mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
Compare commits
11 Commits
fce6afcc6a
...
52a97b3ac1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
52a97b3ac1 | ||
|
|
2c9b1e2594 | ||
|
|
288e2d63c0 | ||
|
|
dc46993b55 | ||
|
|
a6a8569ea0 | ||
|
|
9e7befa320 | ||
|
|
c607fc3ed4 | ||
|
|
b54bec3f18 | ||
|
|
5869987fe4 | ||
|
|
48956ffb87 | ||
|
|
ddc4a18b92 |
19
Dockerfile.sycl
Normal file
19
Dockerfile.sycl
Normal file
@ -0,0 +1,19 @@
|
||||
ARG SYCL_VERSION=2025.1.0-0
|
||||
|
||||
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS build
|
||||
|
||||
RUN apt-get update && apt-get install -y cmake
|
||||
|
||||
WORKDIR /sd.cpp
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN mkdir build && cd build && \
|
||||
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
cmake --build . --config Release -j$(nproc)
|
||||
|
||||
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS runtime
|
||||
|
||||
COPY --from=build /sd.cpp/build/bin/sd /sd
|
||||
|
||||
ENTRYPOINT [ "/sd" ]
|
||||
27
README.md
27
README.md
@ -60,14 +60,6 @@ API and command-line option may change frequently.***
|
||||
- Windows
|
||||
- Android (via Termux, [Local Diffusion](https://github.com/rmatif/Local-Diffusion))
|
||||
|
||||
### TODO
|
||||
|
||||
- [ ] More sampling methods
|
||||
- [ ] Make inference faster
|
||||
- The current implementation of ggml_conv_2d is slow and has high memory usage
|
||||
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
|
||||
- [ ] Implement Inpainting support
|
||||
|
||||
## Usage
|
||||
|
||||
For most users, you can download the built executable program from the latest [release](https://github.com/leejet/stable-diffusion.cpp/releases/latest).
|
||||
@ -321,6 +313,9 @@ arguments:
|
||||
-i, --end-img [IMAGE] path to the end image, required by flf2v
|
||||
--control-image [IMAGE] path to image condition, control net
|
||||
-r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times)
|
||||
--control-video [PATH] path to control video frames, It must be a directory path.
|
||||
The video frames inside should be stored as images in lexicographical (character) order
|
||||
For example, if the control video path is `frames`, the directory contain images such as 00.png, 01.png, 鈥?etc.
|
||||
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
|
||||
-o, --output OUTPUT path to write result image to (default: ./output.png)
|
||||
-p, --prompt [PROMPT] the prompt to render
|
||||
@ -334,9 +329,9 @@ arguments:
|
||||
--skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])
|
||||
--skip-layer-start START SLG enabling point: (default: 0.01)
|
||||
--skip-layer-end END SLG disabling point: (default: 0.2)
|
||||
--scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)
|
||||
--scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)
|
||||
--sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}
|
||||
sampling method (default: "euler_a")
|
||||
sampling method (default: "euler" for Flux/SD3/Wan, "euler_a" otherwise)
|
||||
--steps STEPS number of sample steps (default: 20)
|
||||
--high-noise-cfg-scale SCALE (high noise) unconditional guidance scale: (default: 7.0)
|
||||
--high-noise-img-cfg-scale SCALE (high noise) image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)
|
||||
@ -347,7 +342,7 @@ arguments:
|
||||
--high-noise-skip-layers LAYERS (high noise) Layers to skip for SLG steps: (default: [7,8,9])
|
||||
--high-noise-skip-layer-start (high noise) SLG enabling point: (default: 0.01)
|
||||
--high-noise-skip-layer-end END (high noise) SLG disabling point: (default: 0.2)
|
||||
--high-noise-scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)
|
||||
--high-noise-scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)
|
||||
--high-noise-sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}
|
||||
(high noise) sampling method (default: "euler_a")
|
||||
--high-noise-steps STEPS (high noise) number of sample steps (default: -1 = auto)
|
||||
@ -364,6 +359,9 @@ arguments:
|
||||
--clip-skip N ignore last_dot_pos layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
|
||||
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
|
||||
--vae-tiling process vae in tiles to reduce memory usage
|
||||
--vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)
|
||||
--vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)
|
||||
--vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)
|
||||
--vae-on-cpu keep vae in cpu (for low vram)
|
||||
--clip-on-cpu keep clip in cpu (for low vram)
|
||||
--diffusion-fa use flash attention in the diffusion model (for low vram)
|
||||
@ -384,6 +382,7 @@ arguments:
|
||||
--moe-boundary BOUNDARY timestep boundary for Wan2.2 MoE model. (default: 0.875)
|
||||
only enabled if `--high-noise-steps` is set to -1
|
||||
--flow-shift SHIFT shift value for Flow models like SD3.x or WAN (default: auto)
|
||||
--vace-strength wan vace strength
|
||||
-v, --verbose print extra info
|
||||
```
|
||||
|
||||
@ -393,9 +392,9 @@ arguments:
|
||||
./bin/sd -m ../models/sd-v1-4.ckpt -p "a lovely cat"
|
||||
# ./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
|
||||
# ./bin/sd -m ../models/sd_xl_base_1.0.safetensors --vae ../models/sdxl_vae-fp16-fix.safetensors -H 1024 -W 1024 -p "a lovely cat" -v
|
||||
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v
|
||||
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
|
||||
# ./bin/sd -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
|
||||
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
|
||||
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
|
||||
# ./bin/sd -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
|
||||
```
|
||||
|
||||
Using formats of different precisions will yield results of varying quality.
|
||||
|
||||
BIN
assets/wan/Wan2.1_1.3B_vace_r2v.mp4
Normal file
BIN
assets/wan/Wan2.1_1.3B_vace_r2v.mp4
Normal file
Binary file not shown.
BIN
assets/wan/Wan2.1_1.3B_vace_t2v.mp4
Normal file
BIN
assets/wan/Wan2.1_1.3B_vace_t2v.mp4
Normal file
Binary file not shown.
BIN
assets/wan/Wan2.1_1.3B_vace_v2v.mp4
Normal file
BIN
assets/wan/Wan2.1_1.3B_vace_v2v.mp4
Normal file
Binary file not shown.
BIN
assets/wan/Wan2.1_14B_vace_r2v.mp4
Normal file
BIN
assets/wan/Wan2.1_14B_vace_r2v.mp4
Normal file
Binary file not shown.
BIN
assets/wan/Wan2.1_14B_vace_t2v.mp4
Normal file
BIN
assets/wan/Wan2.1_14B_vace_t2v.mp4
Normal file
Binary file not shown.
BIN
assets/wan/Wan2.1_14B_vace_v2v.mp4
Normal file
BIN
assets/wan/Wan2.1_14B_vace_v2v.mp4
Normal file
Binary file not shown.
51
clip.hpp
51
clip.hpp
@ -548,9 +548,15 @@ protected:
|
||||
int64_t embed_dim;
|
||||
int64_t vocab_size;
|
||||
int64_t num_positions;
|
||||
bool force_clip_f32;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") {
|
||||
enum ggml_type token_wtype = GGML_TYPE_F32;
|
||||
enum ggml_type token_wtype = GGML_TYPE_F32;
|
||||
if (!force_clip_f32) {
|
||||
auto tensor_type = tensor_types.find(prefix + "token_embedding.weight");
|
||||
if (tensor_type != tensor_types.end())
|
||||
token_wtype = tensor_type->second;
|
||||
}
|
||||
enum ggml_type position_wtype = GGML_TYPE_F32;
|
||||
|
||||
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, token_wtype, embed_dim, vocab_size);
|
||||
@ -560,10 +566,12 @@ protected:
|
||||
public:
|
||||
CLIPEmbeddings(int64_t embed_dim,
|
||||
int64_t vocab_size = 49408,
|
||||
int64_t num_positions = 77)
|
||||
int64_t num_positions = 77,
|
||||
bool force_clip_f32 = false)
|
||||
: embed_dim(embed_dim),
|
||||
vocab_size(vocab_size),
|
||||
num_positions(num_positions) {
|
||||
num_positions(num_positions),
|
||||
force_clip_f32(force_clip_f32) {
|
||||
}
|
||||
|
||||
struct ggml_tensor* get_token_embed_weight() {
|
||||
@ -678,12 +686,11 @@ public:
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12; // num_hidden_layers
|
||||
int32_t projection_dim = 1280; // only for OPEN_CLIP_VIT_BIGG_14
|
||||
int32_t clip_skip = -1;
|
||||
bool with_final_ln = true;
|
||||
|
||||
CLIPTextModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14,
|
||||
bool with_final_ln = true,
|
||||
int clip_skip_value = -1)
|
||||
bool force_clip_f32 = false)
|
||||
: version(version), with_final_ln(with_final_ln) {
|
||||
if (version == OPEN_CLIP_VIT_H_14) {
|
||||
hidden_size = 1024;
|
||||
@ -696,20 +703,12 @@ public:
|
||||
n_head = 20;
|
||||
n_layer = 32;
|
||||
}
|
||||
set_clip_skip(clip_skip_value);
|
||||
|
||||
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token));
|
||||
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token, force_clip_f32));
|
||||
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size));
|
||||
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size));
|
||||
}
|
||||
|
||||
void set_clip_skip(int skip) {
|
||||
if (skip <= 0) {
|
||||
skip = -1;
|
||||
}
|
||||
clip_skip = skip;
|
||||
}
|
||||
|
||||
struct ggml_tensor* get_token_embed_weight() {
|
||||
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
|
||||
return embeddings->get_token_embed_weight();
|
||||
@ -720,7 +719,8 @@ public:
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* tkn_embeddings,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false) {
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
// input_ids: [N, n_token]
|
||||
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
|
||||
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
|
||||
@ -889,8 +889,8 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
const std::string prefix,
|
||||
CLIPVersion version = OPENAI_CLIP_VIT_L_14,
|
||||
bool with_final_ln = true,
|
||||
int clip_skip_value = -1)
|
||||
: GGMLRunner(backend, offload_params_to_cpu), model(version, with_final_ln, clip_skip_value) {
|
||||
bool force_clip_f32 = false)
|
||||
: GGMLRunner(backend, offload_params_to_cpu), model(version, with_final_ln, force_clip_f32) {
|
||||
model.init(params_ctx, tensor_types, prefix);
|
||||
}
|
||||
|
||||
@ -898,10 +898,6 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
return "clip";
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
model.set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
model.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
@ -911,7 +907,8 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* embeddings,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false) {
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
size_t N = input_ids->ne[1];
|
||||
size_t n_token = input_ids->ne[0];
|
||||
if (input_ids->ne[0] > model.n_token) {
|
||||
@ -919,14 +916,15 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
input_ids = ggml_reshape_2d(ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
|
||||
}
|
||||
|
||||
return model.forward(ctx, backend, input_ids, embeddings, max_token_idx, return_pooled);
|
||||
return model.forward(ctx, backend, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
|
||||
int num_custom_embeddings = 0,
|
||||
void* custom_embeddings_data = NULL,
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false) {
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
|
||||
input_ids = to_backend(input_ids);
|
||||
@ -945,7 +943,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
|
||||
}
|
||||
|
||||
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, embeddings, max_token_idx, return_pooled);
|
||||
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
|
||||
|
||||
ggml_build_forward_expand(gf, hidden_states);
|
||||
|
||||
@ -958,10 +956,11 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
void* custom_embeddings_data,
|
||||
size_t max_token_idx,
|
||||
bool return_pooled,
|
||||
int clip_skip,
|
||||
ggml_tensor** output,
|
||||
ggml_context* output_ctx = NULL) {
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled);
|
||||
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled, clip_skip);
|
||||
};
|
||||
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
|
||||
}
|
||||
|
||||
@ -61,30 +61,16 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
const String2GGMLType& tensor_types,
|
||||
const std::string& embd_dir,
|
||||
SDVersion version = VERSION_SD1,
|
||||
PMVersion pv = PM_VERSION_1,
|
||||
int clip_skip = -1)
|
||||
PMVersion pv = PM_VERSION_1)
|
||||
: version(version), pm_version(pv), tokenizer(sd_version_is_sd2(version) ? 0 : 49407), embd_dir(embd_dir) {
|
||||
bool force_clip_f32 = embd_dir.size() > 0;
|
||||
if (sd_version_is_sd1(version)) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14);
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, true, force_clip_f32);
|
||||
} else if (sd_version_is_sd2(version)) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14);
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14, true, force_clip_f32);
|
||||
} else if (sd_version_is_sdxl(version)) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
|
||||
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
|
||||
}
|
||||
set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 1;
|
||||
if (sd_version_is_sd2(version) || sd_version_is_sdxl(version)) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
}
|
||||
text_model->set_clip_skip(clip_skip);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
text_model2->set_clip_skip(clip_skip);
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, false, force_clip_f32);
|
||||
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false, force_clip_f32);
|
||||
}
|
||||
}
|
||||
|
||||
@ -129,7 +115,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
return true;
|
||||
}
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = 10 * 1024 * 1024; // max for custom embeddings 10 MB
|
||||
params.mem_size = 100 * 1024 * 1024; // max for custom embeddings 100 MB
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
struct ggml_context* embd_ctx = ggml_init(params);
|
||||
@ -412,7 +398,6 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
int height,
|
||||
int adm_in_channels = -1,
|
||||
bool zero_out_masked = false) {
|
||||
set_clip_skip(clip_skip);
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = NULL; // [N, n_token, hidden_size]
|
||||
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, hidden_size] or [n_token, hidden_size + hidden_size2]
|
||||
@ -421,6 +406,10 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
struct ggml_tensor* pooled = NULL;
|
||||
std::vector<float> hidden_states_vec;
|
||||
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = (sd_version_is_sd2(version) || sd_version_is_sdxl(version)) ? 2 : 1;
|
||||
}
|
||||
|
||||
size_t chunk_len = 77;
|
||||
size_t chunk_count = tokens.size() / chunk_len;
|
||||
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
|
||||
@ -455,6 +444,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
token_embed_custom.data(),
|
||||
max_token_idx,
|
||||
false,
|
||||
clip_skip,
|
||||
&chunk_hidden_states1,
|
||||
work_ctx);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
@ -464,6 +454,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
token_embed_custom.data(),
|
||||
max_token_idx,
|
||||
false,
|
||||
clip_skip,
|
||||
&chunk_hidden_states2, work_ctx);
|
||||
// concat
|
||||
chunk_hidden_states = ggml_tensor_concat(work_ctx, chunk_hidden_states1, chunk_hidden_states2, 0);
|
||||
@ -475,6 +466,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
token_embed_custom.data(),
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled,
|
||||
work_ctx);
|
||||
}
|
||||
@ -669,21 +661,11 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
|
||||
SD3CLIPEmbedder(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {},
|
||||
int clip_skip = -1)
|
||||
const String2GGMLType& tensor_types = {})
|
||||
: clip_g_tokenizer(0) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
|
||||
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
clip_l->set_clip_skip(clip_skip);
|
||||
clip_g->set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
@ -780,7 +762,6 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> token_and_weights,
|
||||
int clip_skip,
|
||||
bool zero_out_masked = false) {
|
||||
set_clip_skip(clip_skip);
|
||||
auto& clip_l_tokens = token_and_weights[0].first;
|
||||
auto& clip_l_weights = token_and_weights[0].second;
|
||||
auto& clip_g_tokens = token_and_weights[1].first;
|
||||
@ -788,6 +769,10 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
auto& t5_tokens = token_and_weights[2].first;
|
||||
auto& t5_weights = token_and_weights[2].second;
|
||||
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = NULL; // [N, n_token*2, 4096]
|
||||
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token*2, 4096]
|
||||
@ -818,6 +803,7 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
NULL,
|
||||
max_token_idx,
|
||||
false,
|
||||
clip_skip,
|
||||
&chunk_hidden_states_l,
|
||||
work_ctx);
|
||||
{
|
||||
@ -845,6 +831,7 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
NULL,
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled_l,
|
||||
work_ctx);
|
||||
}
|
||||
@ -866,6 +853,7 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
NULL,
|
||||
max_token_idx,
|
||||
false,
|
||||
clip_skip,
|
||||
&chunk_hidden_states_g,
|
||||
work_ctx);
|
||||
|
||||
@ -894,6 +882,7 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
NULL,
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled_g,
|
||||
work_ctx);
|
||||
}
|
||||
@ -1017,18 +1006,9 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
|
||||
FluxCLIPEmbedder(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {},
|
||||
int clip_skip = -1) {
|
||||
const String2GGMLType& tensor_types = {}) {
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
clip_l->set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
@ -1109,12 +1089,15 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> token_and_weights,
|
||||
int clip_skip,
|
||||
bool zero_out_masked = false) {
|
||||
set_clip_skip(clip_skip);
|
||||
auto& clip_l_tokens = token_and_weights[0].first;
|
||||
auto& clip_l_weights = token_and_weights[0].second;
|
||||
auto& t5_tokens = token_and_weights[1].first;
|
||||
auto& t5_weights = token_and_weights[1].second;
|
||||
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096]
|
||||
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096]
|
||||
@ -1143,6 +1126,7 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
NULL,
|
||||
max_token_idx,
|
||||
true,
|
||||
clip_skip,
|
||||
&pooled,
|
||||
work_ctx);
|
||||
}
|
||||
@ -1241,7 +1225,6 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
T5CLIPEmbedder(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {},
|
||||
int clip_skip = -1,
|
||||
bool use_mask = false,
|
||||
int mask_pad = 1,
|
||||
bool is_umt5 = false)
|
||||
@ -1249,9 +1232,6 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
|
||||
@ -6,23 +6,29 @@
|
||||
#include "unet.hpp"
|
||||
#include "wan.hpp"
|
||||
|
||||
struct DiffusionParams {
|
||||
struct ggml_tensor* x = NULL;
|
||||
struct ggml_tensor* timesteps = NULL;
|
||||
struct ggml_tensor* context = NULL;
|
||||
struct ggml_tensor* c_concat = NULL;
|
||||
struct ggml_tensor* y = NULL;
|
||||
struct ggml_tensor* guidance = NULL;
|
||||
std::vector<ggml_tensor*> ref_latents = {};
|
||||
bool increase_ref_index = false;
|
||||
int num_video_frames = -1;
|
||||
std::vector<struct ggml_tensor*> controls = {};
|
||||
float control_strength = 0.f;
|
||||
struct ggml_tensor* vace_context = NULL;
|
||||
float vace_strength = 1.f;
|
||||
std::vector<int> skip_layers = {};
|
||||
};
|
||||
|
||||
struct DiffusionModel {
|
||||
virtual std::string get_desc() = 0;
|
||||
virtual void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL,
|
||||
std::vector<int> skip_layers = std::vector<int>()) = 0;
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) = 0;
|
||||
virtual void alloc_params_buffer() = 0;
|
||||
virtual void free_params_buffer() = 0;
|
||||
virtual void free_compute_buffer() = 0;
|
||||
@ -71,22 +77,18 @@ struct UNetModel : public DiffusionModel {
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL,
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
(void)skip_layers; // SLG doesn't work with UNet models
|
||||
return unet.compute(n_threads, x, timesteps, context, c_concat, y, num_video_frames, controls, control_strength, output, output_ctx);
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
return unet.compute(n_threads,
|
||||
diffusion_params.x,
|
||||
diffusion_params.timesteps,
|
||||
diffusion_params.context,
|
||||
diffusion_params.c_concat,
|
||||
diffusion_params.y,
|
||||
diffusion_params.num_video_frames,
|
||||
diffusion_params.controls,
|
||||
diffusion_params.control_strength, output, output_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
@ -129,21 +131,17 @@ struct MMDiTModel : public DiffusionModel {
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL,
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
return mmdit.compute(n_threads, x, timesteps, context, y, output, output_ctx, skip_layers);
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
return mmdit.compute(n_threads,
|
||||
diffusion_params.x,
|
||||
diffusion_params.timesteps,
|
||||
diffusion_params.context,
|
||||
diffusion_params.y,
|
||||
output,
|
||||
output_ctx,
|
||||
diffusion_params.skip_layers);
|
||||
}
|
||||
};
|
||||
|
||||
@ -188,21 +186,21 @@ struct FluxModel : public DiffusionModel {
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL,
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
return flux.compute(n_threads, x, timesteps, context, c_concat, y, guidance, ref_latents, increase_ref_index, output, output_ctx, skip_layers);
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
return flux.compute(n_threads,
|
||||
diffusion_params.x,
|
||||
diffusion_params.timesteps,
|
||||
diffusion_params.context,
|
||||
diffusion_params.c_concat,
|
||||
diffusion_params.y,
|
||||
diffusion_params.guidance,
|
||||
diffusion_params.ref_latents,
|
||||
diffusion_params.increase_ref_index,
|
||||
output,
|
||||
output_ctx,
|
||||
diffusion_params.skip_layers);
|
||||
}
|
||||
};
|
||||
|
||||
@ -248,21 +246,20 @@ struct WanModel : public DiffusionModel {
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL,
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
return wan.compute(n_threads, x, timesteps, context, y, c_concat, NULL, output, output_ctx);
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
return wan.compute(n_threads,
|
||||
diffusion_params.x,
|
||||
diffusion_params.timesteps,
|
||||
diffusion_params.context,
|
||||
diffusion_params.y,
|
||||
diffusion_params.c_concat,
|
||||
NULL,
|
||||
diffusion_params.vace_context,
|
||||
diffusion_params.vace_strength,
|
||||
output,
|
||||
output_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ You can download the preconverted gguf weights from [silveroxides/Chroma-GGUF](h
|
||||
For example:
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask --clip-on-cpu
|
||||
```
|
||||
|
||||

|
||||
|
||||
@ -28,7 +28,7 @@ Using fp16 will lead to overflow, but ggml's support for bf16 is not yet fully d
|
||||
For example:
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
|
||||
```
|
||||
|
||||
Using formats of different precisions will yield results of varying quality.
|
||||
@ -44,7 +44,7 @@ Using formats of different precisions will yield results of varying quality.
|
||||
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4 --clip-on-cpu
|
||||
```
|
||||
|
||||
| q8_0 |
|
||||
@ -60,7 +60,7 @@ Since many flux LoRA training libraries have used various LoRA naming formats, i
|
||||
- LoRA model from https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main (using comfy converted version!!!)
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models --clip-on-cpu
|
||||
```
|
||||
|
||||

|
||||
|
||||
@ -27,7 +27,7 @@ You can download the preconverted gguf weights from [FLUX.1-Kontext-dev-GGUF](ht
|
||||
For example:
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -r .\flux1-dev-q8_0.png --diffusion-model ..\models\flux1-kontext-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "change 'flux.cpp' to 'kontext.cpp'" --cfg-scale 1.0 --sampling-method euler -v
|
||||
.\bin\Release\sd.exe -r .\flux1-dev-q8_0.png --diffusion-model ..\models\flux1-kontext-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "change 'flux.cpp' to 'kontext.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
For example:
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
|
||||
.\bin\Release\sd.exe -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
|
||||
```
|
||||
|
||||

|
||||
65
docs/wan.md
65
docs/wan.md
@ -18,6 +18,12 @@
|
||||
- Wan2.1 FLF2V 14B 720P
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/city96/Wan2.1-FLF2V-14B-720P-gguf/tree/main
|
||||
- Wan2.1 VACE 1.3B
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/calcuis/wan-1.3b-gguf/tree/main
|
||||
- Wan2.1 VACE 14B
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models
|
||||
- gguf: https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/tree/main
|
||||
- Wan2.2
|
||||
- Wan2.2 TI2V 5B
|
||||
- safetensors: https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/tree/main/split_files/diffusion_models
|
||||
@ -137,3 +143,62 @@
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.2_14B_flf2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
### Wan2.1 VACE 1.3B
|
||||
|
||||
#### T2V
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa --video-frames 1 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_1.3B_vace_t2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
|
||||
#### R2V
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa -i ..\assets\cat_with_sd_cpp_42.png --video-frames 33 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_1.3B_vace_r2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
|
||||
#### V2V
|
||||
|
||||
```
|
||||
mkdir post+depth
|
||||
ffmpeg -i ..\..\ComfyUI\input\post+depth.mp4 -qscale:v 1 -vf fps=8 post+depth\frame_%04d.jpg
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\wan2.1-vace-1.3b-q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "The girl is dancing in a sea of flowers, slowly moving her hands. There is a close - up shot of her upper body. The character is surrounded by other transparent glass flowers in the style of Nicoletta Ceccoli, creating a beautiful, surreal, and emotionally expressive movie scene with a white. transparent feel and a dreamyl atmosphere." --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 480 -H 832 --diffusion-fa -i ..\..\ComfyUI\input\dance_girl.jpg --control-video ./post+depth --video-frames 33 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_1.3B_vace_v2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
### Wan2.1 VACE 14B
|
||||
|
||||
#### T2V
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa --video-frames 33 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_14B_vace_t2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
|
||||
#### R2V
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "a lovely cat" --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 832 -H 480 --diffusion-fa -i ..\assets\cat_with_sd_cpp_42.png --video-frames 33 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_14B_vace_r2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
|
||||
|
||||
#### V2V
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe -M vid_gen --diffusion-model ..\..\ComfyUI\models\diffusion_models\Wan2.1_14B_VACE-Q8_0.gguf --vae ..\..\ComfyUI\models\vae\wan_2.1_vae.safetensors --t5xxl ..\..\ComfyUI\models\text_encoders\umt5-xxl-encoder-Q8_0.gguf -p "The girl is dancing in a sea of flowers, slowly moving her hands. There is a close - up shot of her upper body. The character is surrounded by other transparent glass flowers in the style of Nicoletta Ceccoli, creating a beautiful, surreal, and emotionally expressive movie scene with a white. transparent feel and a dreamyl atmosphere." --cfg-scale 6.0 --sampling-method euler -v -n "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部, 畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" -W 480 -H 832 --diffusion-fa -i ..\..\ComfyUI\input\dance_girl.jpg --control-video ./post+depth --video-frames 33 --offload-to-cpu
|
||||
```
|
||||
|
||||
<video src=../assets/wan/Wan2.1_14B_vace_v2v.mp4 controls="controls" muted="muted" type="video/mp4"></video>
|
||||
|
||||
@ -35,6 +35,8 @@
|
||||
#define SAFE_STR(s) ((s) ? (s) : "")
|
||||
#define BOOL_STR(b) ((b) ? "true" : "false")
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
const char* modes_str[] = {
|
||||
"img_gen",
|
||||
"vid_gen",
|
||||
@ -75,6 +77,7 @@ struct SDParams {
|
||||
std::string mask_image_path;
|
||||
std::string control_image_path;
|
||||
std::vector<std::string> ref_image_paths;
|
||||
std::string control_video_path;
|
||||
bool increase_ref_index = false;
|
||||
|
||||
std::string prompt;
|
||||
@ -91,17 +94,16 @@ struct SDParams {
|
||||
std::vector<int> high_noise_skip_layers = {7, 8, 9};
|
||||
sd_sample_params_t high_noise_sample_params;
|
||||
|
||||
float moe_boundary = 0.875f;
|
||||
|
||||
int video_frames = 1;
|
||||
int fps = 16;
|
||||
float moe_boundary = 0.875f;
|
||||
int video_frames = 1;
|
||||
int fps = 16;
|
||||
float vace_strength = 1.f;
|
||||
|
||||
float strength = 0.75f;
|
||||
float control_strength = 0.9f;
|
||||
rng_type_t rng_type = CUDA_RNG;
|
||||
int64_t seed = 42;
|
||||
bool verbose = false;
|
||||
bool vae_tiling = false;
|
||||
bool offload_params_to_cpu = false;
|
||||
bool control_net_cpu = false;
|
||||
bool normalize_input = false;
|
||||
@ -119,6 +121,8 @@ struct SDParams {
|
||||
int chroma_t5_mask_pad = 1;
|
||||
float flow_shift = INFINITY;
|
||||
|
||||
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
||||
|
||||
SDParams() {
|
||||
sd_sample_params_init(&sample_params);
|
||||
sd_sample_params_init(&high_noise_sample_params);
|
||||
@ -158,6 +162,7 @@ void print_params(SDParams params) {
|
||||
for (auto& path : params.ref_image_paths) {
|
||||
printf(" %s\n", path.c_str());
|
||||
};
|
||||
printf(" control_video_path: %s\n", params.control_video_path.c_str());
|
||||
printf(" increase_ref_index: %s\n", params.increase_ref_index ? "true" : "false");
|
||||
printf(" offload_params_to_cpu: %s\n", params.offload_params_to_cpu ? "true" : "false");
|
||||
printf(" clip_on_cpu: %s\n", params.clip_on_cpu ? "true" : "false");
|
||||
@ -178,14 +183,15 @@ void print_params(SDParams params) {
|
||||
printf(" flow_shift: %.2f\n", params.flow_shift);
|
||||
printf(" strength(img2img): %.2f\n", params.strength);
|
||||
printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
|
||||
printf(" seed: %ld\n", params.seed);
|
||||
printf(" seed: %zd\n", params.seed);
|
||||
printf(" batch_count: %d\n", params.batch_count);
|
||||
printf(" vae_tiling: %s\n", params.vae_tiling ? "true" : "false");
|
||||
printf(" vae_tiling: %s\n", params.vae_tiling_params.enabled ? "true" : "false");
|
||||
printf(" upscale_repeats: %d\n", params.upscale_repeats);
|
||||
printf(" chroma_use_dit_mask: %s\n", params.chroma_use_dit_mask ? "true" : "false");
|
||||
printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false");
|
||||
printf(" chroma_t5_mask_pad: %d\n", params.chroma_t5_mask_pad);
|
||||
printf(" video_frames: %d\n", params.video_frames);
|
||||
printf(" vace_strength: %.2f\n", params.vace_strength);
|
||||
printf(" fps: %d\n", params.fps);
|
||||
free(sample_params_str);
|
||||
free(high_noise_sample_params_str);
|
||||
@ -225,6 +231,9 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" -i, --end-img [IMAGE] path to the end image, required by flf2v\n");
|
||||
printf(" --control-image [IMAGE] path to image condition, control net\n");
|
||||
printf(" -r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times) \n");
|
||||
printf(" --control-video [PATH] path to control video frames, It must be a directory path.\n");
|
||||
printf(" The video frames inside should be stored as images in lexicographical (character) order\n");
|
||||
printf(" For example, if the control video path is `frames`, the directory contain images such as 00.png, 01.png, … etc.\n");
|
||||
printf(" --increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).\n");
|
||||
printf(" -o, --output OUTPUT path to write result image to (default: ./output.png)\n");
|
||||
printf(" -p, --prompt [PROMPT] the prompt to render\n");
|
||||
@ -240,7 +249,7 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --skip-layer-end END SLG disabling point: (default: 0.2)\n");
|
||||
printf(" --scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)\n");
|
||||
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}\n");
|
||||
printf(" sampling method (default: \"euler_a\")\n");
|
||||
printf(" sampling method (default: \"euler\" for Flux/SD3/Wan, \"euler_a\" otherwise)\n");
|
||||
printf(" --steps STEPS number of sample steps (default: 20)\n");
|
||||
printf(" --high-noise-cfg-scale SCALE (high noise) unconditional guidance scale: (default: 7.0)\n");
|
||||
printf(" --high-noise-img-cfg-scale SCALE (high noise) image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)\n");
|
||||
@ -268,6 +277,9 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --clip-skip N ignore last_dot_pos layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
|
||||
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
|
||||
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
|
||||
printf(" --vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)\n");
|
||||
printf(" --vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)\n");
|
||||
printf(" --vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)\n");
|
||||
printf(" --vae-on-cpu keep vae in cpu (for low vram)\n");
|
||||
printf(" --clip-on-cpu keep clip in cpu (for low vram)\n");
|
||||
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
|
||||
@ -288,6 +300,7 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --moe-boundary BOUNDARY timestep boundary for Wan2.2 MoE model. (default: 0.875)\n");
|
||||
printf(" only enabled if `--high-noise-steps` is set to -1\n");
|
||||
printf(" --flow-shift SHIFT shift value for Flow models like SD3.x or WAN (default: auto)\n");
|
||||
printf(" --vace-strength wan vace strength\n");
|
||||
printf(" -v, --verbose print extra info\n");
|
||||
}
|
||||
|
||||
@ -482,10 +495,10 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
{"", "--input-id-images-dir", "", ¶ms.input_id_images_path},
|
||||
{"", "--mask", "", ¶ms.mask_image_path},
|
||||
{"", "--control-image", "", ¶ms.control_image_path},
|
||||
{"", "--control-video", "", ¶ms.control_video_path},
|
||||
{"-o", "--output", "", ¶ms.output_path},
|
||||
{"-p", "--prompt", "", ¶ms.prompt},
|
||||
{"-n", "--negative-prompt", "", ¶ms.negative_prompt},
|
||||
|
||||
{"", "--upscale-model", "", ¶ms.esrgan_path},
|
||||
};
|
||||
|
||||
@ -523,10 +536,12 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
{"", "--control-strength", "", ¶ms.control_strength},
|
||||
{"", "--moe-boundary", "", ¶ms.moe_boundary},
|
||||
{"", "--flow-shift", "", ¶ms.flow_shift},
|
||||
{"", "--vace-strength", "", ¶ms.vace_strength},
|
||||
{"", "--vae-tile-overlap", "", ¶ms.vae_tiling_params.target_overlap},
|
||||
};
|
||||
|
||||
options.bool_options = {
|
||||
{"", "--vae-tiling", "", true, ¶ms.vae_tiling},
|
||||
{"", "--vae-tiling", "", true, ¶ms.vae_tiling_params.enabled},
|
||||
{"", "--offload-to-cpu", "", true, ¶ms.offload_params_to_cpu},
|
||||
{"", "--control-net-cpu", "", true, ¶ms.control_net_cpu},
|
||||
{"", "--normalize-input", "", true, ¶ms.normalize_input},
|
||||
@ -726,6 +741,52 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_tile_size_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
std::string tile_size_str = argv[index];
|
||||
size_t x_pos = tile_size_str.find('x');
|
||||
try {
|
||||
if (x_pos != std::string::npos) {
|
||||
std::string tile_x_str = tile_size_str.substr(0, x_pos);
|
||||
std::string tile_y_str = tile_size_str.substr(x_pos + 1);
|
||||
params.vae_tiling_params.tile_size_x = std::stoi(tile_x_str);
|
||||
params.vae_tiling_params.tile_size_y = std::stoi(tile_y_str);
|
||||
} else {
|
||||
params.vae_tiling_params.tile_size_x = params.vae_tiling_params.tile_size_y = std::stoi(tile_size_str);
|
||||
}
|
||||
} catch (const std::invalid_argument& e) {
|
||||
return -1;
|
||||
} catch (const std::out_of_range& e) {
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_relative_tile_size_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
std::string rel_size_str = argv[index];
|
||||
size_t x_pos = rel_size_str.find('x');
|
||||
try {
|
||||
if (x_pos != std::string::npos) {
|
||||
std::string rel_x_str = rel_size_str.substr(0, x_pos);
|
||||
std::string rel_y_str = rel_size_str.substr(x_pos + 1);
|
||||
params.vae_tiling_params.rel_size_x = std::stof(rel_x_str);
|
||||
params.vae_tiling_params.rel_size_y = std::stof(rel_y_str);
|
||||
} else {
|
||||
params.vae_tiling_params.rel_size_x = params.vae_tiling_params.rel_size_y = std::stof(rel_size_str);
|
||||
}
|
||||
} catch (const std::invalid_argument& e) {
|
||||
return -1;
|
||||
} catch (const std::out_of_range& e) {
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
options.manual_options = {
|
||||
{"-M", "--mode", "", on_mode_arg},
|
||||
{"", "--type", "", on_type_arg},
|
||||
@ -739,6 +800,8 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
{"", "--high-noise-skip-layers", "", on_high_noise_skip_layers_arg},
|
||||
{"-r", "--ref-image", "", on_ref_image_arg},
|
||||
{"-h", "--help", "", on_help_arg},
|
||||
{"", "--vae-tile-size", "", on_tile_size_arg},
|
||||
{"", "--vae-relative-tile-size", "", on_relative_tile_size_arg},
|
||||
};
|
||||
|
||||
if (!parse_options(argc, argv, options)) {
|
||||
@ -1059,6 +1122,7 @@ int main(int argc, const char* argv[]) {
|
||||
sd_image_t control_image = {(uint32_t)params.width, (uint32_t)params.height, 3, NULL};
|
||||
sd_image_t mask_image = {(uint32_t)params.width, (uint32_t)params.height, 1, NULL};
|
||||
std::vector<sd_image_t> ref_images;
|
||||
std::vector<sd_image_t> control_frames;
|
||||
|
||||
auto release_all_resources = [&]() {
|
||||
free(init_image.data);
|
||||
@ -1070,6 +1134,11 @@ int main(int argc, const char* argv[]) {
|
||||
ref_image.data = NULL;
|
||||
}
|
||||
ref_images.clear();
|
||||
for (auto frame : control_frames) {
|
||||
free(frame.data);
|
||||
frame.data = NULL;
|
||||
}
|
||||
control_frames.clear();
|
||||
};
|
||||
|
||||
if (params.init_image_path.size() > 0) {
|
||||
@ -1128,14 +1197,12 @@ int main(int argc, const char* argv[]) {
|
||||
return 1;
|
||||
}
|
||||
if (params.canny_preprocess) { // apply preprocessor
|
||||
control_image.data = preprocess_canny(control_image.data,
|
||||
control_image.width,
|
||||
control_image.height,
|
||||
0.08f,
|
||||
0.08f,
|
||||
0.8f,
|
||||
1.0f,
|
||||
false);
|
||||
preprocess_canny(control_image,
|
||||
0.08f,
|
||||
0.08f,
|
||||
0.8f,
|
||||
1.0f,
|
||||
false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1157,6 +1224,48 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.control_video_path.empty()) {
|
||||
std::string dir = params.control_video_path;
|
||||
|
||||
if (!fs::exists(dir) || !fs::is_directory(dir)) {
|
||||
fprintf(stderr, "'%s' is not a valid directory\n", dir.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (const auto& entry : fs::directory_iterator(dir)) {
|
||||
if (!entry.is_regular_file())
|
||||
continue;
|
||||
|
||||
std::string path = entry.path().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower);
|
||||
|
||||
if (ext == ".jpg" || ext == ".jpeg" || ext == ".png" || ext == ".bmp") {
|
||||
if (params.verbose) {
|
||||
printf("load control frame %zu from '%s'\n", control_frames.size(), path.c_str());
|
||||
}
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
uint8_t* image_buffer = load_image(path.c_str(), width, height, params.width, params.height);
|
||||
if (image_buffer == NULL) {
|
||||
fprintf(stderr, "load image from '%s' failed\n", path.c_str());
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
|
||||
control_frames.push_back({(uint32_t)params.width,
|
||||
(uint32_t)params.height,
|
||||
3,
|
||||
image_buffer});
|
||||
|
||||
if (control_frames.size() >= params.video_frames) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params.mode == VID_GEN) {
|
||||
vae_decode_only = false;
|
||||
}
|
||||
@ -1176,7 +1285,6 @@ int main(int argc, const char* argv[]) {
|
||||
params.embedding_dir.c_str(),
|
||||
params.stacked_id_embed_dir.c_str(),
|
||||
vae_decode_only,
|
||||
params.vae_tiling,
|
||||
true,
|
||||
params.n_threads,
|
||||
params.wtype,
|
||||
@ -1202,6 +1310,10 @@ int main(int argc, const char* argv[]) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.sample_params.sample_method == SAMPLE_METHOD_DEFAULT) {
|
||||
params.sample_params.sample_method = sd_get_default_sample_method(sd_ctx);
|
||||
}
|
||||
|
||||
sd_image_t* results;
|
||||
int num_results = 1;
|
||||
if (params.mode == IMG_GEN) {
|
||||
@ -1225,6 +1337,7 @@ int main(int argc, const char* argv[]) {
|
||||
params.style_ratio,
|
||||
params.normalize_input,
|
||||
params.input_id_images_path.c_str(),
|
||||
params.vae_tiling_params,
|
||||
};
|
||||
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
@ -1236,6 +1349,8 @@ int main(int argc, const char* argv[]) {
|
||||
params.clip_skip,
|
||||
init_image,
|
||||
end_image,
|
||||
control_frames.data(),
|
||||
(int)control_frames.size(),
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_params,
|
||||
@ -1244,6 +1359,7 @@ int main(int argc, const char* argv[]) {
|
||||
params.strength,
|
||||
params.seed,
|
||||
params.video_frames,
|
||||
params.vace_strength,
|
||||
};
|
||||
|
||||
results = generate_video(sd_ctx, &vid_gen_params, &num_results);
|
||||
@ -1286,7 +1402,6 @@ int main(int argc, const char* argv[]) {
|
||||
|
||||
// create directory if not exists
|
||||
{
|
||||
namespace fs = std::filesystem;
|
||||
const fs::path out_path = params.output_path;
|
||||
if (const fs::path out_dir = out_path.parent_path(); !out_dir.empty()) {
|
||||
std::error_code ec;
|
||||
|
||||
268
ggml_extend.hpp
268
ggml_extend.hpp
@ -185,6 +185,14 @@ __STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int
|
||||
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ float sd_image_get_f32(sd_image_t image, int iw, int ih, int ic, bool scale = true) {
|
||||
float value = *(image.data + ih * image.width * image.channel + iw * image.channel + ic);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
static struct ggml_tensor* get_tensor_from_graph(struct ggml_cgraph* gf, const char* name) {
|
||||
struct ggml_tensor* res = NULL;
|
||||
for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
|
||||
@ -235,6 +243,52 @@ __STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void ggml_tensor_iter(
|
||||
ggml_tensor* tensor,
|
||||
const std::function<void(ggml_tensor*, int64_t, int64_t, int64_t, int64_t)>& fn) {
|
||||
int64_t n0 = tensor->ne[0];
|
||||
int64_t n1 = tensor->ne[1];
|
||||
int64_t n2 = tensor->ne[2];
|
||||
int64_t n3 = tensor->ne[3];
|
||||
|
||||
for (int64_t i3 = 0; i3 < n3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < n2; i2++) {
|
||||
for (int64_t i1 = 0; i1 < n1; i1++) {
|
||||
for (int64_t i0 = 0; i0 < n0; i0++) {
|
||||
fn(tensor, i0, i1, i2, i3);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void ggml_tensor_iter(
|
||||
ggml_tensor* tensor,
|
||||
const std::function<void(ggml_tensor*, int64_t)>& fn) {
|
||||
int64_t n0 = tensor->ne[0];
|
||||
int64_t n1 = tensor->ne[1];
|
||||
int64_t n2 = tensor->ne[2];
|
||||
int64_t n3 = tensor->ne[3];
|
||||
|
||||
for (int64_t i = 0; i < ggml_nelements(tensor); i++) {
|
||||
fn(tensor, i);
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void ggml_tensor_diff(
|
||||
ggml_tensor* a,
|
||||
ggml_tensor* b,
|
||||
float gap = 0.1f) {
|
||||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||||
ggml_tensor_iter(a, [&](ggml_tensor* a, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float a_value = ggml_tensor_get_f32(a, i0, i1, i2, i3);
|
||||
float b_value = ggml_tensor_get_f32(b, i0, i1, i2, i3);
|
||||
if (abs(a_value - b_value) > gap) {
|
||||
LOG_WARN("[%ld, %ld, %ld, %ld] %f %f", i3, i2, i1, i0, a_value, b_value);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
|
||||
std::ifstream file(file_path, std::ios::binary);
|
||||
if (!file.is_open()) {
|
||||
@ -366,42 +420,18 @@ __STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input, int idx
|
||||
return image_data;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
|
||||
struct ggml_tensor* output,
|
||||
__STATIC_INLINE__ void sd_image_to_tensor(sd_image_t image,
|
||||
ggml_tensor* tensor,
|
||||
bool scale = true) {
|
||||
int64_t width = output->ne[0];
|
||||
int64_t height = output->ne[1];
|
||||
int64_t channels = output->ne[2];
|
||||
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
for (int k = 0; k < channels; k++) {
|
||||
float value = *(image_data + iy * width * channels + ix * channels + k);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
}
|
||||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void sd_mask_to_tensor(const uint8_t* image_data,
|
||||
struct ggml_tensor* output,
|
||||
bool scale = true) {
|
||||
int64_t width = output->ne[0];
|
||||
int64_t height = output->ne[1];
|
||||
int64_t channels = output->ne[2];
|
||||
GGML_ASSERT(channels == 1 && output->type == GGML_TYPE_F32);
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
float value = *(image_data + iy * width * channels + ix);
|
||||
if (scale) {
|
||||
value /= 255.f;
|
||||
}
|
||||
ggml_tensor_set_f32(output, value, ix, iy);
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(image.width == tensor->ne[0]);
|
||||
GGML_ASSERT(image.height == tensor->ne[1]);
|
||||
GGML_ASSERT(image.channel == tensor->ne[2]);
|
||||
GGML_ASSERT(1 == tensor->ne[3]);
|
||||
GGML_ASSERT(tensor->type == GGML_TYPE_F32);
|
||||
ggml_tensor_iter(tensor, [&](ggml_tensor* tensor, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = sd_image_get_f32(image, i0, i1, i2, scale);
|
||||
ggml_tensor_set_f32(tensor, value, i0, i1, i2, i3);
|
||||
});
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void sd_apply_mask(struct ggml_tensor* image_data,
|
||||
@ -494,7 +524,10 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
|
||||
struct ggml_tensor* output,
|
||||
int x,
|
||||
int y,
|
||||
int overlap) {
|
||||
int overlap_x,
|
||||
int overlap_y,
|
||||
int x_skip = 0,
|
||||
int y_skip = 0) {
|
||||
int64_t width = input->ne[0];
|
||||
int64_t height = input->ne[1];
|
||||
int64_t channels = input->ne[2];
|
||||
@ -503,17 +536,17 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
|
||||
int64_t img_height = output->ne[1];
|
||||
|
||||
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
for (int iy = y_skip; iy < height; iy++) {
|
||||
for (int ix = x_skip; ix < width; ix++) {
|
||||
for (int k = 0; k < channels; k++) {
|
||||
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
|
||||
if (overlap > 0) { // blend colors in overlapped area
|
||||
if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area
|
||||
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
|
||||
|
||||
const float x_f_0 = (x > 0) ? ix / float(overlap) : 1;
|
||||
const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1;
|
||||
const float y_f_0 = (y > 0) ? iy / float(overlap) : 1;
|
||||
const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1;
|
||||
const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1;
|
||||
const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1;
|
||||
const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1;
|
||||
const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1;
|
||||
|
||||
const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
|
||||
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);
|
||||
@ -745,22 +778,102 @@ __STATIC_INLINE__ std::vector<struct ggml_tensor*> ggml_chunk(struct ggml_contex
|
||||
|
||||
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
|
||||
|
||||
__STATIC_INLINE__ void sd_tiling_calc_tiles(int& num_tiles_dim,
|
||||
float& tile_overlap_factor_dim,
|
||||
int small_dim,
|
||||
int tile_size,
|
||||
const float tile_overlap_factor) {
|
||||
int tile_overlap = (tile_size * tile_overlap_factor);
|
||||
int non_tile_overlap = tile_size - tile_overlap;
|
||||
|
||||
num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap;
|
||||
int overshoot_dim = ((num_tiles_dim + 1) * non_tile_overlap + tile_overlap) % small_dim;
|
||||
|
||||
if ((overshoot_dim != non_tile_overlap) && (overshoot_dim <= num_tiles_dim * (tile_size / 2 - tile_overlap))) {
|
||||
// if tiles don't fit perfectly using the desired overlap
|
||||
// and there is enough room to squeeze an extra tile without overlap becoming >0.5
|
||||
num_tiles_dim++;
|
||||
}
|
||||
|
||||
tile_overlap_factor_dim = (float)(tile_size * num_tiles_dim - small_dim) / (float)(tile_size * (num_tiles_dim - 1));
|
||||
if (num_tiles_dim <= 2) {
|
||||
if (small_dim <= tile_size) {
|
||||
num_tiles_dim = 1;
|
||||
tile_overlap_factor_dim = 0;
|
||||
} else {
|
||||
num_tiles_dim = 2;
|
||||
tile_overlap_factor_dim = (2 * tile_size - small_dim) / (float)tile_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Tiling
|
||||
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
|
||||
__STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input,
|
||||
ggml_tensor* output,
|
||||
const int scale,
|
||||
const int p_tile_size_x,
|
||||
const int p_tile_size_y,
|
||||
const float tile_overlap_factor,
|
||||
on_tile_process on_processing) {
|
||||
output = ggml_set_f32(output, 0);
|
||||
|
||||
int input_width = (int)input->ne[0];
|
||||
int input_height = (int)input->ne[1];
|
||||
int output_width = (int)output->ne[0];
|
||||
int output_height = (int)output->ne[1];
|
||||
|
||||
GGML_ASSERT(((input_width / output_width) == (input_height / output_height)) &&
|
||||
((output_width / input_width) == (output_height / input_height)));
|
||||
GGML_ASSERT(((input_width / output_width) == scale) ||
|
||||
((output_width / input_width) == scale));
|
||||
|
||||
int small_width = output_width;
|
||||
int small_height = output_height;
|
||||
|
||||
bool decode = output_width > input_width;
|
||||
if (decode) {
|
||||
small_width = input_width;
|
||||
small_height = input_height;
|
||||
}
|
||||
|
||||
int num_tiles_x;
|
||||
float tile_overlap_factor_x;
|
||||
sd_tiling_calc_tiles(num_tiles_x, tile_overlap_factor_x, small_width, p_tile_size_x, tile_overlap_factor);
|
||||
|
||||
int num_tiles_y;
|
||||
float tile_overlap_factor_y;
|
||||
sd_tiling_calc_tiles(num_tiles_y, tile_overlap_factor_y, small_height, p_tile_size_y, tile_overlap_factor);
|
||||
|
||||
LOG_DEBUG("num tiles : %d, %d ", num_tiles_x, num_tiles_y);
|
||||
LOG_DEBUG("optimal overlap : %f, %f (targeting %f)", tile_overlap_factor_x, tile_overlap_factor_y, tile_overlap_factor);
|
||||
|
||||
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
|
||||
|
||||
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
|
||||
int non_tile_overlap = tile_size - tile_overlap;
|
||||
int tile_overlap_x = (int32_t)(p_tile_size_x * tile_overlap_factor_x);
|
||||
int non_tile_overlap_x = p_tile_size_x - tile_overlap_x;
|
||||
|
||||
int tile_overlap_y = (int32_t)(p_tile_size_y * tile_overlap_factor_y);
|
||||
int non_tile_overlap_y = p_tile_size_y - tile_overlap_y;
|
||||
|
||||
int tile_size_x = p_tile_size_x < small_width ? p_tile_size_x : small_width;
|
||||
int tile_size_y = p_tile_size_y < small_height ? p_tile_size_y : small_height;
|
||||
|
||||
int input_tile_size_x = tile_size_x;
|
||||
int input_tile_size_y = tile_size_y;
|
||||
int output_tile_size_x = tile_size_x;
|
||||
int output_tile_size_y = tile_size_y;
|
||||
|
||||
if (decode) {
|
||||
output_tile_size_x *= scale;
|
||||
output_tile_size_y *= scale;
|
||||
} else {
|
||||
input_tile_size_x *= scale;
|
||||
input_tile_size_y *= scale;
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {};
|
||||
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
|
||||
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
|
||||
params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * sizeof(float); // input chunk
|
||||
params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * sizeof(float); // output chunk
|
||||
params.mem_size += 3 * ggml_tensor_overhead();
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
@ -775,29 +888,50 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
|
||||
}
|
||||
|
||||
// tiling
|
||||
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
|
||||
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
|
||||
on_processing(input_tile, NULL, true);
|
||||
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
|
||||
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], 1);
|
||||
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], 1);
|
||||
int num_tiles = num_tiles_x * num_tiles_y;
|
||||
LOG_INFO("processing %i tiles", num_tiles);
|
||||
pretty_progress(1, num_tiles, 0.0f);
|
||||
pretty_progress(0, num_tiles, 0.0f);
|
||||
int tile_count = 1;
|
||||
bool last_y = false, last_x = false;
|
||||
float last_time = 0.0f;
|
||||
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
|
||||
if (y + tile_size >= input_height) {
|
||||
y = input_height - tile_size;
|
||||
for (int y = 0; y < small_height && !last_y; y += non_tile_overlap_y) {
|
||||
int dy = 0;
|
||||
if (y + tile_size_y >= small_height) {
|
||||
int _y = y;
|
||||
y = small_height - tile_size_y;
|
||||
dy = _y - y;
|
||||
if (decode) {
|
||||
dy *= scale;
|
||||
}
|
||||
last_y = true;
|
||||
}
|
||||
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
|
||||
if (x + tile_size >= input_width) {
|
||||
x = input_width - tile_size;
|
||||
for (int x = 0; x < small_width && !last_x; x += non_tile_overlap_x) {
|
||||
int dx = 0;
|
||||
if (x + tile_size_x >= small_width) {
|
||||
int _x = x;
|
||||
x = small_width - tile_size_x;
|
||||
dx = _x - x;
|
||||
if (decode) {
|
||||
dx *= scale;
|
||||
}
|
||||
last_x = true;
|
||||
}
|
||||
|
||||
int x_in = decode ? x : scale * x;
|
||||
int y_in = decode ? y : scale * y;
|
||||
int x_out = decode ? x * scale : x;
|
||||
int y_out = decode ? y * scale : y;
|
||||
|
||||
int overlap_x_out = decode ? tile_overlap_x * scale : tile_overlap_x;
|
||||
int overlap_y_out = decode ? tile_overlap_y * scale : tile_overlap_y;
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ggml_split_tensor_2d(input, input_tile, x, y);
|
||||
ggml_split_tensor_2d(input, input_tile, x_in, y_in);
|
||||
on_processing(input_tile, output_tile, false);
|
||||
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
|
||||
ggml_merge_tensor_2d(output_tile, output, x_out, y_out, overlap_x_out, overlap_y_out, dx, dy);
|
||||
|
||||
int64_t t2 = ggml_time_ms();
|
||||
last_time = (t2 - t1) / 1000.0f;
|
||||
pretty_progress(tile_count, num_tiles, last_time);
|
||||
@ -811,6 +945,15 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
|
||||
ggml_free(tiles_ctx);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input,
|
||||
ggml_tensor* output,
|
||||
const int scale,
|
||||
const int tile_size,
|
||||
const float tile_overlap_factor,
|
||||
on_tile_process on_processing) {
|
||||
sd_tiling_non_square(input, output, scale, tile_size, tile_size, tile_overlap_factor, on_processing);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
|
||||
struct ggml_tensor* a) {
|
||||
const float eps = 1e-6f; // default eps parameter
|
||||
@ -1523,6 +1666,7 @@ protected:
|
||||
ggml_backend_tensor_copy(t, offload_t);
|
||||
std::swap(t->buffer, offload_t->buffer);
|
||||
std::swap(t->data, offload_t->data);
|
||||
std::swap(t->extra, offload_t->extra);
|
||||
|
||||
t = ggml_get_next_tensor(params_ctx, t);
|
||||
offload_t = ggml_get_next_tensor(offload_ctx, offload_t);
|
||||
@ -1553,8 +1697,10 @@ protected:
|
||||
while (t != NULL && offload_t != NULL) {
|
||||
t->buffer = offload_t->buffer;
|
||||
t->data = offload_t->data;
|
||||
t->extra = offload_t->extra;
|
||||
offload_t->buffer = NULL;
|
||||
offload_t->data = NULL;
|
||||
offload_t->extra = NULL;
|
||||
|
||||
t = ggml_get_next_tensor(params_ctx, t);
|
||||
offload_t = ggml_get_next_tensor(offload_ctx, offload_t);
|
||||
|
||||
@ -107,7 +107,7 @@ const char* unused_tensors[] = {
|
||||
};
|
||||
|
||||
bool is_unused_tensor(std::string name) {
|
||||
for (int i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) {
|
||||
for (size_t i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) {
|
||||
if (starts_with(name, unused_tensors[i])) {
|
||||
return true;
|
||||
}
|
||||
@ -2310,7 +2310,7 @@ std::vector<std::pair<std::string, ggml_type>> parse_tensor_type_rules(const std
|
||||
if (type_name == "f32") {
|
||||
tensor_type = GGML_TYPE_F32;
|
||||
} else {
|
||||
for (size_t i = 0; i < SD_TYPE_COUNT; i++) {
|
||||
for (size_t i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||
auto trait = ggml_get_type_traits((ggml_type)i);
|
||||
if (trait->to_float && trait->type_size && type_name == trait->type_name) {
|
||||
tensor_type = (ggml_type)i;
|
||||
|
||||
6
model.h
6
model.h
@ -119,7 +119,7 @@ struct TensorStorage {
|
||||
|
||||
size_t file_index = 0;
|
||||
int index_in_zip = -1; // >= means stored in a zip file
|
||||
size_t offset = 0; // offset in file
|
||||
uint64_t offset = 0; // offset in file
|
||||
|
||||
TensorStorage() = default;
|
||||
|
||||
@ -164,10 +164,10 @@ struct TensorStorage {
|
||||
|
||||
std::vector<TensorStorage> chunk(size_t n) {
|
||||
std::vector<TensorStorage> chunks;
|
||||
size_t chunk_size = nbytes_to_read() / n;
|
||||
uint64_t chunk_size = nbytes_to_read() / n;
|
||||
// printf("%d/%d\n", chunk_size, nbytes_to_read());
|
||||
reverse_ne();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
TensorStorage chunk_i = *this;
|
||||
chunk_i.ne[0] = ne[0] / n;
|
||||
chunk_i.offset = offset + i * chunk_size;
|
||||
|
||||
@ -162,16 +162,16 @@ void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float lo
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
|
||||
bool preprocess_canny(sd_image_t img, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10MB
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
|
||||
if (!work_ctx) {
|
||||
LOG_ERROR("ggml_init() failed");
|
||||
return NULL;
|
||||
return false;
|
||||
}
|
||||
|
||||
float kX[9] = {
|
||||
@ -192,8 +192,8 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh
|
||||
struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
|
||||
memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky));
|
||||
gaussian_kernel(gkernel);
|
||||
struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
|
||||
struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, img.width, img.height, 3, 1);
|
||||
struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, img.width, img.height, 1, 1);
|
||||
struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray);
|
||||
struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray);
|
||||
struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray);
|
||||
@ -209,8 +209,8 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh
|
||||
non_max_supression(image_gray, G, tetha);
|
||||
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
|
||||
// to RGB channels
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
for (int iy = 0; iy < img.height; iy++) {
|
||||
for (int ix = 0; ix < img.width; ix++) {
|
||||
float gray = ggml_tensor_get_f32(image_gray, ix, iy);
|
||||
gray = inverse ? 1.0f - gray : gray;
|
||||
ggml_tensor_set_f32(image, gray, ix, iy);
|
||||
@ -218,10 +218,11 @@ uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_thresh
|
||||
ggml_tensor_set_f32(image, gray, ix, iy, 2);
|
||||
}
|
||||
}
|
||||
free(img);
|
||||
uint8_t* output = sd_tensor_to_image(image);
|
||||
free(img.data);
|
||||
img.data = output;
|
||||
ggml_free(work_ctx);
|
||||
return output;
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // __PREPROCESSING_HPP__
|
||||
@ -43,7 +43,7 @@ const char* model_version_to_str[] = {
|
||||
};
|
||||
|
||||
const char* sampling_methods_str[] = {
|
||||
"Euler A",
|
||||
"default",
|
||||
"Euler",
|
||||
"Heun",
|
||||
"DPM2",
|
||||
@ -55,6 +55,7 @@ const char* sampling_methods_str[] = {
|
||||
"LCM",
|
||||
"DDIM \"trailing\"",
|
||||
"TCD",
|
||||
"Euler A",
|
||||
};
|
||||
|
||||
/*================================================== Helper Functions ================================================*/
|
||||
@ -107,10 +108,10 @@ public:
|
||||
std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds;
|
||||
|
||||
std::string taesd_path;
|
||||
bool use_tiny_autoencoder = false;
|
||||
bool vae_tiling = false;
|
||||
bool offload_params_to_cpu = false;
|
||||
bool stacked_id = false;
|
||||
bool use_tiny_autoencoder = false;
|
||||
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0, 0};
|
||||
bool offload_params_to_cpu = false;
|
||||
bool stacked_id = false;
|
||||
|
||||
bool is_using_v_parameterization = false;
|
||||
bool is_using_edm_v_parameterization = false;
|
||||
@ -182,7 +183,6 @@ public:
|
||||
lora_model_dir = SAFE_STR(sd_ctx_params->lora_model_dir);
|
||||
taesd_path = SAFE_STR(sd_ctx_params->taesd_path);
|
||||
use_tiny_autoencoder = taesd_path.size() > 0;
|
||||
vae_tiling = sd_ctx_params->vae_tiling;
|
||||
offload_params_to_cpu = sd_ctx_params->offload_params_to_cpu;
|
||||
|
||||
if (sd_ctx_params->rng_type == STD_DEFAULT_RNG) {
|
||||
@ -265,7 +265,9 @@ public:
|
||||
}
|
||||
|
||||
LOG_INFO("Version: %s ", model_version_to_str[version]);
|
||||
ggml_type wtype = (ggml_type)sd_ctx_params->wtype;
|
||||
ggml_type wtype = (int)sd_ctx_params->wtype < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT)
|
||||
? (ggml_type)sd_ctx_params->wtype
|
||||
: GGML_TYPE_COUNT;
|
||||
if (wtype == GGML_TYPE_COUNT) {
|
||||
model_wtype = model_loader.get_sd_wtype();
|
||||
if (model_wtype == GGML_TYPE_COUNT) {
|
||||
@ -293,11 +295,6 @@ public:
|
||||
model_loader.set_wtype_override(wtype);
|
||||
}
|
||||
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
vae_wtype = GGML_TYPE_F32;
|
||||
model_loader.set_wtype_override(GGML_TYPE_F32, "vae.");
|
||||
}
|
||||
|
||||
LOG_INFO("Weight type: %s", ggml_type_name(model_wtype));
|
||||
LOG_INFO("Conditioner weight type: %s", ggml_type_name(conditioner_wtype));
|
||||
LOG_INFO("Diffusion model weight type: %s", ggml_type_name(diffusion_model_wtype));
|
||||
@ -373,7 +370,6 @@ public:
|
||||
cond_stage_model = std::make_shared<T5CLIPEmbedder>(clip_backend,
|
||||
offload_params_to_cpu,
|
||||
model_loader.tensor_storages_types,
|
||||
-1,
|
||||
sd_ctx_params->chroma_use_t5_mask,
|
||||
sd_ctx_params->chroma_t5_mask_pad);
|
||||
} else {
|
||||
@ -391,7 +387,6 @@ public:
|
||||
cond_stage_model = std::make_shared<T5CLIPEmbedder>(clip_backend,
|
||||
offload_params_to_cpu,
|
||||
model_loader.tensor_storages_types,
|
||||
-1,
|
||||
true,
|
||||
1,
|
||||
true);
|
||||
@ -781,7 +776,12 @@ public:
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t);
|
||||
diffusion_model->compute(n_threads, x_t, timesteps, c, concat, NULL, NULL, {}, false, -1, {}, 0.f, &out);
|
||||
DiffusionParams diffusion_params;
|
||||
diffusion_params.x = x_t;
|
||||
diffusion_params.timesteps = timesteps;
|
||||
diffusion_params.context = c;
|
||||
diffusion_params.c_concat = concat;
|
||||
diffusion_model->compute(n_threads, diffusion_params, &out);
|
||||
diffusion_model->free_compute_buffer();
|
||||
|
||||
double result = 0.f;
|
||||
@ -959,7 +959,7 @@ public:
|
||||
free(resized_image.data);
|
||||
resized_image.data = NULL;
|
||||
} else {
|
||||
sd_image_to_tensor(init_image.data, init_img);
|
||||
sd_image_to_tensor(init_image, init_img);
|
||||
}
|
||||
if (augmentation_level > 0.f) {
|
||||
struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, init_img);
|
||||
@ -1039,7 +1039,9 @@ public:
|
||||
SDCondition id_cond,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
ggml_tensor* denoise_mask = nullptr) {
|
||||
ggml_tensor* denoise_mask = NULL,
|
||||
ggml_tensor* vace_context = NULL,
|
||||
float vace_strength = 1.f) {
|
||||
std::vector<int> skip_layers(guidance.slg.layers, guidance.slg.layers + guidance.slg.layer_count);
|
||||
|
||||
float cfg_scale = guidance.txt_cfg;
|
||||
@ -1123,34 +1125,31 @@ public:
|
||||
// GGML_ASSERT(0);
|
||||
}
|
||||
|
||||
DiffusionParams diffusion_params;
|
||||
diffusion_params.x = noised_input;
|
||||
diffusion_params.timesteps = timesteps;
|
||||
diffusion_params.guidance = guidance_tensor;
|
||||
diffusion_params.ref_latents = ref_latents;
|
||||
diffusion_params.increase_ref_index = increase_ref_index;
|
||||
diffusion_params.controls = controls;
|
||||
diffusion_params.control_strength = control_strength;
|
||||
diffusion_params.vace_context = vace_context;
|
||||
diffusion_params.vace_strength = vace_strength;
|
||||
|
||||
if (start_merge_step == -1 || step <= start_merge_step) {
|
||||
// cond
|
||||
diffusion_params.context = cond.c_crossattn;
|
||||
diffusion_params.c_concat = cond.c_concat;
|
||||
diffusion_params.y = cond.c_vector;
|
||||
work_diffusion_model->compute(n_threads,
|
||||
noised_input,
|
||||
timesteps,
|
||||
cond.c_crossattn,
|
||||
cond.c_concat,
|
||||
cond.c_vector,
|
||||
guidance_tensor,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
diffusion_params,
|
||||
&out_cond);
|
||||
} else {
|
||||
diffusion_params.context = id_cond.c_crossattn;
|
||||
diffusion_params.c_concat = cond.c_concat;
|
||||
diffusion_params.y = id_cond.c_vector;
|
||||
work_diffusion_model->compute(n_threads,
|
||||
noised_input,
|
||||
timesteps,
|
||||
id_cond.c_crossattn,
|
||||
cond.c_concat,
|
||||
id_cond.c_vector,
|
||||
guidance_tensor,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
diffusion_params,
|
||||
&out_cond);
|
||||
}
|
||||
|
||||
@ -1161,36 +1160,23 @@ public:
|
||||
control_net->compute(n_threads, noised_input, control_hint, timesteps, uncond.c_crossattn, uncond.c_vector);
|
||||
controls = control_net->controls;
|
||||
}
|
||||
diffusion_params.controls = controls;
|
||||
diffusion_params.context = uncond.c_crossattn;
|
||||
diffusion_params.c_concat = uncond.c_concat;
|
||||
diffusion_params.y = uncond.c_vector;
|
||||
work_diffusion_model->compute(n_threads,
|
||||
noised_input,
|
||||
timesteps,
|
||||
uncond.c_crossattn,
|
||||
uncond.c_concat,
|
||||
uncond.c_vector,
|
||||
guidance_tensor,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
diffusion_params,
|
||||
&out_uncond);
|
||||
negative_data = (float*)out_uncond->data;
|
||||
}
|
||||
|
||||
float* img_cond_data = NULL;
|
||||
if (has_img_cond) {
|
||||
diffusion_params.context = img_cond.c_crossattn;
|
||||
diffusion_params.c_concat = img_cond.c_concat;
|
||||
diffusion_params.y = img_cond.c_vector;
|
||||
work_diffusion_model->compute(n_threads,
|
||||
noised_input,
|
||||
timesteps,
|
||||
img_cond.c_crossattn,
|
||||
img_cond.c_concat,
|
||||
img_cond.c_vector,
|
||||
guidance_tensor,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
diffusion_params,
|
||||
&out_img_cond);
|
||||
img_cond_data = (float*)out_img_cond->data;
|
||||
}
|
||||
@ -1201,21 +1187,13 @@ public:
|
||||
if (is_skiplayer_step) {
|
||||
LOG_DEBUG("Skipping layers at step %d\n", step);
|
||||
// skip layer (same as conditionned)
|
||||
diffusion_params.context = cond.c_crossattn;
|
||||
diffusion_params.c_concat = cond.c_concat;
|
||||
diffusion_params.y = cond.c_vector;
|
||||
diffusion_params.skip_layers = skip_layers;
|
||||
work_diffusion_model->compute(n_threads,
|
||||
noised_input,
|
||||
timesteps,
|
||||
cond.c_crossattn,
|
||||
cond.c_concat,
|
||||
cond.c_vector,
|
||||
guidance_tensor,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
&out_skip,
|
||||
NULL,
|
||||
skip_layers);
|
||||
diffusion_params,
|
||||
&out_skip);
|
||||
skip_layer_data = (float*)out_skip->data;
|
||||
}
|
||||
float* vec_denoised = (float*)denoised->data;
|
||||
@ -1301,15 +1279,77 @@ public:
|
||||
return latent;
|
||||
}
|
||||
|
||||
ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool decode_video = false) {
|
||||
void get_tile_sizes(int& tile_size_x,
|
||||
int& tile_size_y,
|
||||
float& tile_overlap,
|
||||
const sd_tiling_params_t& params,
|
||||
int latent_x,
|
||||
int latent_y,
|
||||
float encoding_factor = 1.0f) {
|
||||
tile_overlap = std::max(std::min(params.target_overlap, 0.5f), 0.0f);
|
||||
auto get_tile_size = [&](int requested_size, float factor, int latent_size) {
|
||||
const int default_tile_size = 32;
|
||||
const int min_tile_dimension = 4;
|
||||
int tile_size = default_tile_size;
|
||||
// factor <= 1 means simple fraction of the latent dimension
|
||||
// factor > 1 means number of tiles across that dimension
|
||||
if (factor > 0.f) {
|
||||
if (factor > 1.0)
|
||||
factor = 1 / (factor - factor * tile_overlap + tile_overlap);
|
||||
tile_size = std::round(latent_size * factor);
|
||||
} else if (requested_size >= min_tile_dimension) {
|
||||
tile_size = requested_size;
|
||||
}
|
||||
tile_size *= encoding_factor;
|
||||
return std::max(std::min(tile_size, latent_size), min_tile_dimension);
|
||||
};
|
||||
|
||||
tile_size_x = get_tile_size(params.tile_size_x, params.rel_size_x, latent_x);
|
||||
tile_size_y = get_tile_size(params.tile_size_y, params.rel_size_y, latent_y);
|
||||
}
|
||||
|
||||
ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool encode_video = false) {
|
||||
int64_t t0 = ggml_time_ms();
|
||||
ggml_tensor* result = NULL;
|
||||
int W = x->ne[0] / 8;
|
||||
int H = x->ne[1] / 8;
|
||||
if (vae_tiling_params.enabled && !encode_video) {
|
||||
// TODO wan2.2 vae support?
|
||||
int C = sd_version_is_dit(version) ? 16 : 4;
|
||||
if (!use_tiny_autoencoder) {
|
||||
C *= 2;
|
||||
}
|
||||
result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, x->ne[3]);
|
||||
}
|
||||
|
||||
if (!use_tiny_autoencoder) {
|
||||
float tile_overlap;
|
||||
int tile_size_x, tile_size_y;
|
||||
// multiply tile size for encode to keep the compute buffer size consistent
|
||||
get_tile_sizes(tile_size_x, tile_size_y, tile_overlap, vae_tiling_params, W, H, 1.30539f);
|
||||
|
||||
LOG_DEBUG("VAE Tile size: %dx%d", tile_size_x, tile_size_y);
|
||||
|
||||
process_vae_input_tensor(x);
|
||||
first_stage_model->compute(n_threads, x, false, &result, work_ctx);
|
||||
if (vae_tiling_params.enabled && !encode_video) {
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
first_stage_model->compute(n_threads, in, false, &out, work_ctx);
|
||||
};
|
||||
sd_tiling_non_square(x, result, 8, tile_size_x, tile_size_y, tile_overlap, on_tiling);
|
||||
} else {
|
||||
first_stage_model->compute(n_threads, x, false, &result, work_ctx);
|
||||
}
|
||||
first_stage_model->free_compute_buffer();
|
||||
} else {
|
||||
tae_first_stage->compute(n_threads, x, false, &result, work_ctx);
|
||||
if (vae_tiling_params.enabled && !encode_video) {
|
||||
// split latent in 32x32 tiles and compute in several steps
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
tae_first_stage->compute(n_threads, in, false, &out, NULL);
|
||||
};
|
||||
sd_tiling(x, result, 8, 64, 0.5f, on_tiling);
|
||||
} else {
|
||||
tae_first_stage->compute(n_threads, x, false, &result, work_ctx);
|
||||
}
|
||||
tae_first_stage->free_compute_buffer();
|
||||
}
|
||||
|
||||
@ -1426,24 +1466,29 @@ public:
|
||||
C,
|
||||
x->ne[3]);
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
if (!use_tiny_autoencoder) {
|
||||
float tile_overlap;
|
||||
int tile_size_x, tile_size_y;
|
||||
get_tile_sizes(tile_size_x, tile_size_y, tile_overlap, vae_tiling_params, x->ne[0], x->ne[1]);
|
||||
|
||||
LOG_DEBUG("VAE Tile size: %dx%d", tile_size_x, tile_size_y);
|
||||
|
||||
process_latent_out(x);
|
||||
// x = load_tensor_from_file(work_ctx, "wan_vae_z.bin");
|
||||
if (vae_tiling && !decode_video) {
|
||||
if (vae_tiling_params.enabled && !decode_video) {
|
||||
// split latent in 32x32 tiles and compute in several steps
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
first_stage_model->compute(n_threads, in, true, &out, NULL);
|
||||
};
|
||||
sd_tiling(x, result, 8, 32, 0.5f, on_tiling);
|
||||
sd_tiling_non_square(x, result, 8, tile_size_x, tile_size_y, tile_overlap, on_tiling);
|
||||
} else {
|
||||
first_stage_model->compute(n_threads, x, true, &result, work_ctx);
|
||||
}
|
||||
first_stage_model->free_compute_buffer();
|
||||
process_vae_output_tensor(result);
|
||||
} else {
|
||||
if (vae_tiling && !decode_video) {
|
||||
if (vae_tiling_params.enabled && !decode_video) {
|
||||
// split latent in 64x64 tiles and compute in several steps
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
tae_first_stage->compute(n_threads, in, true, &out);
|
||||
@ -1467,11 +1512,14 @@ public:
|
||||
#define NONE_STR "NONE"
|
||||
|
||||
const char* sd_type_name(enum sd_type_t type) {
|
||||
return ggml_type_name((ggml_type)type);
|
||||
if ((int)type < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT)) {
|
||||
return ggml_type_name((ggml_type)type);
|
||||
}
|
||||
return NONE_STR;
|
||||
}
|
||||
|
||||
enum sd_type_t str_to_sd_type(const char* str) {
|
||||
for (int i = 0; i < SD_TYPE_COUNT; i++) {
|
||||
for (int i = 0; i < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT); i++) {
|
||||
auto trait = ggml_get_type_traits((ggml_type)i);
|
||||
if (!strcmp(str, trait->type_name)) {
|
||||
return (enum sd_type_t)i;
|
||||
@ -1502,7 +1550,7 @@ enum rng_type_t str_to_rng_type(const char* str) {
|
||||
}
|
||||
|
||||
const char* sample_method_to_str[] = {
|
||||
"euler_a",
|
||||
"default",
|
||||
"euler",
|
||||
"heun",
|
||||
"dpm2",
|
||||
@ -1514,6 +1562,7 @@ const char* sample_method_to_str[] = {
|
||||
"lcm",
|
||||
"ddim_trailing",
|
||||
"tcd",
|
||||
"euler_a",
|
||||
};
|
||||
|
||||
const char* sd_sample_method_name(enum sample_method_t sample_method) {
|
||||
@ -1561,7 +1610,6 @@ enum scheduler_t str_to_schedule(const char* str) {
|
||||
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
||||
*sd_ctx_params = {};
|
||||
sd_ctx_params->vae_decode_only = true;
|
||||
sd_ctx_params->vae_tiling = false;
|
||||
sd_ctx_params->free_params_immediately = true;
|
||||
sd_ctx_params->n_threads = get_num_physical_cores();
|
||||
sd_ctx_params->wtype = SD_TYPE_COUNT;
|
||||
@ -1625,7 +1673,6 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
||||
SAFE_STR(sd_ctx_params->embedding_dir),
|
||||
SAFE_STR(sd_ctx_params->stacked_id_embed_dir),
|
||||
BOOL_STR(sd_ctx_params->vae_decode_only),
|
||||
BOOL_STR(sd_ctx_params->vae_tiling),
|
||||
BOOL_STR(sd_ctx_params->free_params_immediately),
|
||||
sd_ctx_params->n_threads,
|
||||
sd_type_name(sd_ctx_params->wtype),
|
||||
@ -1652,7 +1699,7 @@ void sd_sample_params_init(sd_sample_params_t* sample_params) {
|
||||
sample_params->guidance.slg.layer_end = 0.2f;
|
||||
sample_params->guidance.slg.scale = 0.f;
|
||||
sample_params->scheduler = DEFAULT;
|
||||
sample_params->sample_method = EULER_A;
|
||||
sample_params->sample_method = SAMPLE_METHOD_DEFAULT;
|
||||
sample_params->sample_steps = 20;
|
||||
}
|
||||
|
||||
@ -1692,16 +1739,17 @@ char* sd_sample_params_to_str(const sd_sample_params_t* sample_params) {
|
||||
void sd_img_gen_params_init(sd_img_gen_params_t* sd_img_gen_params) {
|
||||
*sd_img_gen_params = {};
|
||||
sd_sample_params_init(&sd_img_gen_params->sample_params);
|
||||
sd_img_gen_params->clip_skip = -1;
|
||||
sd_img_gen_params->ref_images_count = 0;
|
||||
sd_img_gen_params->width = 512;
|
||||
sd_img_gen_params->height = 512;
|
||||
sd_img_gen_params->strength = 0.75f;
|
||||
sd_img_gen_params->seed = -1;
|
||||
sd_img_gen_params->batch_count = 1;
|
||||
sd_img_gen_params->control_strength = 0.9f;
|
||||
sd_img_gen_params->style_strength = 20.f;
|
||||
sd_img_gen_params->normalize_input = false;
|
||||
sd_img_gen_params->clip_skip = -1;
|
||||
sd_img_gen_params->ref_images_count = 0;
|
||||
sd_img_gen_params->width = 512;
|
||||
sd_img_gen_params->height = 512;
|
||||
sd_img_gen_params->strength = 0.75f;
|
||||
sd_img_gen_params->seed = -1;
|
||||
sd_img_gen_params->batch_count = 1;
|
||||
sd_img_gen_params->control_strength = 0.9f;
|
||||
sd_img_gen_params->style_strength = 20.f;
|
||||
sd_img_gen_params->normalize_input = false;
|
||||
sd_img_gen_params->vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
||||
}
|
||||
|
||||
char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
|
||||
@ -1721,6 +1769,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
|
||||
"sample_params: %s\n"
|
||||
"strength: %.2f\n"
|
||||
"seed: %" PRId64
|
||||
"VAE tiling:"
|
||||
"\n"
|
||||
"batch_count: %d\n"
|
||||
"ref_images_count: %d\n"
|
||||
@ -1737,6 +1786,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
|
||||
SAFE_STR(sample_params_str),
|
||||
sd_img_gen_params->strength,
|
||||
sd_img_gen_params->seed,
|
||||
BOOL_STR(sd_img_gen_params->vae_tiling_params.enabled),
|
||||
sd_img_gen_params->batch_count,
|
||||
sd_img_gen_params->ref_images_count,
|
||||
BOOL_STR(sd_img_gen_params->increase_ref_index),
|
||||
@ -1759,6 +1809,7 @@ void sd_vid_gen_params_init(sd_vid_gen_params_t* sd_vid_gen_params) {
|
||||
sd_vid_gen_params->seed = -1;
|
||||
sd_vid_gen_params->video_frames = 6;
|
||||
sd_vid_gen_params->moe_boundary = 0.875f;
|
||||
sd_vid_gen_params->vace_strength = 1.f;
|
||||
}
|
||||
|
||||
struct sd_ctx_t {
|
||||
@ -1794,6 +1845,17 @@ void free_sd_ctx(sd_ctx_t* sd_ctx) {
|
||||
free(sd_ctx);
|
||||
}
|
||||
|
||||
enum sample_method_t sd_get_default_sample_method(const sd_ctx_t* sd_ctx) {
|
||||
if (sd_ctx != NULL && sd_ctx->sd != NULL) {
|
||||
SDVersion version = sd_ctx->sd->version;
|
||||
if (sd_version_is_dit(version))
|
||||
return EULER;
|
||||
else
|
||||
return EULER_A;
|
||||
}
|
||||
return SAMPLE_METHOD_COUNT;
|
||||
}
|
||||
|
||||
sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
struct ggml_context* work_ctx,
|
||||
ggml_tensor* init_latent,
|
||||
@ -1978,7 +2040,7 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
struct ggml_tensor* image_hint = NULL;
|
||||
if (control_image.data != NULL) {
|
||||
image_hint = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_image_to_tensor(control_image.data, image_hint);
|
||||
sd_image_to_tensor(control_image, image_hint);
|
||||
}
|
||||
|
||||
// Sample
|
||||
@ -2162,8 +2224,9 @@ ggml_tensor* generate_init_latent(sd_ctx_t* sd_ctx,
|
||||
}
|
||||
|
||||
sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_gen_params) {
|
||||
int width = sd_img_gen_params->width;
|
||||
int height = sd_img_gen_params->height;
|
||||
sd_ctx->sd->vae_tiling_params = sd_img_gen_params->vae_tiling_params;
|
||||
int width = sd_img_gen_params->width;
|
||||
int height = sd_img_gen_params->height;
|
||||
if (sd_version_is_dit(sd_ctx->sd->version)) {
|
||||
if (width % 16 || height % 16) {
|
||||
LOG_ERROR("Image dimensions must be must be a multiple of 16 on each axis for %s models. (Got %dx%d)",
|
||||
@ -2185,19 +2248,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
if (sd_version_is_sd3(sd_ctx->sd->version)) {
|
||||
params.mem_size *= 3;
|
||||
}
|
||||
if (sd_version_is_flux(sd_ctx->sd->version)) {
|
||||
params.mem_size *= 4;
|
||||
}
|
||||
if (sd_ctx->sd->stacked_id) {
|
||||
params.mem_size += static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
}
|
||||
params.mem_size += width * height * 3 * sizeof(float) * 3;
|
||||
params.mem_size += width * height * 3 * sizeof(float) * 3 * sd_img_gen_params->ref_images_count;
|
||||
params.mem_size *= sd_img_gen_params->batch_count;
|
||||
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
// LOG_DEBUG("mem_size %u ", params.mem_size);
|
||||
@ -2239,8 +2290,8 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
ggml_tensor* mask_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
|
||||
|
||||
sd_mask_to_tensor(sd_img_gen_params->mask_image.data, mask_img);
|
||||
sd_image_to_tensor(sd_img_gen_params->init_image.data, init_img);
|
||||
sd_image_to_tensor(sd_img_gen_params->mask_image, mask_img);
|
||||
sd_image_to_tensor(sd_img_gen_params->init_image, init_img);
|
||||
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
int64_t mask_channels = 1;
|
||||
@ -2331,7 +2382,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
sd_img_gen_params->ref_images[i].height,
|
||||
3,
|
||||
1);
|
||||
sd_image_to_tensor(sd_img_gen_params->ref_images[i].data, img);
|
||||
sd_image_to_tensor(sd_img_gen_params->ref_images[i], img);
|
||||
|
||||
ggml_tensor* latent = NULL;
|
||||
if (sd_ctx->sd->use_tiny_autoencoder) {
|
||||
@ -2358,6 +2409,11 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
}
|
||||
|
||||
enum sample_method_t sample_method = sd_img_gen_params->sample_params.sample_method;
|
||||
if (sample_method == SAMPLE_METHOD_DEFAULT) {
|
||||
sample_method = sd_get_default_sample_method(sd_ctx);
|
||||
}
|
||||
|
||||
sd_image_t* result_images = generate_image_internal(sd_ctx,
|
||||
work_ctx,
|
||||
init_latent,
|
||||
@ -2368,7 +2424,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
sd_img_gen_params->sample_params.eta,
|
||||
width,
|
||||
height,
|
||||
sd_img_gen_params->sample_params.sample_method,
|
||||
sample_method,
|
||||
sigmas,
|
||||
seed,
|
||||
sd_img_gen_params->batch_count,
|
||||
@ -2432,8 +2488,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(200 * 1024) * 1024; // 200 MB
|
||||
params.mem_size += width * height * frames * 3 * sizeof(float) * 2;
|
||||
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
// LOG_DEBUG("mem_size %u ", params.mem_size);
|
||||
@ -2460,6 +2515,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
ggml_tensor* clip_vision_output = NULL;
|
||||
ggml_tensor* concat_latent = NULL;
|
||||
ggml_tensor* denoise_mask = NULL;
|
||||
ggml_tensor* vace_context = NULL;
|
||||
int64_t ref_image_num = 0; // for vace
|
||||
if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-I2V-14B" ||
|
||||
sd_ctx->sd->diffusion_model->get_desc() == "Wan2.2-I2V-14B" ||
|
||||
sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-FLF2V-14B") {
|
||||
@ -2489,23 +2546,17 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 3);
|
||||
for (int i3 = 0; i3 < image->ne[3]; i3++) { // channels
|
||||
for (int i2 = 0; i2 < image->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < image->ne[1]; i1++) { // height
|
||||
for (int i0 = 0; i0 < image->ne[0]; i0++) { // width
|
||||
float value = 0.5f;
|
||||
if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image
|
||||
value = *(sd_vid_gen_params->init_image.data + i1 * width * 3 + i0 * 3 + i3);
|
||||
value /= 255.f;
|
||||
} else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data) {
|
||||
value = *(sd_vid_gen_params->end_image.data + i1 * width * 3 + i0 * 3 + i3);
|
||||
value /= 255.f;
|
||||
}
|
||||
ggml_tensor_set_f32(image, value, i0, i1, i2, i3);
|
||||
}
|
||||
}
|
||||
ggml_tensor_iter(image, [&](ggml_tensor* image, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = 0.5f;
|
||||
if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image
|
||||
value = *(sd_vid_gen_params->init_image.data + i1 * width * 3 + i0 * 3 + i3);
|
||||
value /= 255.f;
|
||||
} else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data) {
|
||||
value = *(sd_vid_gen_params->end_image.data + i1 * width * 3 + i0 * 3 + i3);
|
||||
value /= 255.f;
|
||||
}
|
||||
}
|
||||
ggml_tensor_set_f32(image, value, i0, i1, i2, i3);
|
||||
});
|
||||
|
||||
concat_latent = sd_ctx->sd->encode_first_stage(work_ctx, image); // [b*c, t, h/8, w/8]
|
||||
|
||||
@ -2520,21 +2571,15 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
concat_latent->ne[1],
|
||||
concat_latent->ne[2],
|
||||
4); // [b*4, t, w/8, h/8]
|
||||
for (int i3 = 0; i3 < concat_mask->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < concat_mask->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < concat_mask->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < concat_mask->ne[0]; i0++) {
|
||||
float value = 0.0f;
|
||||
if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image
|
||||
value = 1.0f;
|
||||
} else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data && i3 == 3) {
|
||||
value = 1.0f;
|
||||
}
|
||||
ggml_tensor_set_f32(concat_mask, value, i0, i1, i2, i3);
|
||||
}
|
||||
}
|
||||
ggml_tensor_iter(concat_mask, [&](ggml_tensor* concat_mask, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = 0.0f;
|
||||
if (i2 == 0 && sd_vid_gen_params->init_image.data) { // start image
|
||||
value = 1.0f;
|
||||
} else if (i2 == frames - 1 && sd_vid_gen_params->end_image.data && i3 == 3) {
|
||||
value = 1.0f;
|
||||
}
|
||||
}
|
||||
ggml_tensor_set_f32(concat_mask, value, i0, i1, i2, i3);
|
||||
});
|
||||
|
||||
concat_latent = ggml_tensor_concat(work_ctx, concat_mask, concat_latent, 3); // [b*(c+4), t, h/8, w/8]
|
||||
} else if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.2-TI2V-5B" && sd_vid_gen_params->init_image.data) {
|
||||
@ -2542,7 +2587,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_image_to_tensor(sd_vid_gen_params->init_image.data, init_img);
|
||||
sd_image_to_tensor(sd_vid_gen_params->init_image, init_img);
|
||||
init_img = ggml_reshape_4d(work_ctx, init_img, width, height, 1, 3);
|
||||
|
||||
auto init_image_latent = sd_ctx->sd->encode_first_stage(work_ctx, init_img); // [b*c, 1, h/16, w/16]
|
||||
@ -2553,22 +2598,95 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
|
||||
sd_ctx->sd->process_latent_out(init_latent);
|
||||
|
||||
for (int i3 = 0; i3 < init_image_latent->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < init_image_latent->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < init_image_latent->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < init_image_latent->ne[0]; i0++) {
|
||||
float value = ggml_tensor_get_f32(init_image_latent, i0, i1, i2, i3);
|
||||
ggml_tensor_set_f32(init_latent, value, i0, i1, i2, i3);
|
||||
if (i3 == 0) {
|
||||
ggml_tensor_set_f32(denoise_mask, 0.f, i0, i1, i2, i3);
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_tensor_iter(init_image_latent, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = ggml_tensor_get_f32(t, i0, i1, i2, i3);
|
||||
ggml_tensor_set_f32(init_latent, value, i0, i1, i2, i3);
|
||||
if (i3 == 0) {
|
||||
ggml_tensor_set_f32(denoise_mask, 0.f, i0, i1, i2, i3);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
sd_ctx->sd->process_latent_in(init_latent);
|
||||
|
||||
int64_t t2 = ggml_time_ms();
|
||||
LOG_INFO("encode_first_stage completed, taking %" PRId64 " ms", t2 - t1);
|
||||
} else if (sd_ctx->sd->diffusion_model->get_desc() == "Wan2.1-VACE-1.3B" ||
|
||||
sd_ctx->sd->diffusion_model->get_desc() == "Wan2.x-VACE-14B") {
|
||||
LOG_INFO("VACE");
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ggml_tensor* ref_image_latent = NULL;
|
||||
if (sd_vid_gen_params->init_image.data) {
|
||||
ggml_tensor* ref_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_image_to_tensor(sd_vid_gen_params->init_image, ref_img);
|
||||
ref_img = ggml_reshape_4d(work_ctx, ref_img, width, height, 1, 3);
|
||||
|
||||
ref_image_latent = sd_ctx->sd->encode_first_stage(work_ctx, ref_img); // [b*c, 1, h/16, w/16]
|
||||
sd_ctx->sd->process_latent_in(ref_image_latent);
|
||||
auto zero_latent = ggml_dup_tensor(work_ctx, ref_image_latent);
|
||||
ggml_set_f32(zero_latent, 0.f);
|
||||
ref_image_latent = ggml_tensor_concat(work_ctx, ref_image_latent, zero_latent, 3); // [b*2*c, 1, h/16, w/16]
|
||||
}
|
||||
|
||||
ggml_tensor* control_video = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 3);
|
||||
ggml_tensor_iter(control_video, [&](ggml_tensor* control_video, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = 0.5f;
|
||||
if (i2 < sd_vid_gen_params->control_frames_size) {
|
||||
value = sd_image_get_f32(sd_vid_gen_params->control_frames[i2], i0, i1, i3);
|
||||
}
|
||||
ggml_tensor_set_f32(control_video, value, i0, i1, i2, i3);
|
||||
});
|
||||
ggml_tensor* mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, frames, 1);
|
||||
ggml_set_f32(mask, 1.0f);
|
||||
ggml_tensor* inactive = ggml_dup_tensor(work_ctx, control_video);
|
||||
ggml_tensor* reactive = ggml_dup_tensor(work_ctx, control_video);
|
||||
|
||||
ggml_tensor_iter(control_video, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float control_video_value = ggml_tensor_get_f32(t, i0, i1, i2, i3) - 0.5f;
|
||||
float mask_value = ggml_tensor_get_f32(mask, i0, i1, i2, 0);
|
||||
float inactive_value = (control_video_value * (1.f - mask_value)) + 0.5f;
|
||||
float reactive_value = (control_video_value * mask_value) + 0.5f;
|
||||
|
||||
ggml_tensor_set_f32(inactive, inactive_value, i0, i1, i2, i3);
|
||||
ggml_tensor_set_f32(reactive, reactive_value, i0, i1, i2, i3);
|
||||
});
|
||||
|
||||
inactive = sd_ctx->sd->encode_first_stage(work_ctx, inactive); // [b*c, t, h/8, w/8]
|
||||
reactive = sd_ctx->sd->encode_first_stage(work_ctx, reactive); // [b*c, t, h/8, w/8]
|
||||
|
||||
sd_ctx->sd->process_latent_in(inactive);
|
||||
sd_ctx->sd->process_latent_in(reactive);
|
||||
|
||||
int64_t length = inactive->ne[2];
|
||||
if (ref_image_latent) {
|
||||
length += 1;
|
||||
frames = (length - 1) * 4 + 1;
|
||||
ref_image_num = 1;
|
||||
}
|
||||
vace_context = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, inactive->ne[0], inactive->ne[1], length, 96); // [b*96, t, h/8, w/8]
|
||||
ggml_tensor_iter(vace_context, [&](ggml_tensor* vace_context, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value;
|
||||
if (i3 < 32) {
|
||||
if (ref_image_latent && i2 == 0) {
|
||||
value = ggml_tensor_get_f32(ref_image_latent, i0, i1, 0, i3);
|
||||
} else {
|
||||
if (i3 < 16) {
|
||||
value = ggml_tensor_get_f32(inactive, i0, i1, i2 - ref_image_num, i3);
|
||||
} else {
|
||||
value = ggml_tensor_get_f32(reactive, i0, i1, i2 - ref_image_num, i3 - 16);
|
||||
}
|
||||
}
|
||||
} else { // mask
|
||||
if (ref_image_latent && i2 == 0) {
|
||||
value = 0.f;
|
||||
} else {
|
||||
int64_t vae_stride = 8;
|
||||
int64_t mask_height_index = i1 * vae_stride + (i3 - 32) / vae_stride;
|
||||
int64_t mask_width_index = i0 * vae_stride + (i3 - 32) % vae_stride;
|
||||
value = ggml_tensor_get_f32(mask, mask_width_index, mask_height_index, i2 - ref_image_num, 0);
|
||||
}
|
||||
}
|
||||
ggml_tensor_set_f32(vace_context, value, i0, i1, i2, i3);
|
||||
});
|
||||
int64_t t2 = ggml_time_ms();
|
||||
LOG_INFO("encode_first_stage completed, taking %" PRId64 " ms", t2 - t1);
|
||||
}
|
||||
@ -2650,7 +2768,10 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
-1,
|
||||
{},
|
||||
{},
|
||||
denoise_mask);
|
||||
false,
|
||||
denoise_mask,
|
||||
vace_context,
|
||||
sd_vid_gen_params->vace_strength);
|
||||
|
||||
int64_t sampling_end = ggml_time_ms();
|
||||
LOG_INFO("sampling(high noise) completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000);
|
||||
@ -2682,7 +2803,10 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
-1,
|
||||
{},
|
||||
{},
|
||||
denoise_mask);
|
||||
false,
|
||||
denoise_mask,
|
||||
vace_context,
|
||||
sd_vid_gen_params->vace_strength);
|
||||
|
||||
int64_t sampling_end = ggml_time_ms();
|
||||
LOG_INFO("sampling completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000);
|
||||
@ -2691,6 +2815,20 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
}
|
||||
}
|
||||
|
||||
if (ref_image_num > 0) {
|
||||
ggml_tensor* trim_latent = ggml_new_tensor_4d(work_ctx,
|
||||
GGML_TYPE_F32,
|
||||
final_latent->ne[0],
|
||||
final_latent->ne[1],
|
||||
final_latent->ne[2] - ref_image_num,
|
||||
final_latent->ne[3]);
|
||||
ggml_tensor_iter(trim_latent, [&](ggml_tensor* trim_latent, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
|
||||
float value = ggml_tensor_get_f32(final_latent, i0, i1, i2 + ref_image_num, i3);
|
||||
ggml_tensor_set_f32(trim_latent, value, i0, i1, i2, i3);
|
||||
});
|
||||
final_latent = trim_latent;
|
||||
}
|
||||
|
||||
int64_t t4 = ggml_time_ms();
|
||||
LOG_INFO("generating latent video completed, taking %.2fs", (t4 - t2) * 1.0f / 1000);
|
||||
struct ggml_tensor* vid = sd_ctx->sd->decode_first_stage(work_ctx, final_latent, true);
|
||||
|
||||
@ -35,7 +35,7 @@ enum rng_type_t {
|
||||
};
|
||||
|
||||
enum sample_method_t {
|
||||
EULER_A,
|
||||
SAMPLE_METHOD_DEFAULT,
|
||||
EULER,
|
||||
HEUN,
|
||||
DPM2,
|
||||
@ -47,6 +47,7 @@ enum sample_method_t {
|
||||
LCM,
|
||||
DDIM_TRAILING,
|
||||
TCD,
|
||||
EULER_A,
|
||||
SAMPLE_METHOD_COUNT
|
||||
};
|
||||
|
||||
@ -113,6 +114,15 @@ enum sd_log_level_t {
|
||||
SD_LOG_ERROR
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
bool enabled;
|
||||
int tile_size_x;
|
||||
int tile_size_y;
|
||||
float target_overlap;
|
||||
float rel_size_x;
|
||||
float rel_size_y;
|
||||
} sd_tiling_params_t;
|
||||
|
||||
typedef struct {
|
||||
const char* model_path;
|
||||
const char* clip_l_path;
|
||||
@ -128,7 +138,6 @@ typedef struct {
|
||||
const char* embedding_dir;
|
||||
const char* stacked_id_embed_dir;
|
||||
bool vae_decode_only;
|
||||
bool vae_tiling;
|
||||
bool free_params_immediately;
|
||||
int n_threads;
|
||||
enum sd_type_t wtype;
|
||||
@ -196,6 +205,7 @@ typedef struct {
|
||||
float style_strength;
|
||||
bool normalize_input;
|
||||
const char* input_id_images_path;
|
||||
sd_tiling_params_t vae_tiling_params;
|
||||
} sd_img_gen_params_t;
|
||||
|
||||
typedef struct {
|
||||
@ -204,6 +214,8 @@ typedef struct {
|
||||
int clip_skip;
|
||||
sd_image_t init_image;
|
||||
sd_image_t end_image;
|
||||
sd_image_t* control_frames;
|
||||
int control_frames_size;
|
||||
int width;
|
||||
int height;
|
||||
sd_sample_params_t sample_params;
|
||||
@ -212,6 +224,7 @@ typedef struct {
|
||||
float strength;
|
||||
int64_t seed;
|
||||
int video_frames;
|
||||
float vace_strength;
|
||||
} sd_vid_gen_params_t;
|
||||
|
||||
typedef struct sd_ctx_t sd_ctx_t;
|
||||
@ -238,6 +251,7 @@ SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
|
||||
|
||||
SD_API sd_ctx_t* new_sd_ctx(const sd_ctx_params_t* sd_ctx_params);
|
||||
SD_API void free_sd_ctx(sd_ctx_t* sd_ctx);
|
||||
SD_API enum sample_method_t sd_get_default_sample_method(const sd_ctx_t* sd_ctx);
|
||||
|
||||
SD_API void sd_sample_params_init(sd_sample_params_t* sample_params);
|
||||
SD_API char* sd_sample_params_to_str(const sd_sample_params_t* sample_params);
|
||||
@ -267,14 +281,12 @@ SD_API bool convert(const char* input_path,
|
||||
enum sd_type_t output_type,
|
||||
const char* tensor_type_rules);
|
||||
|
||||
SD_API uint8_t* preprocess_canny(uint8_t* img,
|
||||
int width,
|
||||
int height,
|
||||
float high_threshold,
|
||||
float low_threshold,
|
||||
float weak,
|
||||
float strong,
|
||||
bool inverse);
|
||||
SD_API bool preprocess_canny(sd_image_t image,
|
||||
float high_threshold,
|
||||
float low_threshold,
|
||||
float weak,
|
||||
float strong,
|
||||
bool inverse);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@ -69,8 +69,7 @@ struct UpscalerGGML {
|
||||
input_image.width, input_image.height, output_width, output_height);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = output_width * output_height * 3 * sizeof(float) * 2;
|
||||
params.mem_size += 2 * ggml_tensor_overhead();
|
||||
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
||||
@ -80,9 +79,9 @@ struct UpscalerGGML {
|
||||
LOG_ERROR("ggml_init() failed");
|
||||
return upscaled_image;
|
||||
}
|
||||
LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
|
||||
// LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
|
||||
ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1);
|
||||
sd_image_to_tensor(input_image.data, input_image_tensor);
|
||||
sd_image_to_tensor(input_image, input_image_tensor);
|
||||
|
||||
ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1);
|
||||
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
|
||||
|
||||
2
vae.hpp
2
vae.hpp
@ -588,7 +588,7 @@ struct AutoEncoderKL : public VAE {
|
||||
};
|
||||
// ggml_set_f32(z, 0.5f);
|
||||
// print_ggml_tensor(z);
|
||||
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
|
||||
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
|
||||
}
|
||||
|
||||
void test() {
|
||||
|
||||
207
wan.hpp
207
wan.hpp
@ -1219,7 +1219,7 @@ namespace WAN {
|
||||
|
||||
void test() {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(1000 * 1024 * 1024); // 10 MB
|
||||
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
||||
@ -1532,13 +1532,13 @@ namespace WAN {
|
||||
blocks["ffn.2"] = std::shared_ptr<GGMLBlock>(new Linear(ffn_dim, dim));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx,
|
||||
ggml_backend_t backend,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* e,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* context,
|
||||
int64_t context_img_len = 257) {
|
||||
virtual struct ggml_tensor* forward(struct ggml_context* ctx,
|
||||
ggml_backend_t backend,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* e,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* context,
|
||||
int64_t context_img_len = 257) {
|
||||
// x: [N, n_token, dim]
|
||||
// e: [N, 6, dim] or [N, T, 6, dim]
|
||||
// context: [N, context_img_len + context_txt_len, dim]
|
||||
@ -1584,6 +1584,59 @@ namespace WAN {
|
||||
}
|
||||
};
|
||||
|
||||
class VaceWanAttentionBlock : public WanAttentionBlock {
|
||||
protected:
|
||||
int block_id;
|
||||
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_types, GGML_TYPE_F32);
|
||||
params["modulation"] = ggml_new_tensor_3d(ctx, wtype, dim, 6, 1);
|
||||
}
|
||||
|
||||
public:
|
||||
VaceWanAttentionBlock(bool t2v_cross_attn,
|
||||
int64_t dim,
|
||||
int64_t ffn_dim,
|
||||
int64_t num_heads,
|
||||
bool qk_norm = true,
|
||||
bool cross_attn_norm = false,
|
||||
float eps = 1e-6,
|
||||
int block_id = 0,
|
||||
bool flash_attn = false)
|
||||
: WanAttentionBlock(t2v_cross_attn, dim, ffn_dim, num_heads, qk_norm, cross_attn_norm, eps, flash_attn), block_id(block_id) {
|
||||
if (block_id == 0) {
|
||||
blocks["before_proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
|
||||
}
|
||||
blocks["after_proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor*, ggml_tensor*> forward(struct ggml_context* ctx,
|
||||
ggml_backend_t backend,
|
||||
struct ggml_tensor* c,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* e,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* context,
|
||||
int64_t context_img_len = 257) {
|
||||
// x: [N, n_token, dim]
|
||||
// e: [N, 6, dim] or [N, T, 6, dim]
|
||||
// context: [N, context_img_len + context_txt_len, dim]
|
||||
// return [N, n_token, dim]
|
||||
if (block_id == 0) {
|
||||
auto before_proj = std::dynamic_pointer_cast<Linear>(blocks["before_proj"]);
|
||||
|
||||
c = before_proj->forward(ctx, c);
|
||||
c = ggml_add(ctx, c, x);
|
||||
}
|
||||
|
||||
auto after_proj = std::dynamic_pointer_cast<Linear>(blocks["after_proj"]);
|
||||
|
||||
c = WanAttentionBlock::forward(ctx, backend, c, e, pe, context, context_img_len);
|
||||
auto c_skip = after_proj->forward(ctx, c);
|
||||
|
||||
return {c_skip, c};
|
||||
}
|
||||
};
|
||||
|
||||
class Head : public GGMLBlock {
|
||||
protected:
|
||||
int dim;
|
||||
@ -1680,22 +1733,25 @@ namespace WAN {
|
||||
};
|
||||
|
||||
struct WanParams {
|
||||
std::string model_type = "t2v";
|
||||
std::tuple<int, int, int> patch_size = {1, 2, 2};
|
||||
int64_t text_len = 512;
|
||||
int64_t in_dim = 16;
|
||||
int64_t dim = 2048;
|
||||
int64_t ffn_dim = 8192;
|
||||
int64_t freq_dim = 256;
|
||||
int64_t text_dim = 4096;
|
||||
int64_t out_dim = 16;
|
||||
int64_t num_heads = 16;
|
||||
int64_t num_layers = 32;
|
||||
bool qk_norm = true;
|
||||
bool cross_attn_norm = true;
|
||||
float eps = 1e-6;
|
||||
int64_t flf_pos_embed_token_number = 0;
|
||||
int theta = 10000;
|
||||
std::string model_type = "t2v";
|
||||
std::tuple<int, int, int> patch_size = {1, 2, 2};
|
||||
int64_t text_len = 512;
|
||||
int64_t in_dim = 16;
|
||||
int64_t dim = 2048;
|
||||
int64_t ffn_dim = 8192;
|
||||
int64_t freq_dim = 256;
|
||||
int64_t text_dim = 4096;
|
||||
int64_t out_dim = 16;
|
||||
int64_t num_heads = 16;
|
||||
int64_t num_layers = 32;
|
||||
int64_t vace_layers = 0;
|
||||
int64_t vace_in_dim = 96;
|
||||
std::map<int, int> vace_layers_mapping = {};
|
||||
bool qk_norm = true;
|
||||
bool cross_attn_norm = true;
|
||||
float eps = 1e-6;
|
||||
int64_t flf_pos_embed_token_number = 0;
|
||||
int theta = 10000;
|
||||
// wan2.1 1.3B: 1536/12, wan2.1/2.2 14B: 5120/40, wan2.2 5B: 3074/24
|
||||
std::vector<int> axes_dim = {44, 42, 42};
|
||||
int64_t axes_dim_sum = 128;
|
||||
@ -1746,6 +1802,31 @@ namespace WAN {
|
||||
if (params.model_type == "i2v") {
|
||||
blocks["img_emb"] = std::shared_ptr<GGMLBlock>(new MLPProj(1280, params.dim, params.flf_pos_embed_token_number));
|
||||
}
|
||||
|
||||
// vace
|
||||
if (params.vace_layers > 0) {
|
||||
for (int i = 0; i < params.vace_layers; i++) {
|
||||
auto block = std::shared_ptr<GGMLBlock>(new VaceWanAttentionBlock(params.model_type == "t2v",
|
||||
params.dim,
|
||||
params.ffn_dim,
|
||||
params.num_heads,
|
||||
params.qk_norm,
|
||||
params.cross_attn_norm,
|
||||
params.eps,
|
||||
i,
|
||||
params.flash_attn));
|
||||
blocks["vace_blocks." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
int step = params.num_layers / params.vace_layers;
|
||||
int n = 0;
|
||||
for (int i = 0; i < params.num_layers; i += step) {
|
||||
this->params.vace_layers_mapping[i] = n;
|
||||
n++;
|
||||
}
|
||||
|
||||
blocks["vace_patch_embedding"] = std::shared_ptr<GGMLBlock>(new Conv3d(params.vace_in_dim, params.dim, params.patch_size, params.patch_size));
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
@ -1795,9 +1876,12 @@ namespace WAN {
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* clip_fea = NULL,
|
||||
int64_t N = 1) {
|
||||
struct ggml_tensor* clip_fea = NULL,
|
||||
struct ggml_tensor* vace_context = NULL,
|
||||
float vace_strength = 1.f,
|
||||
int64_t N = 1) {
|
||||
// x: [N*C, T, H, W], C => in_dim
|
||||
// vace_context: [N*vace_in_dim, T, H, W]
|
||||
// timestep: [N,] or [T]
|
||||
// context: [N, L, text_dim]
|
||||
// return: [N, t_len*h_len*w_len, out_dim*pt*ph*pw]
|
||||
@ -1845,10 +1929,35 @@ namespace WAN {
|
||||
context_img_len = clip_fea->ne[1]; // 257
|
||||
}
|
||||
|
||||
// vace_patch_embedding
|
||||
ggml_tensor* c = NULL;
|
||||
if (params.vace_layers > 0) {
|
||||
auto vace_patch_embedding = std::dynamic_pointer_cast<Conv3d>(blocks["vace_patch_embedding"]);
|
||||
|
||||
c = vace_patch_embedding->forward(ctx, vace_context); // [N*dim, t_len, h_len, w_len]
|
||||
c = ggml_reshape_3d(ctx, c, c->ne[0] * c->ne[1] * c->ne[2], c->ne[3] / N, N); // [N, dim, t_len*h_len*w_len]
|
||||
c = ggml_nn_cont(ctx, ggml_torch_permute(ctx, c, 1, 0, 2, 3)); // [N, t_len*h_len*w_len, dim]
|
||||
}
|
||||
|
||||
auto x_orig = x;
|
||||
|
||||
for (int i = 0; i < params.num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<WanAttentionBlock>(blocks["blocks." + std::to_string(i)]);
|
||||
|
||||
x = block->forward(ctx, backend, x, e0, pe, context, context_img_len);
|
||||
|
||||
auto iter = params.vace_layers_mapping.find(i);
|
||||
if (iter != params.vace_layers_mapping.end()) {
|
||||
int n = iter->second;
|
||||
|
||||
auto vace_block = std::dynamic_pointer_cast<VaceWanAttentionBlock>(blocks["vace_blocks." + std::to_string(n)]);
|
||||
|
||||
auto result = vace_block->forward(ctx, backend, c, x_orig, e0, pe, context, context_img_len);
|
||||
auto c_skip = result.first;
|
||||
c = result.second;
|
||||
c_skip = ggml_scale(ctx, c_skip, vace_strength);
|
||||
x = ggml_add(ctx, x, c_skip);
|
||||
}
|
||||
}
|
||||
|
||||
x = head->forward(ctx, x, e); // [N, t_len*h_len*w_len, pt*ph*pw*out_dim]
|
||||
@ -1864,6 +1973,8 @@ namespace WAN {
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* clip_fea = NULL,
|
||||
struct ggml_tensor* time_dim_concat = NULL,
|
||||
struct ggml_tensor* vace_context = NULL,
|
||||
float vace_strength = 1.f,
|
||||
int64_t N = 1) {
|
||||
// Forward pass of DiT.
|
||||
// x: [N*C, T, H, W]
|
||||
@ -1892,7 +2003,7 @@ namespace WAN {
|
||||
t_len = ((x->ne[2] + (std::get<0>(params.patch_size) / 2)) / std::get<0>(params.patch_size));
|
||||
}
|
||||
|
||||
auto out = forward_orig(ctx, backend, x, timestep, context, pe, clip_fea, N); // [N, t_len*h_len*w_len, pt*ph*pw*C]
|
||||
auto out = forward_orig(ctx, backend, x, timestep, context, pe, clip_fea, vace_context, vace_strength, N); // [N, t_len*h_len*w_len, pt*ph*pw*C]
|
||||
|
||||
out = unpatchify(ctx, out, t_len, h_len, w_len); // [N*C, (T+pad_t) + (T2+pad_t2), H + pad_h, W + pad_w]
|
||||
|
||||
@ -1927,7 +2038,19 @@ namespace WAN {
|
||||
std::string tensor_name = pair.first;
|
||||
if (tensor_name.find(prefix) == std::string::npos)
|
||||
continue;
|
||||
size_t pos = tensor_name.find("blocks.");
|
||||
size_t pos = tensor_name.find("vace_blocks.");
|
||||
if (pos != std::string::npos) {
|
||||
tensor_name = tensor_name.substr(pos); // remove prefix
|
||||
auto items = split_string(tensor_name, '.');
|
||||
if (items.size() > 1) {
|
||||
int block_index = atoi(items[1].c_str());
|
||||
if (block_index + 1 > wan_params.vace_layers) {
|
||||
wan_params.vace_layers = block_index + 1;
|
||||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
pos = tensor_name.find("blocks.");
|
||||
if (pos != std::string::npos) {
|
||||
tensor_name = tensor_name.substr(pos); // remove prefix
|
||||
auto items = split_string(tensor_name, '.');
|
||||
@ -1937,6 +2060,7 @@ namespace WAN {
|
||||
wan_params.num_layers = block_index + 1;
|
||||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (tensor_name.find("img_emb") != std::string::npos) {
|
||||
wan_params.model_type = "i2v";
|
||||
@ -1958,7 +2082,11 @@ namespace WAN {
|
||||
wan_params.out_dim = 48;
|
||||
wan_params.text_len = 512;
|
||||
} else {
|
||||
desc = "Wan2.1-T2V-1.3B";
|
||||
if (wan_params.vace_layers > 0) {
|
||||
desc = "Wan2.1-VACE-1.3B";
|
||||
} else {
|
||||
desc = "Wan2.1-T2V-1.3B";
|
||||
}
|
||||
wan_params.dim = 1536;
|
||||
wan_params.eps = 1e-06;
|
||||
wan_params.ffn_dim = 8960;
|
||||
@ -1974,7 +2102,11 @@ namespace WAN {
|
||||
desc = "Wan2.2-I2V-14B";
|
||||
wan_params.in_dim = 36;
|
||||
} else {
|
||||
desc = "Wan2.x-T2V-14B";
|
||||
if (wan_params.vace_layers > 0) {
|
||||
desc = "Wan2.x-VACE-14B";
|
||||
} else {
|
||||
desc = "Wan2.x-T2V-14B";
|
||||
}
|
||||
wan_params.in_dim = 16;
|
||||
}
|
||||
} else {
|
||||
@ -2015,7 +2147,9 @@ namespace WAN {
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* clip_fea = NULL,
|
||||
struct ggml_tensor* c_concat = NULL,
|
||||
struct ggml_tensor* time_dim_concat = NULL) {
|
||||
struct ggml_tensor* time_dim_concat = NULL,
|
||||
struct ggml_tensor* vace_context = NULL,
|
||||
float vace_strength = 1.f) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, WAN_GRAPH_SIZE, false);
|
||||
|
||||
x = to_backend(x);
|
||||
@ -2024,6 +2158,7 @@ namespace WAN {
|
||||
clip_fea = to_backend(clip_fea);
|
||||
c_concat = to_backend(c_concat);
|
||||
time_dim_concat = to_backend(time_dim_concat);
|
||||
vace_context = to_backend(vace_context);
|
||||
|
||||
pe_vec = Rope::gen_wan_pe(x->ne[2],
|
||||
x->ne[1],
|
||||
@ -2053,7 +2188,9 @@ namespace WAN {
|
||||
context,
|
||||
pe,
|
||||
clip_fea,
|
||||
time_dim_concat);
|
||||
time_dim_concat,
|
||||
vace_context,
|
||||
vace_strength);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
@ -2067,10 +2204,12 @@ namespace WAN {
|
||||
struct ggml_tensor* clip_fea = NULL,
|
||||
struct ggml_tensor* c_concat = NULL,
|
||||
struct ggml_tensor* time_dim_concat = NULL,
|
||||
struct ggml_tensor* vace_context = NULL,
|
||||
float vace_strength = 1.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(x, timesteps, context, clip_fea, c_concat, time_dim_concat);
|
||||
return build_graph(x, timesteps, context, clip_fea, c_concat, time_dim_concat, vace_context, vace_strength);
|
||||
};
|
||||
|
||||
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
|
||||
@ -2108,7 +2247,7 @@ namespace WAN {
|
||||
struct ggml_tensor* out = NULL;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, NULL, NULL, NULL, &out, work_ctx);
|
||||
compute(8, x, timesteps, context, NULL, NULL, NULL, NULL, 1.f, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user