Compare commits

..

4 Commits

Author SHA1 Message Date
leejet
fce6afcc6a
feat: add sd3 flash attn support (#815) 2025-09-11 23:24:29 +08:00
Erik Scholz
49d6570c43
feat: add SmoothStep Scheduler (#813) 2025-09-11 23:17:46 +08:00
clibdev
6bbaf161ad
chore: add install() support in CMakeLists.txt (#540) 2025-09-11 22:24:16 +08:00
clibdev
87cdbd5978
feat: use log_printf to print ggml logs (#545) 2025-09-11 22:16:05 +08:00
11 changed files with 105 additions and 35 deletions

4
.gitignore vendored
View File

@ -1,10 +1,10 @@
build*/
cmake-build-*/
test/
.vscode/
.idea/
.cache/
*.swp
.vscode/
.idea/
*.bat
*.bin
*.exe

View File

@ -149,3 +149,7 @@ if (SD_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
set(SD_PUBLIC_HEADERS stable-diffusion.h)
set_target_properties(${SD_LIB} PROPERTIES PUBLIC_HEADER "${SD_PUBLIC_HEADERS}")
install(TARGETS ${SD_LIB} LIBRARY PUBLIC_HEADER)

View File

@ -251,6 +251,35 @@ struct KarrasSchedule : SigmaSchedule {
}
};
// Close to Beta Schedule, but increadably simple in code.
struct SmoothStepSchedule : SigmaSchedule {
static constexpr float smoothstep(float x) {
return x * x * (3.0f - 2.0f * x);
}
std::vector<float> get_sigmas(uint32_t n, float /*sigma_min*/, float /*sigma_max*/, t_to_sigma_t t_to_sigma) override {
std::vector<float> result;
result.reserve(n + 1);
const int t_max = TIMESTEPS - 1;
if (n == 0) {
return result;
} else if (n == 1) {
result.push_back(t_to_sigma((float)t_max));
result.push_back(0.f);
return result;
}
for (uint32_t i = 0; i < n; i++) {
float u = 1.f - float(i) / float(n);
result.push_back(t_to_sigma(std::round(smoothstep(u) * t_max)));
}
result.push_back(0.f);
return result;
}
};
struct Denoiser {
std::shared_ptr<SigmaSchedule> scheduler = std::make_shared<DiscreteSchedule>();
virtual float sigma_min() = 0;

View File

@ -95,8 +95,9 @@ struct MMDiTModel : public DiffusionModel {
MMDiTModel(ggml_backend_t backend,
bool offload_params_to_cpu,
bool flash_attn = false,
const String2GGMLType& tensor_types = {})
: mmdit(backend, offload_params_to_cpu, tensor_types, "model.diffusion_model") {
: mmdit(backend, offload_params_to_cpu, flash_attn, tensor_types, "model.diffusion_model") {
}
std::string get_desc() {

View File

@ -238,7 +238,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" --skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --skip-layer-start START SLG enabling point: (default: 0.01)\n");
printf(" --skip-layer-end END SLG disabling point: (default: 0.2)\n");
printf(" --scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)\n");
printf(" --scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)\n");
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}\n");
printf(" sampling method (default: \"euler_a\")\n");
printf(" --steps STEPS number of sample steps (default: 20)\n");
@ -251,7 +251,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" --high-noise-skip-layers LAYERS (high noise) Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --high-noise-skip-layer-start (high noise) SLG enabling point: (default: 0.01)\n");
printf(" --high-noise-skip-layer-end END (high noise) SLG disabling point: (default: 0.2)\n");
printf(" --high-noise-scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)\n");
printf(" --high-noise-scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)\n");
printf(" --high-noise-sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}\n");
printf(" (high noise) sampling method (default: \"euler_a\")\n");
printf(" --high-noise-steps STEPS (high noise) number of sample steps (default: -1 = auto)\n");

View File

@ -56,6 +56,25 @@
#define __STATIC_INLINE__ static inline
#endif
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void*) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG:
LOG_DEBUG(text);
break;
case GGML_LOG_LEVEL_INFO:
LOG_INFO(text);
break;
case GGML_LOG_LEVEL_WARN:
LOG_WARN(text);
break;
case GGML_LOG_LEVEL_ERROR:
LOG_ERROR(text);
break;
default:
LOG_DEBUG(text);
}
}
static_assert(GGML_MAX_NAME >= 128, "GGML_MAX_NAME must be at least 128");
// n-mode trensor-matrix product
@ -124,13 +143,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_kronecker(ggml_context* ctx, struct g
b);
}
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
(void)level;
(void)user_data;
fputs(text, stderr);
fflush(stderr);
}
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
uint32_t n = (uint32_t)ggml_nelements(tensor);
std::vector<float> random_numbers = rng->randn(n);

View File

@ -147,14 +147,16 @@ public:
int64_t num_heads;
bool pre_only;
std::string qk_norm;
bool flash_attn;
public:
SelfAttention(int64_t dim,
int64_t num_heads = 8,
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false)
: num_heads(num_heads), pre_only(pre_only), qk_norm(qk_norm) {
bool pre_only = false,
bool flash_attn = false)
: num_heads(num_heads), pre_only(pre_only), qk_norm(qk_norm), flash_attn(flash_attn) {
int64_t d_head = dim / num_heads;
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * 3, qkv_bias));
if (!pre_only) {
@ -206,8 +208,8 @@ public:
ggml_backend_t backend,
struct ggml_tensor* x) {
auto qkv = pre_attention(ctx, x);
x = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, true); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
@ -232,6 +234,7 @@ public:
int64_t num_heads;
bool pre_only;
bool self_attn;
bool flash_attn;
public:
DismantledBlock(int64_t hidden_size,
@ -240,16 +243,17 @@ public:
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn = false)
bool self_attn = false,
bool flash_attn = false)
: num_heads(num_heads), pre_only(pre_only), self_attn(self_attn) {
// rmsnorm is always Flase
// scale_mod_only is always Flase
// swiglu is always Flase
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
blocks["attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, pre_only));
blocks["attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, pre_only, flash_attn));
if (self_attn) {
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, false));
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, false, flash_attn));
}
if (!pre_only) {
@ -435,8 +439,8 @@ public:
auto qkv2 = std::get<1>(qkv_intermediates);
auto intermediates = std::get<2>(qkv_intermediates);
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, backend, qkv2[0], qkv2[1], qkv2[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, backend, qkv2[0], qkv2[1], qkv2[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = post_attention_x(ctx,
attn_out,
attn2_out,
@ -452,7 +456,7 @@ public:
auto qkv = qkv_intermediates.first;
auto intermediates = qkv_intermediates.second;
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = post_attention(ctx,
attn_out,
intermediates[0],
@ -468,6 +472,7 @@ public:
__STATIC_INLINE__ std::pair<struct ggml_tensor*, struct ggml_tensor*>
block_mixing(struct ggml_context* ctx,
ggml_backend_t backend,
bool flash_attn,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c,
@ -497,8 +502,8 @@ block_mixing(struct ggml_context* ctx,
qkv.push_back(ggml_concat(ctx, context_qkv[i], x_qkv[i], 1));
}
auto attn = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], x_block->num_heads); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto attn = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, NULL, false, false, flash_attn); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto context_attn = ggml_view_3d(ctx,
attn,
attn->ne[0],
@ -556,6 +561,8 @@ block_mixing(struct ggml_context* ctx,
}
struct JointBlock : public GGMLBlock {
bool flash_attn;
public:
JointBlock(int64_t hidden_size,
int64_t num_heads,
@ -563,9 +570,11 @@ public:
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn_x = false) {
blocks["context_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, pre_only));
blocks["x_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, false, self_attn_x));
bool self_attn_x = false,
bool flash_attn = false)
: flash_attn(flash_attn) {
blocks["context_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, pre_only, false, flash_attn));
blocks["x_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, false, self_attn_x, flash_attn));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
@ -576,7 +585,7 @@ public:
auto context_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["context_block"]);
auto x_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["x_block"]);
return block_mixing(ctx, backend, context, x, c, context_block, x_block);
return block_mixing(ctx, backend, flash_attn, context, x, c, context_block, x_block);
}
};
@ -634,6 +643,7 @@ protected:
int64_t context_embedder_out_dim = 1536;
int64_t hidden_size;
std::string qk_norm;
bool flash_attn = false;
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, std::string prefix = "") {
enum ggml_type wtype = GGML_TYPE_F32;
@ -641,7 +651,8 @@ protected:
}
public:
MMDiT(const String2GGMLType& tensor_types = {}) {
MMDiT(bool flash_attn = false, const String2GGMLType& tensor_types = {})
: flash_attn(flash_attn) {
// input_size is always None
// learn_sigma is always False
// register_length is alwalys 0
@ -709,7 +720,8 @@ public:
qk_norm,
true,
i == depth - 1,
i <= d_self));
i <= d_self,
flash_attn));
}
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new FinalLayer(hidden_size, patch_size, out_channels));
@ -856,9 +868,10 @@ struct MMDiTRunner : public GGMLRunner {
MMDiTRunner(ggml_backend_t backend,
bool offload_params_to_cpu,
bool flash_attn,
const String2GGMLType& tensor_types = {},
const std::string prefix = "")
: GGMLRunner(backend, offload_params_to_cpu), mmdit(tensor_types) {
: GGMLRunner(backend, offload_params_to_cpu), mmdit(flash_attn, tensor_types) {
mmdit.init(params_ctx, tensor_types, prefix);
}
@ -957,7 +970,7 @@ struct MMDiTRunner : public GGMLRunner {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend, false));
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend, false, false));
{
LOG_INFO("loading from '%s'", file_path.c_str());

View File

@ -145,7 +145,6 @@ public:
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_log_set(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
@ -192,6 +191,8 @@ public:
rng = std::make_shared<PhiloxRNG>();
}
ggml_log_set(ggml_log_callback_default, nullptr);
init_backend();
ModelLoader model_loader;
@ -349,6 +350,7 @@ public:
model_loader.tensor_storages_types);
diffusion_model = std::make_shared<MMDiTModel>(backend,
offload_params_to_cpu,
sd_ctx_params->diffusion_flash_attn,
model_loader.tensor_storages_types);
} else if (sd_version_is_flux(version)) {
bool is_chroma = false;
@ -750,6 +752,10 @@ public:
denoiser->scheduler = std::make_shared<GITSSchedule>();
denoiser->scheduler->version = version;
break;
case SMOOTHSTEP:
LOG_INFO("Running with SmoothStep scheduler");
denoiser->scheduler = std::make_shared<SmoothStepSchedule>();
break;
case DEFAULT:
// Don't touch anything.
break;
@ -1533,6 +1539,7 @@ const char* schedule_to_str[] = {
"exponential",
"ays",
"gits",
"smoothstep",
};
const char* sd_schedule_name(enum scheduler_t scheduler) {

View File

@ -57,6 +57,7 @@ enum scheduler_t {
EXPONENTIAL,
AYS,
GITS,
SMOOTHSTEP,
SCHEDULE_COUNT
};

View File

@ -19,13 +19,13 @@ struct UpscalerGGML {
bool load_from_file(const std::string& esrgan_path,
bool offload_params_to_cpu) {
ggml_log_set(ggml_log_callback_default, nullptr);
#ifdef SD_USE_CUDA
LOG_DEBUG("Using CUDA backend");
backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_log_set(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN

View File

@ -414,7 +414,10 @@ void log_printf(sd_log_level_t level, const char* file, int line, const char* fo
if (written >= 0 && written < LOG_BUFFER_SIZE) {
vsnprintf(log_buffer + written, LOG_BUFFER_SIZE - written, format, args);
}
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - strlen(log_buffer));
size_t len = strlen(log_buffer);
if (log_buffer[len - 1] != '\n') {
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - len);
}
if (sd_log_cb) {
sd_log_cb(level, log_buffer, sd_log_cb_data);