mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
Compare commits
3 Commits
29ec31644a
...
d04248f208
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d04248f208 | ||
|
|
46eeff55f5 | ||
|
|
d8c65b4436 |
@ -12,11 +12,12 @@ Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in
|
||||
- Super lightweight and without external dependencies
|
||||
- SD1.x, SD2.x, SDXL and SD3 support
|
||||
- !!!The VAE in SDXL encounters NaN issues under FP16, but unfortunately, the ggml_conv_2d only operates under FP16. Hence, a parameter is needed to specify the VAE that has fixed the FP16 NaN issue. You can find it here: [SDXL VAE FP16 Fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors).
|
||||
- [Flux-dev/Flux-schnell Support](./docs/flux.md)
|
||||
|
||||
- [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) and [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) support
|
||||
- [PhotoMaker](https://github.com/TencentARC/PhotoMaker) support.
|
||||
- 16-bit, 32-bit float support
|
||||
- 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- Accelerated memory-efficient CPU inference
|
||||
- Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image, enabling Flash Attention just requires ~1.8GB.
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
@ -57,7 +58,6 @@ Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in
|
||||
- The current implementation of ggml_conv_2d is slow and has high memory usage
|
||||
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
|
||||
- [ ] Implement Inpainting support
|
||||
- [ ] k-quants support
|
||||
|
||||
## Usage
|
||||
|
||||
@ -171,7 +171,7 @@ arguments:
|
||||
--normalize-input normalize PHOTOMAKER input id images
|
||||
--upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now.
|
||||
--upscale-repeats Run the ESRGAN upscaler this many times (default 1)
|
||||
--type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0)
|
||||
--type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_k, q3_k, q4_k)
|
||||
If not specified, the default is the type of the weight file.
|
||||
--lora-model-dir [DIR] lora model directory
|
||||
-i, --init-img [IMAGE] path to the input image, required by img2img
|
||||
@ -198,7 +198,7 @@ arguments:
|
||||
--vae-tiling process vae in tiles to reduce memory usage
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--canny apply canny preprocessor (edge detection)
|
||||
--color colors the logging tags according to level
|
||||
--color Colors the logging tags according to level
|
||||
-v, --verbose print extra info
|
||||
```
|
||||
|
||||
@ -209,6 +209,7 @@ arguments:
|
||||
# ./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
|
||||
# ./bin/sd -m ../models/sd_xl_base_1.0.safetensors --vae ../models/sdxl_vae-fp16-fix.safetensors -H 1024 -W 1024 -p "a lovely cat" -v
|
||||
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v
|
||||
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
|
||||
```
|
||||
|
||||
Using formats of different precisions will yield results of varying quality.
|
||||
|
||||
BIN
assets/flux/flux1-dev-q2_k.png
Normal file
BIN
assets/flux/flux1-dev-q2_k.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 416 KiB |
BIN
assets/flux/flux1-dev-q3_k.png
Normal file
BIN
assets/flux/flux1-dev-q3_k.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 490 KiB |
BIN
assets/flux/flux1-dev-q4_0.png
Normal file
BIN
assets/flux/flux1-dev-q4_0.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 464 KiB |
BIN
assets/flux/flux1-dev-q8_0 with lora.png
Normal file
BIN
assets/flux/flux1-dev-q8_0 with lora.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 566 KiB |
BIN
assets/flux/flux1-dev-q8_0.png
Normal file
BIN
assets/flux/flux1-dev-q8_0.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 475 KiB |
BIN
assets/flux/flux1-schnell-q8_0.png
Normal file
BIN
assets/flux/flux1-schnell-q8_0.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 481 KiB |
63
docs/flux.md
Normal file
63
docs/flux.md
Normal file
@ -0,0 +1,63 @@
|
||||
# How to Use
|
||||
|
||||
You can run Flux using stable-diffusion.cpp with a GPU that has 6GB or even 4GB of VRAM, without needing to offload to RAM.
|
||||
|
||||
## Download weights
|
||||
|
||||
- Download flux-dev from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors
|
||||
- Download flux-schnell from https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/main/flux1-schnell.safetensors
|
||||
- Download vae from https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/ae.safetensors
|
||||
- Download clip_l from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/clip_l.safetensors
|
||||
- Download t5xxl from https://huggingface.co/comfyanonymous/flux_text_encoders/blob/main/t5xxl_fp16.safetensors
|
||||
|
||||
## Convert flux weights
|
||||
|
||||
Using fp16 will lead to overflow, but ggml's support for bf16 is not yet fully developed. Therefore, we need to convert flux to gguf format here, which also saves VRAM. For example:
|
||||
```
|
||||
.\bin\Release\sd.exe -M convert -m ..\..\ComfyUI\models\unet\flux1-dev.sft -o ..\models\flux1-dev-q8_0.gguf -v --type q8_0
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
- `--cfg-scale` is recommended to be set to 1.
|
||||
|
||||
### Flux-dev
|
||||
For example:
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
|
||||
```
|
||||
|
||||
Using formats of different precisions will yield results of varying quality.
|
||||
|
||||
| Type | q8_0 | q4_0 | q3_k | q2_k |
|
||||
|---- | ---- |---- |---- |---- |
|
||||
| **Memory** | 12068.09 MB | 6394.53 MB | 4888.16 MB | 3735.73 MB |
|
||||
| **Result** |  | | ||
|
||||
|
||||
|
||||
|
||||
### Flux-schnell
|
||||
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4
|
||||
```
|
||||
|
||||
| q8_0 |
|
||||
| ---- |
|
||||
| |
|
||||
|
||||
## Run with LoRA
|
||||
|
||||
Since many flux LoRA training libraries have used various LoRA naming formats, it is possible that not all flux LoRA naming formats are supported. It is recommended to use LoRA with naming formats compatible with ComfyUI.
|
||||
|
||||
### Flux-dev q8_0 with LoRA
|
||||
|
||||
- LoRA model from https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main (using comfy converted version!!!)
|
||||
|
||||
```
|
||||
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models
|
||||
```
|
||||
|
||||

|
||||
@ -179,7 +179,7 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --normalize-input normalize PHOTOMAKER input id images\n");
|
||||
printf(" --upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now.\n");
|
||||
printf(" --upscale-repeats Run the ESRGAN upscaler this many times (default 1)\n");
|
||||
printf(" --type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0)\n");
|
||||
printf(" --type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_k, q3_k, q4_k)\n");
|
||||
printf(" If not specified, the default is the type of the weight file.\n");
|
||||
printf(" --lora-model-dir [DIR] lora model directory\n");
|
||||
printf(" -i, --init-img [IMAGE] path to the input image, required by img2img\n");
|
||||
|
||||
71
model.cpp
71
model.cpp
@ -422,7 +422,10 @@ std::string convert_diffusers_name_to_compvis(std::string key, char seq) {
|
||||
return key;
|
||||
}
|
||||
|
||||
std::string convert_tensor_name(const std::string& name) {
|
||||
std::string convert_tensor_name(std::string name) {
|
||||
if (starts_with(name, "diffusion_model")) {
|
||||
name = "model." + name;
|
||||
}
|
||||
std::string new_name = name;
|
||||
if (starts_with(name, "cond_stage_model.") || starts_with(name, "conditioner.embedders.") || starts_with(name, "text_encoders.") || ends_with(name, ".vision_model.visual_projection.weight")) {
|
||||
new_name = convert_open_clip_to_hf_clip(name);
|
||||
@ -554,6 +557,48 @@ float bf16_to_f32(uint16_t bfloat16) {
|
||||
return *reinterpret_cast<float*>(&val_bits);
|
||||
}
|
||||
|
||||
uint16_t f8_e4m3_to_f16(uint8_t f8) {
|
||||
// do we need to support uz?
|
||||
|
||||
const uint32_t exponent_bias = 7;
|
||||
if (f8 == 0xff) {
|
||||
return ggml_fp32_to_fp16(-NAN);
|
||||
} else if (f8 == 0x7f) {
|
||||
return ggml_fp32_to_fp16(NAN);
|
||||
}
|
||||
|
||||
uint32_t sign = f8 & 0x80;
|
||||
uint32_t exponent = (f8 & 0x78) >> 3;
|
||||
uint32_t mantissa = f8 & 0x07;
|
||||
uint32_t result = sign << 24;
|
||||
if (exponent == 0) {
|
||||
if (mantissa > 0) {
|
||||
exponent = 0x7f - exponent_bias;
|
||||
|
||||
// yes, 2 times
|
||||
if ((mantissa & 0x04) == 0) {
|
||||
mantissa &= 0x03;
|
||||
mantissa <<= 1;
|
||||
exponent -= 1;
|
||||
}
|
||||
if ((mantissa & 0x04) == 0) {
|
||||
mantissa &= 0x03;
|
||||
mantissa <<= 1;
|
||||
exponent -= 1;
|
||||
}
|
||||
|
||||
result |= (mantissa & 0x03) << 21;
|
||||
result |= exponent << 23;
|
||||
}
|
||||
} else {
|
||||
result |= mantissa << 20;
|
||||
exponent += 0x7f - exponent_bias;
|
||||
result |= exponent << 23;
|
||||
}
|
||||
|
||||
return ggml_fp32_to_fp16(*reinterpret_cast<const float*>(&result));
|
||||
}
|
||||
|
||||
void bf16_to_f32_vec(uint16_t* src, float* dst, int64_t n) {
|
||||
// support inplace op
|
||||
for (int64_t i = n - 1; i >= 0; i--) {
|
||||
@ -561,6 +606,13 @@ void bf16_to_f32_vec(uint16_t* src, float* dst, int64_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
void f8_e4m3_to_f16_vec(uint8_t* src, uint16_t* dst, int64_t n) {
|
||||
// support inplace op
|
||||
for (int64_t i = n - 1; i >= 0; i--) {
|
||||
dst[i] = f8_e4m3_to_f16(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void convert_tensor(void* src,
|
||||
ggml_type src_type,
|
||||
void* dst,
|
||||
@ -794,6 +846,8 @@ ggml_type str_to_ggml_type(const std::string& dtype) {
|
||||
ttype = GGML_TYPE_F32;
|
||||
} else if (dtype == "F32") {
|
||||
ttype = GGML_TYPE_F32;
|
||||
} else if (dtype == "F8_E4M3") {
|
||||
ttype = GGML_TYPE_F16;
|
||||
}
|
||||
return ttype;
|
||||
}
|
||||
@ -866,7 +920,7 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
|
||||
|
||||
ggml_type type = str_to_ggml_type(dtype);
|
||||
if (type == GGML_TYPE_COUNT) {
|
||||
LOG_ERROR("unsupported dtype '%s'", dtype.c_str());
|
||||
LOG_ERROR("unsupported dtype '%s' (tensor '%s')", dtype.c_str(), name.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -903,6 +957,10 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
|
||||
if (dtype == "BF16") {
|
||||
tensor_storage.is_bf16 = true;
|
||||
GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2);
|
||||
} else if (dtype == "F8_E4M3") {
|
||||
tensor_storage.is_f8_e4m3 = true;
|
||||
// f8 -> f16
|
||||
GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size * 2);
|
||||
} else {
|
||||
GGML_ASSERT(tensor_storage.nbytes() == tensor_data_size);
|
||||
}
|
||||
@ -1537,6 +1595,9 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend
|
||||
if (tensor_storage.is_bf16) {
|
||||
// inplace op
|
||||
bf16_to_f32_vec((uint16_t*)dst_tensor->data, (float*)dst_tensor->data, tensor_storage.nelements());
|
||||
} else if (tensor_storage.is_f8_e4m3) {
|
||||
// inplace op
|
||||
f8_e4m3_to_f16_vec((uint8_t*)dst_tensor->data, (uint16_t*)dst_tensor->data, tensor_storage.nelements());
|
||||
}
|
||||
} else {
|
||||
read_buffer.resize(tensor_storage.nbytes());
|
||||
@ -1545,6 +1606,9 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend
|
||||
if (tensor_storage.is_bf16) {
|
||||
// inplace op
|
||||
bf16_to_f32_vec((uint16_t*)read_buffer.data(), (float*)read_buffer.data(), tensor_storage.nelements());
|
||||
} else if (tensor_storage.is_f8_e4m3) {
|
||||
// inplace op
|
||||
f8_e4m3_to_f16_vec((uint8_t*)read_buffer.data(), (uint16_t*)read_buffer.data(), tensor_storage.nelements());
|
||||
}
|
||||
|
||||
convert_tensor((void*)read_buffer.data(), tensor_storage.type, dst_tensor->data,
|
||||
@ -1557,6 +1621,9 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend
|
||||
if (tensor_storage.is_bf16) {
|
||||
// inplace op
|
||||
bf16_to_f32_vec((uint16_t*)read_buffer.data(), (float*)read_buffer.data(), tensor_storage.nelements());
|
||||
} else if (tensor_storage.is_f8_e4m3) {
|
||||
// inplace op
|
||||
f8_e4m3_to_f16_vec((uint8_t*)read_buffer.data(), (uint16_t*)read_buffer.data(), tensor_storage.nelements());
|
||||
}
|
||||
|
||||
if (tensor_storage.type == dst_tensor->type) {
|
||||
|
||||
9
model.h
9
model.h
@ -32,6 +32,7 @@ struct TensorStorage {
|
||||
std::string name;
|
||||
ggml_type type = GGML_TYPE_F32;
|
||||
bool is_bf16 = false;
|
||||
bool is_f8_e4m3 = false;
|
||||
int64_t ne[SD_MAX_DIMS] = {1, 1, 1, 1, 1};
|
||||
int n_dims = 0;
|
||||
|
||||
@ -61,7 +62,7 @@ struct TensorStorage {
|
||||
}
|
||||
|
||||
int64_t nbytes_to_read() const {
|
||||
if (is_bf16) {
|
||||
if (is_bf16 || is_f8_e4m3) {
|
||||
return nbytes() / 2;
|
||||
} else {
|
||||
return nbytes();
|
||||
@ -109,6 +110,8 @@ struct TensorStorage {
|
||||
const char* type_name = ggml_type_name(type);
|
||||
if (is_bf16) {
|
||||
type_name = "bf16";
|
||||
} else if (is_f8_e4m3) {
|
||||
type_name = "f8_e4m3";
|
||||
}
|
||||
ss << name << " | " << type_name << " | ";
|
||||
ss << n_dims << " [";
|
||||
@ -160,4 +163,6 @@ public:
|
||||
static std::string load_merges();
|
||||
static std::string load_t5_tokenizer_json();
|
||||
};
|
||||
#endif // __MODEL_H__
|
||||
|
||||
#endif // __MODEL_H__
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user