mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
Compare commits
3 Commits
2e9242e37f
...
40a6a8710e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
40a6a8710e | ||
|
|
e3702585cb | ||
|
|
a7d6d296c7 |
@ -33,6 +33,7 @@ option(SD_SYCL "sd: sycl backend" OFF)
|
|||||||
option(SD_MUSA "sd: musa backend" OFF)
|
option(SD_MUSA "sd: musa backend" OFF)
|
||||||
option(SD_FAST_SOFTMAX "sd: x1.5 faster softmax, indeterministic (sometimes, same seed don't generate same image), cuda only" OFF)
|
option(SD_FAST_SOFTMAX "sd: x1.5 faster softmax, indeterministic (sometimes, same seed don't generate same image), cuda only" OFF)
|
||||||
option(SD_BUILD_SHARED_LIBS "sd: build shared libs" OFF)
|
option(SD_BUILD_SHARED_LIBS "sd: build shared libs" OFF)
|
||||||
|
option(SD_BUILD_SHARED_GGML_LIB "sd: build ggml as a separate shared lib" OFF)
|
||||||
option(SD_USE_SYSTEM_GGML "sd: use system-installed GGML library" OFF)
|
option(SD_USE_SYSTEM_GGML "sd: use system-installed GGML library" OFF)
|
||||||
#option(SD_BUILD_SERVER "sd: build server example" ON)
|
#option(SD_BUILD_SERVER "sd: build server example" ON)
|
||||||
|
|
||||||
@ -86,18 +87,21 @@ file(GLOB SD_LIB_SOURCES
|
|||||||
"*.hpp"
|
"*.hpp"
|
||||||
)
|
)
|
||||||
|
|
||||||
# we can get only one share lib
|
|
||||||
if(SD_BUILD_SHARED_LIBS)
|
if(SD_BUILD_SHARED_LIBS)
|
||||||
message("-- Build shared library")
|
message("-- Build shared library")
|
||||||
message(${SD_LIB_SOURCES})
|
message(${SD_LIB_SOURCES})
|
||||||
set(BUILD_SHARED_LIBS OFF)
|
if(NOT SD_BUILD_SHARED_GGML_LIB)
|
||||||
|
set(BUILD_SHARED_LIBS OFF)
|
||||||
|
endif()
|
||||||
add_library(${SD_LIB} SHARED ${SD_LIB_SOURCES})
|
add_library(${SD_LIB} SHARED ${SD_LIB_SOURCES})
|
||||||
add_definitions(-DSD_BUILD_SHARED_LIB)
|
add_definitions(-DSD_BUILD_SHARED_LIB)
|
||||||
target_compile_definitions(${SD_LIB} PRIVATE -DSD_BUILD_DLL)
|
target_compile_definitions(${SD_LIB} PRIVATE -DSD_BUILD_DLL)
|
||||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||||
else()
|
else()
|
||||||
message("-- Build static library")
|
message("-- Build static library")
|
||||||
set(BUILD_SHARED_LIBS OFF)
|
if(NOT SD_BUILD_SHARED_GGML_LIB)
|
||||||
|
set(BUILD_SHARED_LIBS OFF)
|
||||||
|
endif()
|
||||||
add_library(${SD_LIB} STATIC ${SD_LIB_SOURCES})
|
add_library(${SD_LIB} STATIC ${SD_LIB_SOURCES})
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|||||||
@ -17,7 +17,6 @@ API and command-line option may change frequently.***
|
|||||||
- Image Models
|
- Image Models
|
||||||
- SD1.x, SD2.x, [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo)
|
- SD1.x, SD2.x, [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo)
|
||||||
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
|
- SDXL, [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo)
|
||||||
- !!!The VAE in SDXL encounters NaN issues under FP16, but unfortunately, the ggml_conv_2d only operates under FP16. Hence, a parameter is needed to specify the VAE that has fixed the FP16 NaN issue. You can find it here: [SDXL VAE FP16 Fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors).
|
|
||||||
- [SD3/SD3.5](./docs/sd3.md)
|
- [SD3/SD3.5](./docs/sd3.md)
|
||||||
- [Flux-dev/Flux-schnell](./docs/flux.md)
|
- [Flux-dev/Flux-schnell](./docs/flux.md)
|
||||||
- [Chroma](./docs/chroma.md)
|
- [Chroma](./docs/chroma.md)
|
||||||
@ -358,12 +357,14 @@ arguments:
|
|||||||
--rng {std_default, cuda} RNG (default: cuda)
|
--rng {std_default, cuda} RNG (default: cuda)
|
||||||
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
|
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
|
||||||
-b, --batch-count COUNT number of images to generate
|
-b, --batch-count COUNT number of images to generate
|
||||||
|
--prediction {eps, v, edm_v, sd3_flow, flux_flow} Prediction type override
|
||||||
--clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
|
--clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
|
||||||
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
|
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
|
||||||
--vae-tiling process vae in tiles to reduce memory usage
|
--vae-tiling process vae in tiles to reduce memory usage
|
||||||
--vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)
|
--vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)
|
||||||
--vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)
|
--vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)
|
||||||
--vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)
|
--vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)
|
||||||
|
--force-sdxl-vae-conv-scale force use of conv scale on sdxl vae
|
||||||
--vae-on-cpu keep vae in cpu (for low vram)
|
--vae-on-cpu keep vae in cpu (for low vram)
|
||||||
--clip-on-cpu keep clip in cpu (for low vram)
|
--clip-on-cpu keep clip in cpu (for low vram)
|
||||||
--diffusion-fa use flash attention in the diffusion model (for low vram)
|
--diffusion-fa use flash attention in the diffusion model (for low vram)
|
||||||
|
|||||||
@ -1457,7 +1457,7 @@ struct Qwen2_5_VLCLIPEmbedder : public Conditioner {
|
|||||||
const ConditionerParams& conditioner_params) {
|
const ConditionerParams& conditioner_params) {
|
||||||
std::string prompt;
|
std::string prompt;
|
||||||
std::vector<std::pair<int, ggml_tensor*>> image_embeds;
|
std::vector<std::pair<int, ggml_tensor*>> image_embeds;
|
||||||
size_t system_prompt_length = 0;
|
size_t system_prompt_length = 0;
|
||||||
int prompt_template_encode_start_idx = 34;
|
int prompt_template_encode_start_idx = 34;
|
||||||
if (qwenvl->enable_vision && conditioner_params.ref_images.size() > 0) {
|
if (qwenvl->enable_vision && conditioner_params.ref_images.size() > 0) {
|
||||||
LOG_INFO("QwenImageEditPlusPipeline");
|
LOG_INFO("QwenImageEditPlusPipeline");
|
||||||
|
|||||||
@ -84,6 +84,7 @@ struct SDParams {
|
|||||||
|
|
||||||
std::string prompt;
|
std::string prompt;
|
||||||
std::string negative_prompt;
|
std::string negative_prompt;
|
||||||
|
|
||||||
int clip_skip = -1; // <= 0 represents unspecified
|
int clip_skip = -1; // <= 0 represents unspecified
|
||||||
int width = 512;
|
int width = 512;
|
||||||
int height = 512;
|
int height = 512;
|
||||||
@ -127,7 +128,10 @@ struct SDParams {
|
|||||||
int chroma_t5_mask_pad = 1;
|
int chroma_t5_mask_pad = 1;
|
||||||
float flow_shift = INFINITY;
|
float flow_shift = INFINITY;
|
||||||
|
|
||||||
|
prediction_t prediction = DEFAULT_PRED;
|
||||||
|
|
||||||
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
||||||
|
bool force_sdxl_vae_conv_scale = false;
|
||||||
|
|
||||||
SDParams() {
|
SDParams() {
|
||||||
sd_sample_params_init(&sample_params);
|
sd_sample_params_init(&sample_params);
|
||||||
@ -188,12 +192,14 @@ void print_params(SDParams params) {
|
|||||||
printf(" sample_params: %s\n", SAFE_STR(sample_params_str));
|
printf(" sample_params: %s\n", SAFE_STR(sample_params_str));
|
||||||
printf(" high_noise_sample_params: %s\n", SAFE_STR(high_noise_sample_params_str));
|
printf(" high_noise_sample_params: %s\n", SAFE_STR(high_noise_sample_params_str));
|
||||||
printf(" moe_boundary: %.3f\n", params.moe_boundary);
|
printf(" moe_boundary: %.3f\n", params.moe_boundary);
|
||||||
|
printf(" prediction: %s\n", sd_prediction_name(params.prediction));
|
||||||
printf(" flow_shift: %.2f\n", params.flow_shift);
|
printf(" flow_shift: %.2f\n", params.flow_shift);
|
||||||
printf(" strength(img2img): %.2f\n", params.strength);
|
printf(" strength(img2img): %.2f\n", params.strength);
|
||||||
printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
|
printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
|
||||||
printf(" seed: %zd\n", params.seed);
|
printf(" seed: %zd\n", params.seed);
|
||||||
printf(" batch_count: %d\n", params.batch_count);
|
printf(" batch_count: %d\n", params.batch_count);
|
||||||
printf(" vae_tiling: %s\n", params.vae_tiling_params.enabled ? "true" : "false");
|
printf(" vae_tiling: %s\n", params.vae_tiling_params.enabled ? "true" : "false");
|
||||||
|
printf(" force_sdxl_vae_conv_scale: %s\n", params.force_sdxl_vae_conv_scale ? "true" : "false");
|
||||||
printf(" upscale_repeats: %d\n", params.upscale_repeats);
|
printf(" upscale_repeats: %d\n", params.upscale_repeats);
|
||||||
printf(" chroma_use_dit_mask: %s\n", params.chroma_use_dit_mask ? "true" : "false");
|
printf(" chroma_use_dit_mask: %s\n", params.chroma_use_dit_mask ? "true" : "false");
|
||||||
printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false");
|
printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false");
|
||||||
@ -281,12 +287,14 @@ void print_usage(int argc, const char* argv[]) {
|
|||||||
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
|
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
|
||||||
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
|
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
|
||||||
printf(" -b, --batch-count COUNT number of images to generate\n");
|
printf(" -b, --batch-count COUNT number of images to generate\n");
|
||||||
|
printf(" --prediction {eps, v, edm_v, sd3_flow, flux_flow} Prediction type override.\n");
|
||||||
printf(" --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
|
printf(" --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
|
||||||
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
|
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
|
||||||
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
|
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
|
||||||
printf(" --vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)\n");
|
printf(" --vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)\n");
|
||||||
printf(" --vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)\n");
|
printf(" --vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)\n");
|
||||||
printf(" --vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)\n");
|
printf(" --vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)\n");
|
||||||
|
printf(" --force-sdxl-vae-conv-scale force use of conv scale on sdxl vae\n");
|
||||||
printf(" --vae-on-cpu keep vae in cpu (for low vram)\n");
|
printf(" --vae-on-cpu keep vae in cpu (for low vram)\n");
|
||||||
printf(" --clip-on-cpu keep clip in cpu (for low vram)\n");
|
printf(" --clip-on-cpu keep clip in cpu (for low vram)\n");
|
||||||
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
|
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
|
||||||
@ -557,6 +565,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
|||||||
|
|
||||||
options.bool_options = {
|
options.bool_options = {
|
||||||
{"", "--vae-tiling", "", true, ¶ms.vae_tiling_params.enabled},
|
{"", "--vae-tiling", "", true, ¶ms.vae_tiling_params.enabled},
|
||||||
|
{"", "--force-sdxl-vae-conv-scale", "", true, ¶ms.force_sdxl_vae_conv_scale},
|
||||||
{"", "--offload-to-cpu", "", true, ¶ms.offload_params_to_cpu},
|
{"", "--offload-to-cpu", "", true, ¶ms.offload_params_to_cpu},
|
||||||
{"", "--control-net-cpu", "", true, ¶ms.control_net_cpu},
|
{"", "--control-net-cpu", "", true, ¶ms.control_net_cpu},
|
||||||
{"", "--clip-on-cpu", "", true, ¶ms.clip_on_cpu},
|
{"", "--clip-on-cpu", "", true, ¶ms.clip_on_cpu},
|
||||||
@ -651,6 +660,20 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
|||||||
return 1;
|
return 1;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
auto on_prediction_arg = [&](int argc, const char** argv, int index) {
|
||||||
|
if (++index >= argc) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
const char* arg = argv[index];
|
||||||
|
params.prediction = str_to_prediction(arg);
|
||||||
|
if (params.prediction == PREDICTION_COUNT) {
|
||||||
|
fprintf(stderr, "error: invalid prediction type %s\n",
|
||||||
|
arg);
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
};
|
||||||
|
|
||||||
auto on_sample_method_arg = [&](int argc, const char** argv, int index) {
|
auto on_sample_method_arg = [&](int argc, const char** argv, int index) {
|
||||||
if (++index >= argc) {
|
if (++index >= argc) {
|
||||||
return -1;
|
return -1;
|
||||||
@ -807,6 +830,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
|||||||
{"", "--rng", "", on_rng_arg},
|
{"", "--rng", "", on_rng_arg},
|
||||||
{"-s", "--seed", "", on_seed_arg},
|
{"-s", "--seed", "", on_seed_arg},
|
||||||
{"", "--sampling-method", "", on_sample_method_arg},
|
{"", "--sampling-method", "", on_sample_method_arg},
|
||||||
|
{"", "--prediction", "", on_prediction_arg},
|
||||||
{"", "--scheduler", "", on_schedule_arg},
|
{"", "--scheduler", "", on_schedule_arg},
|
||||||
{"", "--skip-layers", "", on_skip_layers_arg},
|
{"", "--skip-layers", "", on_skip_layers_arg},
|
||||||
{"", "--high-noise-sampling-method", "", on_high_noise_sample_method_arg},
|
{"", "--high-noise-sampling-method", "", on_high_noise_sample_method_arg},
|
||||||
@ -1354,6 +1378,7 @@ int main(int argc, const char* argv[]) {
|
|||||||
params.n_threads,
|
params.n_threads,
|
||||||
params.wtype,
|
params.wtype,
|
||||||
params.rng_type,
|
params.rng_type,
|
||||||
|
params.prediction,
|
||||||
params.offload_params_to_cpu,
|
params.offload_params_to_cpu,
|
||||||
params.clip_on_cpu,
|
params.clip_on_cpu,
|
||||||
params.control_net_cpu,
|
params.control_net_cpu,
|
||||||
@ -1361,6 +1386,7 @@ int main(int argc, const char* argv[]) {
|
|||||||
params.diffusion_flash_attn,
|
params.diffusion_flash_attn,
|
||||||
params.diffusion_conv_direct,
|
params.diffusion_conv_direct,
|
||||||
params.vae_conv_direct,
|
params.vae_conv_direct,
|
||||||
|
params.force_sdxl_vae_conv_scale,
|
||||||
params.chroma_use_dit_mask,
|
params.chroma_use_dit_mask,
|
||||||
params.chroma_use_t5_mask,
|
params.chroma_use_t5_mask,
|
||||||
params.chroma_t5_mask_pad,
|
params.chroma_t5_mask_pad,
|
||||||
|
|||||||
@ -975,38 +975,28 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
|
|||||||
struct ggml_tensor* x,
|
struct ggml_tensor* x,
|
||||||
struct ggml_tensor* w,
|
struct ggml_tensor* w,
|
||||||
struct ggml_tensor* b,
|
struct ggml_tensor* b,
|
||||||
int s0 = 1,
|
int s0 = 1,
|
||||||
int s1 = 1,
|
int s1 = 1,
|
||||||
int p0 = 0,
|
int p0 = 0,
|
||||||
int p1 = 0,
|
int p1 = 0,
|
||||||
int d0 = 1,
|
int d0 = 1,
|
||||||
int d1 = 1) {
|
int d1 = 1,
|
||||||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
bool direct = false,
|
||||||
if (b != NULL) {
|
float scale = 1.f) {
|
||||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
if (scale != 1.f) {
|
||||||
// b = ggml_repeat(ctx, b, x);
|
x = ggml_scale(ctx, x, scale);
|
||||||
x = ggml_add_inplace(ctx, x, b);
|
}
|
||||||
|
if (direct) {
|
||||||
|
x = ggml_conv_2d_direct(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||||
|
} else {
|
||||||
|
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||||
|
}
|
||||||
|
if (scale != 1.f) {
|
||||||
|
x = ggml_scale(ctx, x, 1.f / scale);
|
||||||
}
|
}
|
||||||
return x;
|
|
||||||
}
|
|
||||||
|
|
||||||
// w: [OC*IC, KD, KH, KW]
|
|
||||||
// x: [N*IC, ID, IH, IW]
|
|
||||||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d_direct(struct ggml_context* ctx,
|
|
||||||
struct ggml_tensor* x,
|
|
||||||
struct ggml_tensor* w,
|
|
||||||
struct ggml_tensor* b,
|
|
||||||
int s0 = 1,
|
|
||||||
int s1 = 1,
|
|
||||||
int p0 = 0,
|
|
||||||
int p1 = 0,
|
|
||||||
int d0 = 1,
|
|
||||||
int d1 = 1) {
|
|
||||||
x = ggml_conv_2d_direct(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
|
||||||
if (b != NULL) {
|
if (b != NULL) {
|
||||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||||||
// b = ggml_repeat(ctx, b, x);
|
x = ggml_add_inplace(ctx, x, b);
|
||||||
x = ggml_add(ctx, x, b);
|
|
||||||
}
|
}
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
@ -2067,6 +2057,7 @@ protected:
|
|||||||
std::pair<int, int> dilation;
|
std::pair<int, int> dilation;
|
||||||
bool bias;
|
bool bias;
|
||||||
bool direct = false;
|
bool direct = false;
|
||||||
|
float scale = 1.f;
|
||||||
|
|
||||||
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types, const std::string prefix = "") {
|
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types, const std::string prefix = "") {
|
||||||
enum ggml_type wtype = GGML_TYPE_F16;
|
enum ggml_type wtype = GGML_TYPE_F16;
|
||||||
@ -2097,6 +2088,10 @@ public:
|
|||||||
direct = true;
|
direct = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_scale(float scale_value) {
|
||||||
|
scale = scale_value;
|
||||||
|
}
|
||||||
|
|
||||||
std::string get_desc() {
|
std::string get_desc() {
|
||||||
return "Conv2d";
|
return "Conv2d";
|
||||||
}
|
}
|
||||||
@ -2107,11 +2102,18 @@ public:
|
|||||||
if (bias) {
|
if (bias) {
|
||||||
b = params["bias"];
|
b = params["bias"];
|
||||||
}
|
}
|
||||||
if (direct) {
|
return ggml_nn_conv_2d(ctx,
|
||||||
return ggml_nn_conv_2d_direct(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
x,
|
||||||
} else {
|
w,
|
||||||
return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
b,
|
||||||
}
|
stride.second,
|
||||||
|
stride.first,
|
||||||
|
padding.second,
|
||||||
|
padding.first,
|
||||||
|
dilation.second,
|
||||||
|
dilation.first,
|
||||||
|
direct,
|
||||||
|
scale);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@ -535,7 +535,7 @@ namespace Qwen {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
LOG_ERROR("qwen_image_params.num_layers: %ld", qwen_image_params.num_layers);
|
LOG_ERROR("qwen_image_params.num_layers: %ld", qwen_image_params.num_layers);
|
||||||
qwen_image = QwenImageModel(qwen_image_params);
|
qwen_image = QwenImageModel(qwen_image_params);
|
||||||
qwen_image.init(params_ctx, tensor_types, prefix);
|
qwen_image.init(params_ctx, tensor_types, prefix);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -330,13 +330,6 @@ public:
|
|||||||
|
|
||||||
if (sd_version_is_sdxl(version)) {
|
if (sd_version_is_sdxl(version)) {
|
||||||
scale_factor = 0.13025f;
|
scale_factor = 0.13025f;
|
||||||
if (strlen(SAFE_STR(sd_ctx_params->vae_path)) == 0 && strlen(SAFE_STR(sd_ctx_params->taesd_path)) == 0) {
|
|
||||||
LOG_WARN(
|
|
||||||
"!!!It looks like you are using SDXL model. "
|
|
||||||
"If you find that the generated images are completely black, "
|
|
||||||
"try specifying SDXL VAE FP16 Fix with the --vae parameter. "
|
|
||||||
"You can find it here: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors");
|
|
||||||
}
|
|
||||||
} else if (sd_version_is_sd3(version)) {
|
} else if (sd_version_is_sd3(version)) {
|
||||||
scale_factor = 1.5305f;
|
scale_factor = 1.5305f;
|
||||||
} else if (sd_version_is_flux(version)) {
|
} else if (sd_version_is_flux(version)) {
|
||||||
@ -517,6 +510,15 @@ public:
|
|||||||
LOG_INFO("Using Conv2d direct in the vae model");
|
LOG_INFO("Using Conv2d direct in the vae model");
|
||||||
first_stage_model->enable_conv2d_direct();
|
first_stage_model->enable_conv2d_direct();
|
||||||
}
|
}
|
||||||
|
if (version == VERSION_SDXL &&
|
||||||
|
(strlen(SAFE_STR(sd_ctx_params->vae_path)) == 0 || sd_ctx_params->force_sdxl_vae_conv_scale)) {
|
||||||
|
float vae_conv_2d_scale = 1.f / 32.f;
|
||||||
|
LOG_WARN(
|
||||||
|
"No VAE specified with --vae or --force-sdxl-vae-conv-scale flag set, "
|
||||||
|
"using Conv2D scale %.3f",
|
||||||
|
vae_conv_2d_scale);
|
||||||
|
first_stage_model->set_conv2d_scale(vae_conv_2d_scale);
|
||||||
|
}
|
||||||
first_stage_model->alloc_params_buffer();
|
first_stage_model->alloc_params_buffer();
|
||||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||||
} else {
|
} else {
|
||||||
@ -700,64 +702,102 @@ public:
|
|||||||
ggml_backend_is_cpu(clip_backend) ? "RAM" : "VRAM");
|
ggml_backend_is_cpu(clip_backend) ? "RAM" : "VRAM");
|
||||||
}
|
}
|
||||||
|
|
||||||
// check is_using_v_parameterization_for_sd2
|
if (sd_ctx_params->prediction != DEFAULT_PRED) {
|
||||||
if (sd_version_is_sd2(version)) {
|
switch (sd_ctx_params->prediction) {
|
||||||
if (is_using_v_parameterization_for_sd2(ctx, sd_version_is_inpaint(version))) {
|
case EPS_PRED:
|
||||||
is_using_v_parameterization = true;
|
LOG_INFO("running in eps-prediction mode");
|
||||||
}
|
break;
|
||||||
} else if (sd_version_is_sdxl(version)) {
|
case V_PRED:
|
||||||
if (model_loader.tensor_storages_types.find("edm_vpred.sigma_max") != model_loader.tensor_storages_types.end()) {
|
LOG_INFO("running in v-prediction mode");
|
||||||
// CosXL models
|
denoiser = std::make_shared<CompVisVDenoiser>();
|
||||||
// TODO: get sigma_min and sigma_max values from file
|
break;
|
||||||
is_using_edm_v_parameterization = true;
|
case EDM_V_PRED:
|
||||||
}
|
LOG_INFO("running in v-prediction EDM mode");
|
||||||
if (model_loader.tensor_storages_types.find("v_pred") != model_loader.tensor_storages_types.end()) {
|
denoiser = std::make_shared<EDMVDenoiser>();
|
||||||
is_using_v_parameterization = true;
|
break;
|
||||||
}
|
case SD3_FLOW_PRED: {
|
||||||
} else if (version == VERSION_SVD) {
|
LOG_INFO("running in FLOW mode");
|
||||||
// TODO: V_PREDICTION_EDM
|
float shift = sd_ctx_params->flow_shift;
|
||||||
is_using_v_parameterization = true;
|
if (shift == INFINITY) {
|
||||||
}
|
shift = 3.0;
|
||||||
|
}
|
||||||
if (sd_version_is_sd3(version)) {
|
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||||
LOG_INFO("running in FLOW mode");
|
|
||||||
float shift = sd_ctx_params->flow_shift;
|
|
||||||
if (shift == INFINITY) {
|
|
||||||
shift = 3.0;
|
|
||||||
}
|
|
||||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
|
||||||
} else if (sd_version_is_flux(version)) {
|
|
||||||
LOG_INFO("running in Flux FLOW mode");
|
|
||||||
float shift = 1.0f; // TODO: validate
|
|
||||||
for (auto pair : model_loader.tensor_storages_types) {
|
|
||||||
if (pair.first.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) {
|
|
||||||
shift = 1.15f;
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
case FLUX_FLOW_PRED: {
|
||||||
|
LOG_INFO("running in Flux FLOW mode");
|
||||||
|
float shift = sd_ctx_params->flow_shift;
|
||||||
|
if (shift == INFINITY) {
|
||||||
|
shift = 3.0;
|
||||||
|
}
|
||||||
|
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
default: {
|
||||||
|
LOG_ERROR("Unknown parametrization %i", sd_ctx_params->prediction);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
|
||||||
} else if (sd_version_is_wan(version)) {
|
|
||||||
LOG_INFO("running in FLOW mode");
|
|
||||||
float shift = sd_ctx_params->flow_shift;
|
|
||||||
if (shift == INFINITY) {
|
|
||||||
shift = 5.0;
|
|
||||||
}
|
|
||||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
|
||||||
} else if (sd_version_is_qwen_image(version)) {
|
|
||||||
LOG_INFO("running in FLOW mode");
|
|
||||||
float shift = sd_ctx_params->flow_shift;
|
|
||||||
if (shift == INFINITY) {
|
|
||||||
shift = 3.0;
|
|
||||||
}
|
|
||||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
|
||||||
} else if (is_using_v_parameterization) {
|
|
||||||
LOG_INFO("running in v-prediction mode");
|
|
||||||
denoiser = std::make_shared<CompVisVDenoiser>();
|
|
||||||
} else if (is_using_edm_v_parameterization) {
|
|
||||||
LOG_INFO("running in v-prediction EDM mode");
|
|
||||||
denoiser = std::make_shared<EDMVDenoiser>();
|
|
||||||
} else {
|
} else {
|
||||||
LOG_INFO("running in eps-prediction mode");
|
if (sd_version_is_sd2(version)) {
|
||||||
|
// check is_using_v_parameterization_for_sd2
|
||||||
|
if (is_using_v_parameterization_for_sd2(ctx, sd_version_is_inpaint(version))) {
|
||||||
|
is_using_v_parameterization = true;
|
||||||
|
}
|
||||||
|
} else if (sd_version_is_sdxl(version)) {
|
||||||
|
if (model_loader.tensor_storages_types.find("edm_vpred.sigma_max") != model_loader.tensor_storages_types.end()) {
|
||||||
|
// CosXL models
|
||||||
|
// TODO: get sigma_min and sigma_max values from file
|
||||||
|
is_using_edm_v_parameterization = true;
|
||||||
|
}
|
||||||
|
if (model_loader.tensor_storages_types.find("v_pred") != model_loader.tensor_storages_types.end()) {
|
||||||
|
is_using_v_parameterization = true;
|
||||||
|
}
|
||||||
|
} else if (version == VERSION_SVD) {
|
||||||
|
// TODO: V_PREDICTION_EDM
|
||||||
|
is_using_v_parameterization = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (sd_version_is_sd3(version)) {
|
||||||
|
LOG_INFO("running in FLOW mode");
|
||||||
|
float shift = sd_ctx_params->flow_shift;
|
||||||
|
if (shift == INFINITY) {
|
||||||
|
shift = 3.0;
|
||||||
|
}
|
||||||
|
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||||
|
} else if (sd_version_is_flux(version)) {
|
||||||
|
LOG_INFO("running in Flux FLOW mode");
|
||||||
|
float shift = 1.0f; // TODO: validate
|
||||||
|
for (auto pair : model_loader.tensor_storages_types) {
|
||||||
|
if (pair.first.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) {
|
||||||
|
shift = 1.15f;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
||||||
|
} else if (sd_version_is_wan(version)) {
|
||||||
|
LOG_INFO("running in FLOW mode");
|
||||||
|
float shift = sd_ctx_params->flow_shift;
|
||||||
|
if (shift == INFINITY) {
|
||||||
|
shift = 5.0;
|
||||||
|
}
|
||||||
|
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||||
|
} else if (sd_version_is_qwen_image(version)) {
|
||||||
|
LOG_INFO("running in FLOW mode");
|
||||||
|
float shift = sd_ctx_params->flow_shift;
|
||||||
|
if (shift == INFINITY) {
|
||||||
|
shift = 3.0;
|
||||||
|
}
|
||||||
|
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||||
|
} else if (is_using_v_parameterization) {
|
||||||
|
LOG_INFO("running in v-prediction mode");
|
||||||
|
denoiser = std::make_shared<CompVisVDenoiser>();
|
||||||
|
} else if (is_using_edm_v_parameterization) {
|
||||||
|
LOG_INFO("running in v-prediction EDM mode");
|
||||||
|
denoiser = std::make_shared<EDMVDenoiser>();
|
||||||
|
} else {
|
||||||
|
LOG_INFO("running in eps-prediction mode");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
auto comp_vis_denoiser = std::dynamic_pointer_cast<CompVisDenoiser>(denoiser);
|
auto comp_vis_denoiser = std::dynamic_pointer_cast<CompVisDenoiser>(denoiser);
|
||||||
@ -1742,6 +1782,31 @@ enum scheduler_t str_to_schedule(const char* str) {
|
|||||||
return SCHEDULE_COUNT;
|
return SCHEDULE_COUNT;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const char* prediction_to_str[] = {
|
||||||
|
"default",
|
||||||
|
"eps",
|
||||||
|
"v",
|
||||||
|
"edm_v",
|
||||||
|
"sd3_flow",
|
||||||
|
"flux_flow",
|
||||||
|
};
|
||||||
|
|
||||||
|
const char* sd_prediction_name(enum prediction_t prediction) {
|
||||||
|
if (prediction < PREDICTION_COUNT) {
|
||||||
|
return prediction_to_str[prediction];
|
||||||
|
}
|
||||||
|
return NONE_STR;
|
||||||
|
}
|
||||||
|
|
||||||
|
enum prediction_t str_to_prediction(const char* str) {
|
||||||
|
for (int i = 0; i < PREDICTION_COUNT; i++) {
|
||||||
|
if (!strcmp(str, prediction_to_str[i])) {
|
||||||
|
return (enum prediction_t)i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return PREDICTION_COUNT;
|
||||||
|
}
|
||||||
|
|
||||||
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
||||||
*sd_ctx_params = {};
|
*sd_ctx_params = {};
|
||||||
sd_ctx_params->vae_decode_only = true;
|
sd_ctx_params->vae_decode_only = true;
|
||||||
@ -1749,6 +1814,7 @@ void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
|||||||
sd_ctx_params->n_threads = get_num_physical_cores();
|
sd_ctx_params->n_threads = get_num_physical_cores();
|
||||||
sd_ctx_params->wtype = SD_TYPE_COUNT;
|
sd_ctx_params->wtype = SD_TYPE_COUNT;
|
||||||
sd_ctx_params->rng_type = CUDA_RNG;
|
sd_ctx_params->rng_type = CUDA_RNG;
|
||||||
|
sd_ctx_params->prediction = DEFAULT_PRED;
|
||||||
sd_ctx_params->offload_params_to_cpu = false;
|
sd_ctx_params->offload_params_to_cpu = false;
|
||||||
sd_ctx_params->keep_clip_on_cpu = false;
|
sd_ctx_params->keep_clip_on_cpu = false;
|
||||||
sd_ctx_params->keep_control_net_on_cpu = false;
|
sd_ctx_params->keep_control_net_on_cpu = false;
|
||||||
@ -1788,6 +1854,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
|||||||
"n_threads: %d\n"
|
"n_threads: %d\n"
|
||||||
"wtype: %s\n"
|
"wtype: %s\n"
|
||||||
"rng_type: %s\n"
|
"rng_type: %s\n"
|
||||||
|
"prediction: %s\n"
|
||||||
"offload_params_to_cpu: %s\n"
|
"offload_params_to_cpu: %s\n"
|
||||||
"keep_clip_on_cpu: %s\n"
|
"keep_clip_on_cpu: %s\n"
|
||||||
"keep_control_net_on_cpu: %s\n"
|
"keep_control_net_on_cpu: %s\n"
|
||||||
@ -1816,6 +1883,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
|
|||||||
sd_ctx_params->n_threads,
|
sd_ctx_params->n_threads,
|
||||||
sd_type_name(sd_ctx_params->wtype),
|
sd_type_name(sd_ctx_params->wtype),
|
||||||
sd_rng_type_name(sd_ctx_params->rng_type),
|
sd_rng_type_name(sd_ctx_params->rng_type),
|
||||||
|
sd_prediction_name(sd_ctx_params->prediction),
|
||||||
BOOL_STR(sd_ctx_params->offload_params_to_cpu),
|
BOOL_STR(sd_ctx_params->offload_params_to_cpu),
|
||||||
BOOL_STR(sd_ctx_params->keep_clip_on_cpu),
|
BOOL_STR(sd_ctx_params->keep_clip_on_cpu),
|
||||||
BOOL_STR(sd_ctx_params->keep_control_net_on_cpu),
|
BOOL_STR(sd_ctx_params->keep_control_net_on_cpu),
|
||||||
|
|||||||
@ -64,6 +64,16 @@ enum scheduler_t {
|
|||||||
SCHEDULE_COUNT
|
SCHEDULE_COUNT
|
||||||
};
|
};
|
||||||
|
|
||||||
|
enum prediction_t {
|
||||||
|
DEFAULT_PRED,
|
||||||
|
EPS_PRED,
|
||||||
|
V_PRED,
|
||||||
|
EDM_V_PRED,
|
||||||
|
SD3_FLOW_PRED,
|
||||||
|
FLUX_FLOW_PRED,
|
||||||
|
PREDICTION_COUNT
|
||||||
|
};
|
||||||
|
|
||||||
// same as enum ggml_type
|
// same as enum ggml_type
|
||||||
enum sd_type_t {
|
enum sd_type_t {
|
||||||
SD_TYPE_F32 = 0,
|
SD_TYPE_F32 = 0,
|
||||||
@ -146,6 +156,7 @@ typedef struct {
|
|||||||
int n_threads;
|
int n_threads;
|
||||||
enum sd_type_t wtype;
|
enum sd_type_t wtype;
|
||||||
enum rng_type_t rng_type;
|
enum rng_type_t rng_type;
|
||||||
|
enum prediction_t prediction;
|
||||||
bool offload_params_to_cpu;
|
bool offload_params_to_cpu;
|
||||||
bool keep_clip_on_cpu;
|
bool keep_clip_on_cpu;
|
||||||
bool keep_control_net_on_cpu;
|
bool keep_control_net_on_cpu;
|
||||||
@ -153,6 +164,7 @@ typedef struct {
|
|||||||
bool diffusion_flash_attn;
|
bool diffusion_flash_attn;
|
||||||
bool diffusion_conv_direct;
|
bool diffusion_conv_direct;
|
||||||
bool vae_conv_direct;
|
bool vae_conv_direct;
|
||||||
|
bool force_sdxl_vae_conv_scale;
|
||||||
bool chroma_use_dit_mask;
|
bool chroma_use_dit_mask;
|
||||||
bool chroma_use_t5_mask;
|
bool chroma_use_t5_mask;
|
||||||
int chroma_t5_mask_pad;
|
int chroma_t5_mask_pad;
|
||||||
@ -255,6 +267,8 @@ SD_API const char* sd_sample_method_name(enum sample_method_t sample_method);
|
|||||||
SD_API enum sample_method_t str_to_sample_method(const char* str);
|
SD_API enum sample_method_t str_to_sample_method(const char* str);
|
||||||
SD_API const char* sd_schedule_name(enum scheduler_t scheduler);
|
SD_API const char* sd_schedule_name(enum scheduler_t scheduler);
|
||||||
SD_API enum scheduler_t str_to_schedule(const char* str);
|
SD_API enum scheduler_t str_to_schedule(const char* str);
|
||||||
|
SD_API const char* sd_prediction_name(enum prediction_t prediction);
|
||||||
|
SD_API enum prediction_t str_to_prediction(const char* str);
|
||||||
|
|
||||||
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
|
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
|
||||||
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
|
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
|
||||||
|
|||||||
12
vae.hpp
12
vae.hpp
@ -530,6 +530,7 @@ struct VAE : public GGMLRunner {
|
|||||||
struct ggml_context* output_ctx) = 0;
|
struct ggml_context* output_ctx) = 0;
|
||||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) = 0;
|
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) = 0;
|
||||||
virtual void enable_conv2d_direct(){};
|
virtual void enable_conv2d_direct(){};
|
||||||
|
virtual void set_conv2d_scale(float scale) { SD_UNUSED(scale); };
|
||||||
};
|
};
|
||||||
|
|
||||||
struct AutoEncoderKL : public VAE {
|
struct AutoEncoderKL : public VAE {
|
||||||
@ -558,6 +559,17 @@ struct AutoEncoderKL : public VAE {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void set_conv2d_scale(float scale) {
|
||||||
|
std::vector<GGMLBlock*> blocks;
|
||||||
|
ae.get_all_blocks(blocks);
|
||||||
|
for (auto block : blocks) {
|
||||||
|
if (block->get_desc() == "Conv2d") {
|
||||||
|
auto conv_block = (Conv2d*)block;
|
||||||
|
conv_block->set_scale(scale);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
std::string get_desc() {
|
std::string get_desc() {
|
||||||
return "vae";
|
return "vae";
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user