]
|
||||
h_ = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled);
|
||||
|
||||
if (use_linear) {
|
||||
h_ = proj_out->forward(ctx, h_); // [N, h * w, in_channels]
|
||||
@ -166,18 +165,18 @@ public:
|
||||
AE3DConv(int64_t in_channels,
|
||||
int64_t out_channels,
|
||||
std::pair<int, int> kernel_size,
|
||||
int64_t video_kernel_size = 3,
|
||||
int video_kernel_size = 3,
|
||||
std::pair<int, int> stride = {1, 1},
|
||||
std::pair<int, int> padding = {0, 0},
|
||||
std::pair<int, int> dilation = {1, 1},
|
||||
bool bias = true)
|
||||
: Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias) {
|
||||
int64_t kernel_padding = video_kernel_size / 2;
|
||||
blocks["time_mix_conv"] = std::shared_ptr<GGMLBlock>(new Conv3dnx1x1(out_channels,
|
||||
out_channels,
|
||||
video_kernel_size,
|
||||
1,
|
||||
kernel_padding));
|
||||
int kernel_padding = video_kernel_size / 2;
|
||||
blocks["time_mix_conv"] = std::shared_ptr<GGMLBlock>(new Conv3d(out_channels,
|
||||
out_channels,
|
||||
{video_kernel_size, 1, 1},
|
||||
{1, 1, 1},
|
||||
{kernel_padding, 0, 0}));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
@ -186,7 +185,7 @@ public:
|
||||
// skip_video always False
|
||||
// x: [N, IC, IH, IW]
|
||||
// result: [N, OC, OH, OW]
|
||||
auto time_mix_conv = std::dynamic_pointer_cast<Conv3dnx1x1>(blocks["time_mix_conv"]);
|
||||
auto time_mix_conv = std::dynamic_pointer_cast<Conv3d>(blocks["time_mix_conv"]);
|
||||
|
||||
x = Conv2d::forward(ctx, x);
|
||||
// timesteps = x.shape[0]
|
||||
@ -254,8 +253,8 @@ public:
|
||||
|
||||
float alpha = get_alpha();
|
||||
x = ggml_add(ctx->ggml_ctx,
|
||||
ggml_scale(ctx->ggml_ctx, x, alpha),
|
||||
ggml_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
||||
ggml_ext_scale(ctx->ggml_ctx, x, alpha),
|
||||
ggml_ext_scale(ctx->ggml_ctx, x_mix, 1.0f - alpha));
|
||||
|
||||
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
|
||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
|
||||
@ -409,8 +408,8 @@ public:
|
||||
z_channels(z_channels),
|
||||
video_decoder(video_decoder),
|
||||
video_kernel_size(video_kernel_size) {
|
||||
size_t num_resolutions = ch_mult.size();
|
||||
int block_in = ch * ch_mult[num_resolutions - 1];
|
||||
int num_resolutions = static_cast<int>(ch_mult.size());
|
||||
int block_in = ch * ch_mult[num_resolutions - 1];
|
||||
|
||||
blocks["conv_in"] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, block_in, {3, 3}, {1, 1}, {1, 1}));
|
||||
|
||||
@ -461,7 +460,7 @@ public:
|
||||
h = mid_block_2->forward(ctx, h); // [N, block_in, h, w]
|
||||
|
||||
// upsampling
|
||||
size_t num_resolutions = ch_mult.size();
|
||||
int num_resolutions = static_cast<int>(ch_mult.size());
|
||||
for (int i = num_resolutions - 1; i >= 0; i--) {
|
||||
for (int j = 0; j < num_res_blocks + 1; j++) {
|
||||
std::string name = "up." + std::to_string(i) + ".block." + std::to_string(j);
|
||||
@ -745,12 +744,12 @@ struct AutoEncoderKL : public VAE {
|
||||
print_ggml_tensor(x);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("encode test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("encode test done in %lldms", t1 - t0);
|
||||
}
|
||||
|
||||
if (false) {
|
||||
@ -763,12 +762,12 @@ struct AutoEncoderKL : public VAE {
|
||||
print_ggml_tensor(z);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, z, true, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("decode test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("decode test done in %lldms", t1 - t0);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
103
wan.hpp
@ -75,7 +75,7 @@ namespace WAN {
|
||||
lp2 -= (int)cache_x->ne[2];
|
||||
}
|
||||
|
||||
x = ggml_pad_ext(ctx->ggml_ctx, x, lp0, rp0, lp1, rp1, lp2, rp2, 0, 0);
|
||||
x = ggml_ext_pad_ext(ctx->ggml_ctx, x, lp0, rp0, lp1, rp1, lp2, rp2, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
return ggml_ext_conv_3d(ctx->ggml_ctx, x, w, b, in_channels,
|
||||
std::get<2>(stride), std::get<1>(stride), std::get<0>(stride),
|
||||
0, 0, 0,
|
||||
@ -108,7 +108,7 @@ namespace WAN {
|
||||
struct ggml_tensor* w = params["gamma"];
|
||||
w = ggml_reshape_1d(ctx->ggml_ctx, w, ggml_nelements(w));
|
||||
auto h = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, x, 3, 0, 1, 2)); // [ID, IH, IW, N*IC]
|
||||
h = ggml_rms_norm(ctx->ggml_ctx, h, 1e-12);
|
||||
h = ggml_rms_norm(ctx->ggml_ctx, h, 1e-12f);
|
||||
h = ggml_mul(ctx->ggml_ctx, h, w);
|
||||
h = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, h, 1, 2, 3, 0));
|
||||
|
||||
@ -206,9 +206,9 @@ namespace WAN {
|
||||
} else if (mode == "upsample3d") {
|
||||
x = ggml_upscale(ctx->ggml_ctx, x, 2, GGML_SCALE_MODE_NEAREST);
|
||||
} else if (mode == "downsample2d") {
|
||||
x = ggml_pad(ctx->ggml_ctx, x, 1, 1, 0, 0);
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, 1, 1, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
} else if (mode == "downsample3d") {
|
||||
x = ggml_pad(ctx->ggml_ctx, x, 1, 1, 0, 0);
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, 1, 1, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
}
|
||||
x = resample_1->forward(ctx, x);
|
||||
x = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, x, 0, 1, 3, 2)); // (c, t, h, w)
|
||||
@ -243,13 +243,13 @@ namespace WAN {
|
||||
protected:
|
||||
int64_t in_channels;
|
||||
int64_t out_channels;
|
||||
int64_t factor_t;
|
||||
int64_t factor_s;
|
||||
int64_t factor;
|
||||
int factor_t;
|
||||
int factor_s;
|
||||
int factor;
|
||||
int64_t group_size;
|
||||
|
||||
public:
|
||||
AvgDown3D(int64_t in_channels, int64_t out_channels, int64_t factor_t, int64_t factor_s = 1)
|
||||
AvgDown3D(int64_t in_channels, int64_t out_channels, int factor_t, int factor_s = 1)
|
||||
: in_channels(in_channels), out_channels(out_channels), factor_t(factor_t), factor_s(factor_s) {
|
||||
factor = factor_t * factor_s * factor_s;
|
||||
GGML_ASSERT(in_channels * factor % out_channels == 0);
|
||||
@ -266,7 +266,7 @@ namespace WAN {
|
||||
int64_t H = x->ne[1];
|
||||
int64_t W = x->ne[0];
|
||||
|
||||
int64_t pad_t = (factor_t - T % factor_t) % factor_t;
|
||||
int pad_t = (factor_t - T % factor_t) % factor_t;
|
||||
|
||||
x = ggml_pad_ext(ctx->ggml_ctx, x, 0, 0, 0, 0, pad_t, 0, 0, 0);
|
||||
T = x->ne[2];
|
||||
@ -572,9 +572,8 @@ namespace WAN {
|
||||
auto v = qkv_vec[2];
|
||||
v = ggml_reshape_3d(ctx->ggml_ctx, v, h * w, c, n); // [t, c, h * w]
|
||||
|
||||
x = ggml_ext_attention(ctx->ggml_ctx, q, k, v, false); // [t, h * w, c]
|
||||
// v = ggml_cont(ctx, ggml_ext_torch_permute(ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
||||
// x = ggml_ext_attention_ext(ctx, q, k, v, q->ne[2], nullptr, false, false, true);
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 1, 0, 2, 3)); // [t, h * w, c]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, 1, nullptr, true, ctx->flash_attn_enabled); // [t, h * w, c]
|
||||
|
||||
x = ggml_ext_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 1, 0, 2, 3)); // [t, c, h * w]
|
||||
x = ggml_reshape_4d(ctx->ggml_ctx, x, w, h, c, n); // [t, c, h, w]
|
||||
@ -1071,7 +1070,7 @@ namespace WAN {
|
||||
int64_t iter_ = z->ne[2];
|
||||
auto x = conv2->forward(ctx, z);
|
||||
struct ggml_tensor* out;
|
||||
for (int64_t i = 0; i < iter_; i++) {
|
||||
for (int i = 0; i < iter_; i++) {
|
||||
_conv_idx = 0;
|
||||
if (i == 0) {
|
||||
auto in = ggml_ext_slice(ctx->ggml_ctx, x, 2, i, i + 1); // [b*c, 1, h, w]
|
||||
@ -1091,7 +1090,7 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* decode_partial(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* z,
|
||||
int64_t i,
|
||||
int i,
|
||||
int64_t b = 1) {
|
||||
// z: [b*c, t, h, w]
|
||||
GGML_ASSERT(b == 1);
|
||||
@ -1146,12 +1145,12 @@ namespace WAN {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int64_t i) {
|
||||
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int i) {
|
||||
struct ggml_cgraph* gf = new_graph_custom(20480);
|
||||
|
||||
ae.clear_cache();
|
||||
|
||||
for (int64_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
for (size_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
auto feat_cache = get_cache_tensor_by_name("feat_idx:" + std::to_string(feat_idx));
|
||||
ae._feat_map[feat_idx] = feat_cache;
|
||||
}
|
||||
@ -1162,7 +1161,7 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* out = decode_graph ? ae.decode_partial(&runner_ctx, z, i) : ae.encode(&runner_ctx, z);
|
||||
|
||||
for (int64_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
for (size_t feat_idx = 0; feat_idx < ae._feat_map.size(); feat_idx++) {
|
||||
ggml_tensor* feat_cache = ae._feat_map[feat_idx];
|
||||
if (feat_cache != nullptr) {
|
||||
cache("feat_idx:" + std::to_string(feat_idx), feat_cache);
|
||||
@ -1188,7 +1187,7 @@ namespace WAN {
|
||||
} else { // chunk 1 result is weird
|
||||
ae.clear_cache();
|
||||
int64_t t = z->ne[2];
|
||||
int64_t i = 0;
|
||||
int i = 0;
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph_partial(z, decode_graph, i);
|
||||
};
|
||||
@ -1394,7 +1393,7 @@ namespace WAN {
|
||||
k = norm_k->forward(ctx, k);
|
||||
auto v = v_proj->forward(ctx, context); // [N, n_context, dim]
|
||||
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
|
||||
x = o_proj->forward(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
@ -1443,11 +1442,8 @@ namespace WAN {
|
||||
int64_t dim = x->ne[0];
|
||||
int64_t context_txt_len = context->ne[1] - context_img_len;
|
||||
|
||||
context = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context, 0, 2, 1, 3)); // [context_img_len + context_txt_len, N, dim]
|
||||
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_img_len, context->nb[1], context->nb[2], 0);
|
||||
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, N, context_txt_len, context->nb[1], context->nb[2], context_img_len * context->nb[2]);
|
||||
context_img = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_img, 0, 2, 1, 3)); // [N, context_img_len, dim]
|
||||
context_txt = ggml_ext_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, context_txt, 0, 2, 1, 3)); // [N, context_txt_len, dim]
|
||||
auto context_img = ggml_view_3d(ctx->ggml_ctx, context, dim, context_img_len, N, context->nb[1], context->nb[2], 0); // [N, context_img_len, dim]
|
||||
auto context_txt = ggml_view_3d(ctx->ggml_ctx, context, dim, context_txt_len, N, context->nb[1], context->nb[2], context_img_len * context->nb[1]); // [N, context_txt_len, dim]
|
||||
|
||||
auto q = q_proj->forward(ctx, x);
|
||||
q = norm_q->forward(ctx, q);
|
||||
@ -1459,8 +1455,8 @@ namespace WAN {
|
||||
k_img = norm_k_img->forward(ctx, k_img);
|
||||
auto v_img = v_img_proj->forward(ctx, context_img); // [N, context_img_len, dim]
|
||||
|
||||
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
auto img_x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k_img, v_img, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
x = ggml_ext_attention_ext(ctx->ggml_ctx, ctx->backend, q, k, v, num_heads, nullptr, false, ctx->flash_attn_enabled); // [N, n_token, dim]
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, img_x);
|
||||
|
||||
@ -1499,7 +1495,7 @@ namespace WAN {
|
||||
|
||||
class WanAttentionBlock : public GGMLBlock {
|
||||
protected:
|
||||
int dim;
|
||||
int64_t dim;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
@ -1577,7 +1573,7 @@ namespace WAN {
|
||||
y = modulate_add(ctx->ggml_ctx, y, es[3]);
|
||||
|
||||
y = ffn_0->forward(ctx, y);
|
||||
y = ggml_gelu_inplace(ctx->ggml_ctx, y);
|
||||
y = ggml_ext_gelu(ctx->ggml_ctx, y, true);
|
||||
y = ffn_2->forward(ctx, y);
|
||||
|
||||
x = ggml_add(ctx->ggml_ctx, x, modulate_mul(ctx->ggml_ctx, y, es[5]));
|
||||
@ -1639,7 +1635,7 @@ namespace WAN {
|
||||
|
||||
class Head : public GGMLBlock {
|
||||
protected:
|
||||
int dim;
|
||||
int64_t dim;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
@ -1685,8 +1681,8 @@ namespace WAN {
|
||||
|
||||
class MLPProj : public GGMLBlock {
|
||||
protected:
|
||||
int in_dim;
|
||||
int flf_pos_embed_token_number;
|
||||
int64_t in_dim;
|
||||
int64_t flf_pos_embed_token_number;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
if (flf_pos_embed_token_number > 0) {
|
||||
@ -1724,7 +1720,7 @@ namespace WAN {
|
||||
|
||||
auto x = proj_0->forward(ctx, image_embeds);
|
||||
x = proj_1->forward(ctx, x);
|
||||
x = ggml_gelu_inplace(ctx->ggml_ctx, x);
|
||||
x = ggml_ext_gelu(ctx->ggml_ctx, x, true);
|
||||
x = proj_3->forward(ctx, x);
|
||||
x = proj_4->forward(ctx, x);
|
||||
|
||||
@ -1739,17 +1735,17 @@ namespace WAN {
|
||||
int64_t in_dim = 16;
|
||||
int64_t dim = 2048;
|
||||
int64_t ffn_dim = 8192;
|
||||
int64_t freq_dim = 256;
|
||||
int freq_dim = 256;
|
||||
int64_t text_dim = 4096;
|
||||
int64_t out_dim = 16;
|
||||
int64_t num_heads = 16;
|
||||
int64_t num_layers = 32;
|
||||
int64_t vace_layers = 0;
|
||||
int num_layers = 32;
|
||||
int vace_layers = 0;
|
||||
int64_t vace_in_dim = 96;
|
||||
std::map<int, int> vace_layers_mapping = {};
|
||||
bool qk_norm = true;
|
||||
bool cross_attn_norm = true;
|
||||
float eps = 1e-6;
|
||||
float eps = 1e-6f;
|
||||
int64_t flf_pos_embed_token_number = 0;
|
||||
int theta = 10000;
|
||||
// wan2.1 1.3B: 1536/12, wan2.1/2.2 14B: 5120/40, wan2.2 5B: 3074/24
|
||||
@ -1826,7 +1822,7 @@ namespace WAN {
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
struct ggml_tensor* pad_to_patch_size(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
@ -1835,8 +1831,7 @@ namespace WAN {
|
||||
int pad_t = (std::get<0>(params.patch_size) - T % std::get<0>(params.patch_size)) % std::get<0>(params.patch_size);
|
||||
int pad_h = (std::get<1>(params.patch_size) - H % std::get<1>(params.patch_size)) % std::get<1>(params.patch_size);
|
||||
int pad_w = (std::get<2>(params.patch_size) - W % std::get<2>(params.patch_size)) % std::get<2>(params.patch_size);
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, pad_t, 0); // [N*C, T + pad_t, H + pad_h, W + pad_w]
|
||||
|
||||
ggml_ext_pad(ctx->ggml_ctx, x, pad_w, pad_h, pad_t, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -1912,7 +1907,7 @@ namespace WAN {
|
||||
e0 = ggml_reshape_4d(ctx->ggml_ctx, e0, e0->ne[0] / 6, 6, e0->ne[1], e0->ne[2]); // [N, 6, dim] or [N, T, 6, dim]
|
||||
|
||||
context = text_embedding_0->forward(ctx, context);
|
||||
context = ggml_gelu(ctx->ggml_ctx, context);
|
||||
context = ggml_ext_gelu(ctx->ggml_ctx, context);
|
||||
context = text_embedding_2->forward(ctx, context); // [N, context_txt_len, dim]
|
||||
|
||||
int64_t context_img_len = 0;
|
||||
@ -1951,7 +1946,7 @@ namespace WAN {
|
||||
auto result = vace_block->forward(ctx, c, x_orig, e0, pe, context, context_img_len);
|
||||
auto c_skip = result.first;
|
||||
c = result.second;
|
||||
c_skip = ggml_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
||||
c_skip = ggml_ext_scale(ctx->ggml_ctx, c_skip, vace_strength);
|
||||
x = ggml_add(ctx->ggml_ctx, x, c_skip);
|
||||
}
|
||||
}
|
||||
@ -1986,14 +1981,14 @@ namespace WAN {
|
||||
int64_t T = x->ne[2];
|
||||
int64_t C = x->ne[3];
|
||||
|
||||
x = pad_to_patch_size(ctx->ggml_ctx, x);
|
||||
x = pad_to_patch_size(ctx, x);
|
||||
|
||||
int64_t t_len = ((T + (std::get<0>(params.patch_size) / 2)) / std::get<0>(params.patch_size));
|
||||
int64_t h_len = ((H + (std::get<1>(params.patch_size) / 2)) / std::get<1>(params.patch_size));
|
||||
int64_t w_len = ((W + (std::get<2>(params.patch_size) / 2)) / std::get<2>(params.patch_size));
|
||||
|
||||
if (time_dim_concat != nullptr) {
|
||||
time_dim_concat = pad_to_patch_size(ctx->ggml_ctx, time_dim_concat);
|
||||
time_dim_concat = pad_to_patch_size(ctx, time_dim_concat);
|
||||
x = ggml_concat(ctx->ggml_ctx, x, time_dim_concat, 2); // [N*C, (T+pad_t) + (T2+pad_t2), H + pad_h, W + pad_w]
|
||||
t_len = ((x->ne[2] + (std::get<0>(params.patch_size) / 2)) / std::get<0>(params.patch_size));
|
||||
}
|
||||
@ -2067,7 +2062,7 @@ namespace WAN {
|
||||
if (version == VERSION_WAN2_2_TI2V) {
|
||||
desc = "Wan2.2-TI2V-5B";
|
||||
wan_params.dim = 3072;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 14336;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.in_dim = 48;
|
||||
@ -2086,7 +2081,7 @@ namespace WAN {
|
||||
wan_params.in_dim = 16;
|
||||
}
|
||||
wan_params.dim = 1536;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 8960;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.num_heads = 12;
|
||||
@ -2115,14 +2110,14 @@ namespace WAN {
|
||||
}
|
||||
}
|
||||
wan_params.dim = 5120;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.eps = 1e-06f;
|
||||
wan_params.ffn_dim = 13824;
|
||||
wan_params.freq_dim = 256;
|
||||
wan_params.num_heads = 40;
|
||||
wan_params.out_dim = 16;
|
||||
wan_params.text_len = 512;
|
||||
} else {
|
||||
GGML_ABORT("invalid num_layers(%ld) of wan", wan_params.num_layers);
|
||||
GGML_ABORT("invalid num_layers(%d) of wan", wan_params.num_layers);
|
||||
}
|
||||
|
||||
LOG_INFO("%s", desc.c_str());
|
||||
@ -2157,16 +2152,16 @@ namespace WAN {
|
||||
time_dim_concat = to_backend(time_dim_concat);
|
||||
vace_context = to_backend(vace_context);
|
||||
|
||||
pe_vec = Rope::gen_wan_pe(x->ne[2],
|
||||
x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_wan_pe(static_cast<int>(x->ne[2]),
|
||||
static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
std::get<0>(wan_params.patch_size),
|
||||
std::get<1>(wan_params.patch_size),
|
||||
std::get<2>(wan_params.patch_size),
|
||||
1,
|
||||
wan_params.theta,
|
||||
wan_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / wan_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / wan_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, wan_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -2244,12 +2239,12 @@ namespace WAN {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, nullptr, nullptr, nullptr, nullptr, 1.f, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("wan test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("wan test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
80
z_image.hpp
@ -54,15 +54,37 @@ namespace ZImage {
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
||||
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1)); // [num_heads + num_kv_heads*2, N, n_token, head_dim]
|
||||
|
||||
auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0); // [num_heads, N, n_token, head_dim]
|
||||
auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads); // [num_kv_heads, N, n_token, head_dim]
|
||||
auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads)); // [num_kv_heads, N, n_token, head_dim]
|
||||
|
||||
q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2)); // [N, n_token, num_heads, head_dim]
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
auto q = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
0); // [N, n_token, num_heads, head_dim]
|
||||
auto k = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_kv_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
num_heads * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||
auto v = ggml_view_4d(ctx->ggml_ctx,
|
||||
qkv,
|
||||
qkv->ne[0],
|
||||
num_kv_heads,
|
||||
qkv->ne[2],
|
||||
qkv->ne[3],
|
||||
qkv->nb[1],
|
||||
qkv->nb[2],
|
||||
qkv->nb[3],
|
||||
(num_heads + num_kv_heads) * qkv->nb[1]); // [N, n_token, num_kv_heads, head_dim]
|
||||
|
||||
if (qk_norm) {
|
||||
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
||||
@ -239,7 +261,7 @@ namespace ZImage {
|
||||
};
|
||||
|
||||
struct ZImageParams {
|
||||
int64_t patch_size = 2;
|
||||
int patch_size = 2;
|
||||
int64_t hidden_size = 3840;
|
||||
int64_t in_channels = 16;
|
||||
int64_t out_channels = 16;
|
||||
@ -249,11 +271,11 @@ namespace ZImage {
|
||||
int64_t num_heads = 30;
|
||||
int64_t num_kv_heads = 30;
|
||||
int64_t multiple_of = 256;
|
||||
float ffn_dim_multiplier = 8.0 / 3.0f;
|
||||
float ffn_dim_multiplier = 8.0f / 3.0f;
|
||||
float norm_eps = 1e-5f;
|
||||
bool qk_norm = true;
|
||||
int64_t cap_feat_dim = 2560;
|
||||
float theta = 256.f;
|
||||
int theta = 256;
|
||||
std::vector<int> axes_dim = {32, 48, 48};
|
||||
int64_t axes_dim_sum = 128;
|
||||
};
|
||||
@ -324,14 +346,14 @@ namespace ZImage {
|
||||
blocks["final_layer"] = std::make_shared<FinalLayer>(z_image_params.hidden_size, z_image_params.patch_size, z_image_params.out_channels);
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
struct ggml_tensor* pad_to_patch_size(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
|
||||
int pad_h = (z_image_params.patch_size - H % z_image_params.patch_size) % z_image_params.patch_size;
|
||||
int pad_w = (z_image_params.patch_size - W % z_image_params.patch_size) % z_image_params.patch_size;
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
||||
x = ggml_ext_pad(ctx->ggml_ctx, x, pad_w, pad_h, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -357,10 +379,10 @@ namespace ZImage {
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* process_img(struct ggml_context* ctx,
|
||||
struct ggml_tensor* process_img(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
x = pad_to_patch_size(ctx, x);
|
||||
x = patchify(ctx, x);
|
||||
x = patchify(ctx->ggml_ctx, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -411,13 +433,13 @@ namespace ZImage {
|
||||
auto txt = cap_embedder_1->forward(ctx, cap_embedder_0->forward(ctx, context)); // [N, n_txt_token, hidden_size]
|
||||
auto img = x_embedder->forward(ctx, x); // [N, n_img_token, hidden_size]
|
||||
|
||||
int64_t n_txt_pad_token = Rope::bound_mod(n_txt_token, SEQ_MULTI_OF);
|
||||
int64_t n_txt_pad_token = Rope::bound_mod(static_cast<int>(n_txt_token), SEQ_MULTI_OF);
|
||||
if (n_txt_pad_token > 0) {
|
||||
auto txt_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, txt_pad_token, txt_pad_token->ne[0], n_txt_pad_token, N, 1);
|
||||
txt = ggml_concat(ctx->ggml_ctx, txt, txt_pad_tokens, 1); // [N, n_txt_token + n_txt_pad_token, hidden_size]
|
||||
}
|
||||
|
||||
int64_t n_img_pad_token = Rope::bound_mod(n_img_token, SEQ_MULTI_OF);
|
||||
int64_t n_img_pad_token = Rope::bound_mod(static_cast<int>(n_img_token), SEQ_MULTI_OF);
|
||||
if (n_img_pad_token > 0) {
|
||||
auto img_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, img_pad_token, img_pad_token->ne[0], n_img_pad_token, N, 1);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, img_pad_tokens, 1); // [N, n_img_token + n_img_pad_token, hidden_size]
|
||||
@ -473,12 +495,12 @@ namespace ZImage {
|
||||
int64_t C = x->ne[2];
|
||||
int64_t N = x->ne[3];
|
||||
|
||||
auto img = process_img(ctx->ggml_ctx, x);
|
||||
auto img = process_img(ctx, x);
|
||||
uint64_t n_img_token = img->ne[1];
|
||||
|
||||
if (ref_latents.size() > 0) {
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
ref = process_img(ctx->ggml_ctx, ref);
|
||||
ref = process_img(ctx, ref);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
|
||||
}
|
||||
}
|
||||
@ -495,7 +517,7 @@ namespace ZImage {
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
||||
|
||||
out = ggml_scale(ctx->ggml_ctx, out, -1.f);
|
||||
out = ggml_ext_scale(ctx->ggml_ctx, out, -1.f);
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -543,17 +565,19 @@ namespace ZImage {
|
||||
ref_latents[i] = to_backend(ref_latents[i]);
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_z_image_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
pe_vec = Rope::gen_z_image_pe(static_cast<int>(x->ne[1]),
|
||||
static_cast<int>(x->ne[0]),
|
||||
z_image_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
static_cast<int>(x->ne[3]),
|
||||
static_cast<int>(context->ne[1]),
|
||||
SEQ_MULTI_OF,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
z_image_params.theta,
|
||||
circular_y_enabled,
|
||||
circular_x_enabled,
|
||||
z_image_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / z_image_params.axes_dim_sum / 2;
|
||||
int pos_len = static_cast<int>(pe_vec.size() / z_image_params.axes_dim_sum / 2);
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, z_image_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
@ -617,12 +641,12 @@ namespace ZImage {
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
int64_t t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("z_image test done in %dms", t1 - t0);
|
||||
LOG_DEBUG("z_image test done in %lldms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||