Compare commits

..

No commits in common. "ce1bcc74a6bf1f2c187d4d8ea14ee247cf562af2" and "036ba9e6d8901d2b4991c5dc1ec2ace538947c93" have entirely different histories.

7 changed files with 4 additions and 158 deletions

View File

@ -190,13 +190,12 @@ arguments:
--rng {std_default, cuda} RNG (default: cuda)
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
-b, --batch-count COUNT number of images to generate.
--schedule {discrete, karras, ays} Denoiser sigma schedule (default: discrete)
--schedule {discrete, karras} Denoiser sigma schedule (default: discrete)
--clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
--vae-tiling process vae in tiles to reduce memory usage
--control-net-cpu keep controlnet in cpu (for low vram)
--canny apply canny preprocessor (edge detection)
--color colors the logging tags according to level
-v, --verbose print extra info
```

View File

@ -13,7 +13,6 @@ struct SigmaSchedule {
float alphas_cumprod[TIMESTEPS];
float sigmas[TIMESTEPS];
float log_sigmas[TIMESTEPS];
int version = 0;
virtual std::vector<float> get_sigmas(uint32_t n) = 0;
@ -76,144 +75,6 @@ struct DiscreteSchedule : SigmaSchedule {
}
};
/*
https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
*/
struct AYSSchedule : SigmaSchedule {
/* interp and linear_interp adapted from dpilger26's NumCpp library:
* https://github.com/dpilger26/NumCpp/tree/5e40aab74d14e257d65d3dc385c9ff9e2120c60e */
constexpr double interp(double left, double right, double perc) noexcept {
return (left * (1. - perc)) + (right * perc);
}
/* This will make the assumption that the reference x and y values are
* already sorted in ascending order because they are being generated as
* such in the calling function */
std::vector<double> linear_interp(std::vector<float> new_x,
const std::vector<float> ref_x,
const std::vector<float> ref_y) {
const size_t len_x = new_x.size();
size_t i = 0;
size_t j = 0;
std::vector<double> new_y(len_x);
if (ref_x.size() != ref_y.size()) {
LOG_ERROR("Linear Interoplation Failed: length mismatch");
return new_y;
}
/* serves as the bounds checking for the below while loop */
if ((new_x[0] < ref_x[0]) || (new_x[new_x.size() - 1] > ref_x[ref_x.size() - 1])) {
LOG_ERROR("Linear Interpolation Failed: bad bounds");
return new_y;
}
while (i < len_x) {
if ((ref_x[j] > new_x[i]) || (new_x[i] > ref_x[j + 1])) {
j++;
continue;
}
const double perc = static_cast<double>(new_x[i] - ref_x[j]) / static_cast<double>(ref_x[j + 1] - ref_x[j]);
new_y[i] = interp(ref_y[j], ref_y[j + 1], perc);
i++;
}
return new_y;
}
std::vector<float> linear_space(const float start, const float end, const size_t num_points) {
std::vector<float> result(num_points);
const float inc = (end - start) / (static_cast<float>(num_points - 1));
if (num_points > 0) {
result[0] = start;
for (size_t i = 1; i < num_points; i++) {
result[i] = result[i - 1] + inc;
}
}
return result;
}
std::vector<float> log_linear_interpolation(std::vector<float> sigma_in,
const size_t new_len) {
const size_t s_len = sigma_in.size();
std::vector<float> x_vals = linear_space(0.f, 1.f, s_len);
std::vector<float> y_vals(s_len);
/* Reverses the input array to be ascending instead of descending,
* also hits it with a log, it is log-linear interpolation after all */
for (size_t i = 0; i < s_len; i++) {
y_vals[i] = std::log(sigma_in[s_len - i - 1]);
}
std::vector<float> new_x_vals = linear_space(0.f, 1.f, new_len);
std::vector<double> new_y_vals = linear_interp(new_x_vals, x_vals, y_vals);
std::vector<float> results(new_len);
for (size_t i = 0; i < new_len; i++) {
results[i] = static_cast<float>(std::exp(new_y_vals[new_len - i - 1]));
}
return results;
}
std::vector<float> get_sigmas(uint32_t len) {
const std::vector<float> noise_levels[] = {
/* SD1.5 */
{14.6146412293f, 6.4745760956f, 3.8636745985f, 2.6946151520f,
1.8841921177f, 1.3943805092f, 0.9642583904f, 0.6523686016f,
0.3977456272f, 0.1515232662f, 0.0291671582f},
/* SDXL */
{14.6146412293f, 6.3184485287f, 3.7681790315f, 2.1811480769f,
1.3405244945f, 0.8620721141f, 0.5550693289f, 0.3798540708f,
0.2332364134f, 0.1114188177f, 0.0291671582f},
/* SVD */
{700.00f, 54.5f, 15.886f, 7.977f, 4.248f, 1.789f, 0.981f, 0.403f,
0.173f, 0.034f, 0.002f},
};
std::vector<float> inputs;
std::vector<float> results(len + 1);
switch (version) {
case VERSION_2_x: /* fallthrough */
LOG_WARN("AYS not designed for SD2.X models");
case VERSION_1_x:
LOG_INFO("AYS using SD1.5 noise levels");
inputs = noise_levels[0];
break;
case VERSION_XL:
LOG_INFO("AYS using SDXL noise levels");
inputs = noise_levels[1];
break;
case VERSION_SVD:
LOG_INFO("AYS using SVD noise levels");
inputs = noise_levels[2];
break;
default:
LOG_ERROR("Version not compatable with AYS scheduler");
return results;
}
/* Stretches those pre-calculated reference levels out to the desired
* size using log-linear interpolation */
if ((len + 1) != inputs.size()) {
results = log_linear_interpolation(inputs, len + 1);
} else {
results = inputs;
}
/* Not sure if this is strictly neccessary */
results[len] = 0.0f;
return results;
}
};
struct KarrasSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n) {
// These *COULD* be function arguments here,
@ -261,4 +122,4 @@ struct CompVisVDenoiser : public Denoiser {
}
};
#endif // __DENOISER_HPP__
#endif // __DENOISER_HPP__

View File

@ -43,7 +43,6 @@ const char* schedule_str[] = {
"default",
"discrete",
"karras",
"ays",
};
const char* modes_str[] = {
@ -191,13 +190,12 @@ void print_usage(int argc, const char* argv[]) {
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
printf(" -b, --batch-count COUNT number of images to generate.\n");
printf(" --schedule {discrete, karras, ays} Denoiser sigma schedule (default: discrete)\n");
printf(" --schedule {discrete, karras} Denoiser sigma schedule (default: discrete)\n");
printf(" --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
printf(" --canny apply canny preprocessor (edge detection)\n");
printf(" --color Colors the logging tags according to level\n");
printf(" -v, --verbose print extra info\n");
}

View File

@ -454,7 +454,7 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
on_processing(input_tile, NULL, true);
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
int num_tiles = (input_width * input_height) / (non_tile_overlap * non_tile_overlap);
LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(1, num_tiles, 0.0f);
int tile_count = 1;

View File

@ -888,12 +888,6 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
}
}
// ggml/src/ggml.c:2745
if (n_dims < 1 || n_dims > GGML_MAX_DIMS) {
LOG_ERROR("skip tensor '%s' with n_dims %d", name.c_str(), n_dims);
continue;
}
TensorStorage tensor_storage(prefix + name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin);
tensor_storage.reverse_ne();

View File

@ -450,11 +450,6 @@ public:
LOG_INFO("running with Karras schedule");
denoiser->schedule = std::make_shared<KarrasSchedule>();
break;
case AYS:
LOG_INFO("Running with Align-Your-Steps schedule");
denoiser->schedule = std::make_shared<AYSSchedule>();
denoiser->schedule->version = version;
break;
case DEFAULT:
// Don't touch anything.
break;

View File

@ -49,7 +49,6 @@ enum schedule_t {
DEFAULT,
DISCRETE,
KARRAS,
AYS,
N_SCHEDULES
};