mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 21:38:58 +00:00
add z-image support
This commit is contained in:
parent
ba8c92a6b8
commit
d3f1bf4dd6
@ -1638,6 +1638,8 @@ struct LLMEmbedder : public Conditioner {
|
||||
LLM::LLMArch arch = LLM::LLMArch::QWEN2_5_VL;
|
||||
if (sd_version_is_flux2(version)) {
|
||||
arch = LLM::LLMArch::MISTRAL_SMALL_3_2;
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
arch = LLM::LLMArch::QWEN3;
|
||||
}
|
||||
if (arch == LLM::LLMArch::MISTRAL_SMALL_3_2) {
|
||||
tokenizer = std::make_shared<LLM::MistralTokenizer>();
|
||||
@ -1785,9 +1787,9 @@ struct LLMEmbedder : public Conditioner {
|
||||
prompt = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n";
|
||||
prompt += img_prompt;
|
||||
|
||||
prompt_attn_range.first = prompt.size();
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = prompt.size();
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
@ -1796,19 +1798,30 @@ struct LLMEmbedder : public Conditioner {
|
||||
|
||||
prompt = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
|
||||
prompt_attn_range.first = prompt.size();
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = prompt.size();
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "[/INST]";
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
prompt_template_encode_start_idx = 0;
|
||||
out_layers = {35}; // -2
|
||||
|
||||
prompt = "<|im_start|>user\n";
|
||||
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
} else {
|
||||
prompt_template_encode_start_idx = 34;
|
||||
|
||||
prompt = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n";
|
||||
|
||||
prompt_attn_range.first = prompt.size();
|
||||
prompt_attn_range.first = static_cast<int>(prompt.size());
|
||||
prompt += conditioner_params.text;
|
||||
prompt_attn_range.second = prompt.size();
|
||||
prompt_attn_range.second = static_cast<int>(prompt.size());
|
||||
|
||||
prompt += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
}
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
#include "qwen_image.hpp"
|
||||
#include "unet.hpp"
|
||||
#include "wan.hpp"
|
||||
#include "z_image.hpp"
|
||||
|
||||
struct DiffusionParams {
|
||||
struct ggml_tensor* x = nullptr;
|
||||
@ -357,4 +358,67 @@ struct QwenImageModel : public DiffusionModel {
|
||||
}
|
||||
};
|
||||
|
||||
struct ZImageModel : public DiffusionModel {
|
||||
std::string prefix;
|
||||
ZImage::ZImageRunner z_image;
|
||||
|
||||
ZImageModel(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "model.diffusion_model",
|
||||
SDVersion version = VERSION_Z_IMAGE)
|
||||
: prefix(prefix), z_image(backend, offload_params_to_cpu, tensor_storage_map, prefix, version) {
|
||||
}
|
||||
|
||||
std::string get_desc() override {
|
||||
return z_image.get_desc();
|
||||
}
|
||||
|
||||
void alloc_params_buffer() override {
|
||||
z_image.alloc_params_buffer();
|
||||
}
|
||||
|
||||
void free_params_buffer() override {
|
||||
z_image.free_params_buffer();
|
||||
}
|
||||
|
||||
void free_compute_buffer() override {
|
||||
z_image.free_compute_buffer();
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) override {
|
||||
z_image.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() override {
|
||||
return z_image.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
z_image.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void set_flash_attn_enabled(bool enabled) {
|
||||
z_image.set_flash_attention_enabled(enabled);
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
DiffusionParams diffusion_params,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
struct ggml_context* output_ctx = nullptr) override {
|
||||
return z_image.compute(n_threads,
|
||||
diffusion_params.x,
|
||||
diffusion_params.timesteps,
|
||||
diffusion_params.context,
|
||||
diffusion_params.ref_latents,
|
||||
true, // increase_ref_index
|
||||
output,
|
||||
output_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
@ -1653,8 +1653,14 @@ void step_callback(int step, int frame_count, sd_image_t* image, bool is_noisy)
|
||||
}
|
||||
}
|
||||
|
||||
#include "z_image.hpp"
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
SDParams params;
|
||||
// params.verbose = true;
|
||||
// sd_set_log_callback(sd_log_cb, (void*)¶ms);
|
||||
// ZImage::ZImageRunner::load_from_file_and_test(argv[1]);
|
||||
// return 1;
|
||||
parse_args(argc, argv, params);
|
||||
preview_path = params.preview_path;
|
||||
if (params.video_frames > 4) {
|
||||
|
||||
82
llm.hpp
82
llm.hpp
@ -1,5 +1,5 @@
|
||||
#ifndef __QWENVL_HPP__
|
||||
#define __QWENVL_HPP__
|
||||
#ifndef __LLM_HPP__
|
||||
#define __LLM_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
@ -469,12 +469,14 @@ namespace LLM {
|
||||
|
||||
enum class LLMArch {
|
||||
QWEN2_5_VL,
|
||||
QWEN3,
|
||||
MISTRAL_SMALL_3_2,
|
||||
ARCH_COUNT,
|
||||
};
|
||||
|
||||
static const char* llm_arch_to_str[] = {
|
||||
"qwen2.5vl",
|
||||
"qwen3",
|
||||
"mistral_small3.2",
|
||||
};
|
||||
|
||||
@ -501,6 +503,7 @@ namespace LLM {
|
||||
int64_t num_kv_heads = 4;
|
||||
int64_t head_dim = 128;
|
||||
bool qkv_bias = true;
|
||||
bool qk_norm = false;
|
||||
int64_t vocab_size = 152064;
|
||||
float rms_norm_eps = 1e-06f;
|
||||
LLMVisionParams vision;
|
||||
@ -813,14 +816,19 @@ namespace LLM {
|
||||
int64_t head_dim;
|
||||
int64_t num_heads;
|
||||
int64_t num_kv_heads;
|
||||
bool qk_norm;
|
||||
|
||||
public:
|
||||
Attention(const LLMParams& params)
|
||||
: num_heads(params.num_heads), num_kv_heads(params.num_kv_heads), head_dim(params.head_dim), arch(params.arch) {
|
||||
: arch(params.arch), num_heads(params.num_heads), num_kv_heads(params.num_kv_heads), head_dim(params.head_dim), qk_norm(params.qk_norm) {
|
||||
blocks["q_proj"] = std::make_shared<Linear>(params.hidden_size, num_heads * head_dim, params.qkv_bias);
|
||||
blocks["k_proj"] = std::make_shared<Linear>(params.hidden_size, num_kv_heads * head_dim, params.qkv_bias);
|
||||
blocks["v_proj"] = std::make_shared<Linear>(params.hidden_size, num_kv_heads * head_dim, params.qkv_bias);
|
||||
blocks["o_proj"] = std::make_shared<Linear>(num_heads * head_dim, params.hidden_size, false);
|
||||
if (params.qk_norm) {
|
||||
blocks["q_norm"] = std::make_shared<RMSNorm>(head_dim, params.rms_norm_eps);
|
||||
blocks["k_norm"] = std::make_shared<RMSNorm>(head_dim, params.rms_norm_eps);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
@ -842,9 +850,20 @@ namespace LLM {
|
||||
k = ggml_reshape_4d(ctx->ggml_ctx, k, head_dim, num_kv_heads, n_token, N); // [N, n_token, num_kv_heads, head_dim]
|
||||
v = ggml_reshape_4d(ctx->ggml_ctx, v, head_dim, num_kv_heads, n_token, N); // [N, n_token, num_kv_heads, head_dim]
|
||||
|
||||
if (qk_norm) {
|
||||
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
||||
auto k_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["k_norm"]);
|
||||
|
||||
q = q_norm->forward(ctx, q);
|
||||
k = k_norm->forward(ctx, k);
|
||||
}
|
||||
|
||||
if (arch == LLMArch::MISTRAL_SMALL_3_2) {
|
||||
q = ggml_rope_ext(ctx->ggml_ctx, q, input_pos, nullptr, 128, GGML_ROPE_TYPE_NORMAL, 131072, 1000000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
|
||||
k = ggml_rope_ext(ctx->ggml_ctx, k, input_pos, nullptr, 128, GGML_ROPE_TYPE_NORMAL, 131072, 1000000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
|
||||
} else if (arch == LLMArch::QWEN3) {
|
||||
q = ggml_rope_ext(ctx->ggml_ctx, q, input_pos, nullptr, 128, GGML_ROPE_TYPE_NORMAL, 151936, 1000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
|
||||
k = ggml_rope_ext(ctx->ggml_ctx, k, input_pos, nullptr, 128, GGML_ROPE_TYPE_NORMAL, 151936, 1000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
|
||||
} else {
|
||||
int sections[4] = {16, 24, 24, 0};
|
||||
q = ggml_rope_multi(ctx->ggml_ctx, q, input_pos, nullptr, head_dim, sections, GGML_ROPE_TYPE_MROPE, 128000, 1000000.f, 1.f, 0.f, 1.f, 32.f, 1.f);
|
||||
@ -1063,6 +1082,17 @@ namespace LLM {
|
||||
params.qkv_bias = false;
|
||||
params.vocab_size = 131072;
|
||||
params.rms_norm_eps = 1e-5f;
|
||||
} else if (arch == LLMArch::QWEN3) {
|
||||
params.num_layers = 36;
|
||||
params.hidden_size = 2560;
|
||||
params.intermediate_size = 9728;
|
||||
params.head_dim = 128;
|
||||
params.num_heads = 32;
|
||||
params.num_kv_heads = 8;
|
||||
params.qkv_bias = false;
|
||||
params.qk_norm = true;
|
||||
params.vocab_size = 151936;
|
||||
params.rms_norm_eps = 1e-6f;
|
||||
}
|
||||
bool have_vision_weight = false;
|
||||
bool llama_cpp_style = false;
|
||||
@ -1132,7 +1162,7 @@ namespace LLM {
|
||||
}
|
||||
|
||||
int64_t n_tokens = input_ids->ne[0];
|
||||
if (params.arch == LLMArch::MISTRAL_SMALL_3_2) {
|
||||
if (params.arch == LLMArch::MISTRAL_SMALL_3_2 || params.arch == LLMArch::QWEN3) {
|
||||
input_pos_vec.resize(n_tokens);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
input_pos_vec[i] = i;
|
||||
@ -1420,7 +1450,8 @@ namespace LLM {
|
||||
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
GGML_ASSERT(work_ctx != nullptr);
|
||||
bool test_mistral = true;
|
||||
bool test_mistral = false;
|
||||
bool test_qwen3 = true;
|
||||
bool test_vit = false;
|
||||
bool test_decoder_with_vit = false;
|
||||
|
||||
@ -1455,9 +1486,9 @@ namespace LLM {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n";
|
||||
text += img_prompt;
|
||||
prompt_attn_range.first = text.size();
|
||||
prompt_attn_range.first = static_cast<int>(text.size());
|
||||
text += "change 'flux.cpp' to 'edit.cpp'";
|
||||
prompt_attn_range.second = text.size();
|
||||
prompt_attn_range.second = static_cast<int>(text.size());
|
||||
text += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
|
||||
auto tokens_and_weights = tokenize(text, prompt_attn_range, 0, false);
|
||||
@ -1496,9 +1527,9 @@ namespace LLM {
|
||||
} else if (test_mistral) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]";
|
||||
prompt_attn_range.first = text.size();
|
||||
prompt_attn_range.first = static_cast<int>(text.size());
|
||||
text += "a lovely cat";
|
||||
prompt_attn_range.second = text.size();
|
||||
prompt_attn_range.second = static_cast<int>(text.size());
|
||||
text += "[/INST]";
|
||||
auto tokens_and_weights = tokenize(text, prompt_attn_range, 0, false);
|
||||
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
|
||||
@ -1514,14 +1545,37 @@ namespace LLM {
|
||||
model.compute(8, input_ids, {}, {10, 20, 30}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
} else if (test_qwen3) {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>user\n";
|
||||
prompt_attn_range.first = static_cast<int>(text.size());
|
||||
text += "a lovely cat";
|
||||
prompt_attn_range.second = static_cast<int>(text.size());
|
||||
text += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
auto tokens_and_weights = tokenize(text, prompt_attn_range, 0, false);
|
||||
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
|
||||
std::vector<float>& weights = std::get<1>(tokens_and_weights);
|
||||
for (auto token : tokens) {
|
||||
printf("%d ", token);
|
||||
}
|
||||
printf("\n");
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, tokens);
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, {}, {35}, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("llm test done in %dms", t1 - t0);
|
||||
} else {
|
||||
std::pair<int, int> prompt_attn_range;
|
||||
std::string text = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n";
|
||||
prompt_attn_range.first = text.size();
|
||||
prompt_attn_range.first = static_cast<int>(text.size());
|
||||
text += "a lovely cat";
|
||||
prompt_attn_range.second = text.size();
|
||||
prompt_attn_range.second = static_cast<int>(text.size());
|
||||
text += "<|im_end|>\n<|im_start|>assistant\n";
|
||||
auto tokens_and_weights = tokenize(text, prompt_attn_range, 0, false);
|
||||
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
|
||||
@ -1563,7 +1617,7 @@ namespace LLM {
|
||||
}
|
||||
}
|
||||
|
||||
LLMArch arch = LLMArch::MISTRAL_SMALL_3_2;
|
||||
LLMArch arch = LLMArch::QWEN3;
|
||||
|
||||
std::shared_ptr<LLMEmbedder> llm = std::make_shared<LLMEmbedder>(arch,
|
||||
backend,
|
||||
@ -1587,6 +1641,6 @@ namespace LLM {
|
||||
llm->test();
|
||||
}
|
||||
};
|
||||
}; // Qwen
|
||||
}; // LLM
|
||||
|
||||
#endif // __QWENVL_HPP__
|
||||
#endif // __LLM_HPP__
|
||||
|
||||
@ -101,10 +101,14 @@ protected:
|
||||
|
||||
public:
|
||||
TimestepEmbedder(int64_t hidden_size,
|
||||
int64_t frequency_embedding_size = 256)
|
||||
int64_t frequency_embedding_size = 256,
|
||||
int64_t out_channels = 0)
|
||||
: frequency_embedding_size(frequency_embedding_size) {
|
||||
if (out_channels <= 0) {
|
||||
out_channels = hidden_size;
|
||||
}
|
||||
blocks["mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(frequency_embedding_size, hidden_size, true, true));
|
||||
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size, true, true));
|
||||
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, out_channels, true, true));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* t) {
|
||||
|
||||
@ -1067,6 +1067,9 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_stream_modulation_img.lin.weight") != std::string::npos) {
|
||||
return VERSION_FLUX2;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.cap_embedder.0.weight") != std::string::npos) {
|
||||
return VERSION_Z_IMAGE;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.blocks.0.cross_attn.norm_k.weight") != std::string::npos) {
|
||||
is_wan = true;
|
||||
}
|
||||
|
||||
11
model.h
11
model.h
@ -44,6 +44,7 @@ enum SDVersion {
|
||||
VERSION_WAN2_2_TI2V,
|
||||
VERSION_QWEN_IMAGE,
|
||||
VERSION_FLUX2,
|
||||
VERSION_Z_IMAGE,
|
||||
VERSION_COUNT,
|
||||
};
|
||||
|
||||
@ -116,6 +117,13 @@ static inline bool sd_version_is_qwen_image(SDVersion version) {
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_z_image(SDVersion version) {
|
||||
if (version == VERSION_Z_IMAGE) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool sd_version_is_inpaint(SDVersion version) {
|
||||
if (version == VERSION_SD1_INPAINT ||
|
||||
version == VERSION_SD2_INPAINT ||
|
||||
@ -132,7 +140,8 @@ static inline bool sd_version_is_dit(SDVersion version) {
|
||||
sd_version_is_flux2(version) ||
|
||||
sd_version_is_sd3(version) ||
|
||||
sd_version_is_wan(version) ||
|
||||
sd_version_is_qwen_image(version)) {
|
||||
sd_version_is_qwen_image(version) ||
|
||||
sd_version_is_z_image(version)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
49
rope.hpp
49
rope.hpp
@ -379,6 +379,55 @@ namespace Rope {
|
||||
return embed_nd(ids, 1, theta, axes_dim);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ int bound_mod(int a, int m) {
|
||||
return (m - (a % m)) % m;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ std::vector<std::vector<float>> gen_z_image_ids(int h,
|
||||
int w,
|
||||
int patch_size,
|
||||
int bs,
|
||||
int context_len,
|
||||
int seq_multi_of,
|
||||
const std::vector<ggml_tensor*>& ref_latents,
|
||||
bool increase_ref_index) {
|
||||
int padded_context_len = context_len + bound_mod(context_len, seq_multi_of);
|
||||
auto txt_ids = std::vector<std::vector<float>>(bs * padded_context_len, std::vector<float>(3, 0.0f));
|
||||
for (int i = 0; i < bs * padded_context_len; i++) {
|
||||
txt_ids[i][0] = (i % padded_context_len) + 1.f;
|
||||
}
|
||||
|
||||
int axes_dim_num = 3;
|
||||
int index = padded_context_len + 1;
|
||||
auto img_ids = gen_flux_img_ids(h, w, patch_size, bs, axes_dim_num, index);
|
||||
|
||||
int img_pad_len = ((-context_len) % seq_multi_of);
|
||||
if (img_pad_len > 0) {
|
||||
std::vector<std::vector<float>> img_pad_ids(bs * img_pad_len, std::vector<float>(3, 0.f));
|
||||
img_ids = concat_ids(img_ids, img_pad_ids, bs);
|
||||
}
|
||||
|
||||
auto ids = concat_ids(txt_ids, img_ids, bs);
|
||||
|
||||
// ignore ref_latents for now
|
||||
return ids;
|
||||
}
|
||||
|
||||
// Generate z_image positional embeddings
|
||||
__STATIC_INLINE__ std::vector<float> gen_z_image_pe(int h,
|
||||
int w,
|
||||
int patch_size,
|
||||
int bs,
|
||||
int context_len,
|
||||
int seq_multi_of,
|
||||
const std::vector<ggml_tensor*>& ref_latents,
|
||||
bool increase_ref_index,
|
||||
int theta,
|
||||
const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_z_image_ids(h, w, patch_size, bs, context_len, seq_multi_of, ref_latents, increase_ref_index);
|
||||
return embed_nd(ids, bs, theta, axes_dim);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* pe,
|
||||
|
||||
@ -45,6 +45,7 @@ const char* model_version_to_str[] = {
|
||||
"Wan 2.2 TI2V",
|
||||
"Qwen Image",
|
||||
"Flux.2",
|
||||
"Z Image",
|
||||
};
|
||||
|
||||
const char* sampling_methods_str[] = {
|
||||
@ -377,7 +378,7 @@ public:
|
||||
} else if (sd_version_is_sd3(version)) {
|
||||
scale_factor = 1.5305f;
|
||||
shift_factor = 0.0609f;
|
||||
} else if (sd_version_is_flux(version)) {
|
||||
} else if (sd_version_is_flux(version) || sd_version_is_z_image(version)) {
|
||||
scale_factor = 0.3611f;
|
||||
shift_factor = 0.1159f;
|
||||
} else if (sd_version_is_wan(version) ||
|
||||
@ -495,6 +496,16 @@ public:
|
||||
tensor_storage_map,
|
||||
"model.diffusion_model",
|
||||
version);
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
cond_stage_model = std::make_shared<LLMEmbedder>(clip_backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
version);
|
||||
diffusion_model = std::make_shared<ZImageModel>(backend,
|
||||
offload_params_to_cpu,
|
||||
tensor_storage_map,
|
||||
"model.diffusion_model",
|
||||
version);
|
||||
} else { // SD1.x SD2.x SDXL
|
||||
if (strstr(SAFE_STR(sd_ctx_params->photo_maker_path), "v2")) {
|
||||
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend,
|
||||
@ -868,6 +879,13 @@ public:
|
||||
shift = 3.0;
|
||||
}
|
||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
LOG_INFO("running in FLOW mode");
|
||||
float shift = sd_ctx_params->flow_shift;
|
||||
if (shift == INFINITY) {
|
||||
shift = 3.0f;
|
||||
}
|
||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||
} else if (is_using_v_parameterization) {
|
||||
LOG_INFO("running in v-prediction mode");
|
||||
denoiser = std::make_shared<CompVisVDenoiser>();
|
||||
@ -1633,6 +1651,8 @@ public:
|
||||
shifted_t = std::max((int64_t)0, std::min((int64_t)(TIMESTEPS - 1), shifted_t));
|
||||
LOG_DEBUG("shifting timestep from %.2f to %" PRId64 " (sigma: %.4f)", t, shifted_t, sigma);
|
||||
timesteps_vec.assign(1, (float)shifted_t);
|
||||
} else if (sd_version_is_z_image(version)) {
|
||||
timesteps_vec.assign(1, 1000.f - t);
|
||||
} else {
|
||||
timesteps_vec.assign(1, t);
|
||||
}
|
||||
|
||||
662
z_image.hpp
Normal file
662
z_image.hpp
Normal file
@ -0,0 +1,662 @@
|
||||
#ifndef __Z_IMAGE_HPP__
|
||||
#define __Z_IMAGE_HPP__
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "flux.hpp"
|
||||
#include "ggml_extend.hpp"
|
||||
#include "mmdit.hpp"
|
||||
|
||||
// Ref: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
|
||||
// Ref: https://github.com/huggingface/diffusers/pull/12703
|
||||
|
||||
#ifndef MIN
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
namespace ZImage {
|
||||
constexpr int Z_IMAGE_GRAPH_SIZE = 20480;
|
||||
constexpr int ADALN_EMBED_DIM = 256;
|
||||
constexpr int SEQ_MULTI_OF = 32;
|
||||
|
||||
struct JointAttention : public GGMLBlock {
|
||||
protected:
|
||||
int64_t head_dim;
|
||||
int64_t num_heads;
|
||||
int64_t num_kv_heads;
|
||||
bool qk_norm;
|
||||
|
||||
public:
|
||||
JointAttention(int64_t hidden_size, int64_t head_dim, int64_t num_heads, int64_t num_kv_heads, bool qk_norm)
|
||||
: head_dim(head_dim), num_heads(num_heads), num_kv_heads(num_kv_heads), qk_norm(qk_norm) {
|
||||
blocks["qkv"] = std::make_shared<Linear>(hidden_size, (num_heads + num_kv_heads * 2) * head_dim, false);
|
||||
blocks["out"] = std::make_shared<Linear>(num_heads * head_dim, hidden_size, false);
|
||||
if (qk_norm) {
|
||||
blocks["q_norm"] = std::make_shared<RMSNorm>(head_dim);
|
||||
blocks["k_norm"] = std::make_shared<RMSNorm>(head_dim);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* mask = nullptr) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
int64_t n_token = x->ne[1];
|
||||
int64_t N = x->ne[2];
|
||||
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
|
||||
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks["out"]);
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x); // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
|
||||
qkv = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]); // [N, n_token, num_heads + num_kv_heads*2, head_dim]
|
||||
qkv = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1)); // [num_heads + num_kv_heads*2, N, n_token, head_dim]
|
||||
|
||||
auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0); // [num_heads, N, n_token, head_dim]
|
||||
auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads); // [num_kv_heads, N, n_token, head_dim]
|
||||
auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads)); // [num_kv_heads, N, n_token, head_dim]
|
||||
|
||||
q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2)); // [N, n_token, num_heads, head_dim]
|
||||
k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2)); // [N, n_token, num_kv_heads, head_dim]
|
||||
|
||||
if (qk_norm) {
|
||||
auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
|
||||
auto k_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["k_norm"]);
|
||||
|
||||
q = q_norm->forward(ctx, q);
|
||||
k = k_norm->forward(ctx, k);
|
||||
}
|
||||
|
||||
x = Rope::attention(ctx, q, k, v, pe, mask, 1.f / 128.f); // [N, n_token, num_heads * head_dim]
|
||||
|
||||
x = out_proj->forward(ctx, x); // [N, n_token, hidden_size]
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
class FeedForward : public GGMLBlock {
|
||||
public:
|
||||
FeedForward(int64_t dim,
|
||||
int64_t hidden_dim,
|
||||
int64_t multiple_of,
|
||||
float ffn_dim_multiplier = 0.f) {
|
||||
if (ffn_dim_multiplier > 0.f) {
|
||||
hidden_dim = static_cast<int64_t>(ffn_dim_multiplier * hidden_dim);
|
||||
}
|
||||
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) / multiple_of);
|
||||
blocks["w1"] = std::make_shared<Linear>(dim, hidden_dim, false);
|
||||
blocks["w2"] = std::make_shared<Linear>(hidden_dim, dim, false);
|
||||
blocks["w3"] = std::make_shared<Linear>(dim, hidden_dim, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
auto w1 = std::dynamic_pointer_cast<Linear>(blocks["w1"]);
|
||||
auto w2 = std::dynamic_pointer_cast<Linear>(blocks["w2"]);
|
||||
auto w3 = std::dynamic_pointer_cast<Linear>(blocks["w3"]);
|
||||
|
||||
auto x1 = w1->forward(ctx, x);
|
||||
auto x3 = w3->forward(ctx, x);
|
||||
x = ggml_mul(ctx->ggml_ctx, ggml_silu(ctx->ggml_ctx, x1), x3);
|
||||
x = w2->forward(ctx, x);
|
||||
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* scale) {
|
||||
// x: [N, L, C]
|
||||
// scale: [N, C]
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
return x;
|
||||
}
|
||||
|
||||
struct JointTransformerBlock : public GGMLBlock {
|
||||
protected:
|
||||
bool modulation;
|
||||
|
||||
public:
|
||||
JointTransformerBlock(int layer_id,
|
||||
int64_t hidden_size,
|
||||
int64_t head_dim,
|
||||
int64_t num_heads,
|
||||
int64_t num_kv_heads,
|
||||
int64_t multiple_of,
|
||||
float ffn_dim_multiplier,
|
||||
float norm_eps,
|
||||
bool qk_norm,
|
||||
bool modulation = true)
|
||||
: modulation(modulation) {
|
||||
blocks["attention"] = std::make_shared<JointAttention>(hidden_size, head_dim, num_heads, num_kv_heads, qk_norm);
|
||||
blocks["feed_forward"] = std::make_shared<FeedForward>(hidden_size, hidden_size, multiple_of, ffn_dim_multiplier);
|
||||
blocks["attention_norm1"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
||||
blocks["ffn_norm1"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
||||
blocks["attention_norm2"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
||||
blocks["ffn_norm2"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
|
||||
if (modulation) {
|
||||
blocks["adaLN_modulation.0"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), 4 * hidden_size);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* mask = nullptr,
|
||||
struct ggml_tensor* adaln_input = nullptr) {
|
||||
auto attention = std::dynamic_pointer_cast<JointAttention>(blocks["attention"]);
|
||||
auto feed_forward = std::dynamic_pointer_cast<FeedForward>(blocks["feed_forward"]);
|
||||
auto attention_norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm1"]);
|
||||
auto ffn_norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm1"]);
|
||||
auto attention_norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm2"]);
|
||||
auto ffn_norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm2"]);
|
||||
|
||||
if (modulation) {
|
||||
GGML_ASSERT(adaln_input != nullptr);
|
||||
auto adaLN_modulation_0 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.0"]);
|
||||
|
||||
auto m = adaLN_modulation_0->forward(ctx, adaln_input); // [N, 4 * hidden_size]
|
||||
auto mods = ggml_ext_chunk(ctx->ggml_ctx, m, 4, 0);
|
||||
auto scale_msa = mods[0];
|
||||
auto gate_msa = mods[1];
|
||||
auto scale_mlp = mods[2];
|
||||
auto gate_mlp = mods[3];
|
||||
|
||||
auto residual = x;
|
||||
x = modulate(ctx->ggml_ctx, attention_norm1->forward(ctx, x), scale_msa);
|
||||
x = attention->forward(ctx, x, pe, mask);
|
||||
x = attention_norm2->forward(ctx, x);
|
||||
x = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_msa));
|
||||
x = ggml_add(ctx->ggml_ctx, x, residual);
|
||||
|
||||
residual = x;
|
||||
x = modulate(ctx->ggml_ctx, ffn_norm1->forward(ctx, x), scale_mlp);
|
||||
x = feed_forward->forward(ctx, x);
|
||||
x = ffn_norm2->forward(ctx, x);
|
||||
x = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_mlp));
|
||||
x = ggml_add(ctx->ggml_ctx, x, residual);
|
||||
} else {
|
||||
GGML_ASSERT(adaln_input == nullptr);
|
||||
|
||||
auto residual = x;
|
||||
x = attention_norm1->forward(ctx, x);
|
||||
x = attention->forward(ctx, x, pe, mask);
|
||||
x = attention_norm2->forward(ctx, x);
|
||||
x = ggml_add(ctx->ggml_ctx, x, residual);
|
||||
|
||||
residual = x;
|
||||
x = ffn_norm1->forward(ctx, x);
|
||||
x = feed_forward->forward(ctx, x);
|
||||
x = ffn_norm2->forward(ctx, x);
|
||||
x = ggml_add(ctx->ggml_ctx, x, residual);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
struct FinalLayer : public GGMLBlock {
|
||||
public:
|
||||
FinalLayer(int64_t hidden_size,
|
||||
int64_t patch_size,
|
||||
int64_t out_channels) {
|
||||
blocks["norm_final"] = std::make_shared<LayerNorm>(hidden_size, 1e-06f, false);
|
||||
blocks["linear"] = std::make_shared<Linear>(hidden_size, patch_size * patch_size * out_channels, true, true);
|
||||
blocks["adaLN_modulation.1"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), hidden_size);
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* c) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
// c: [N, hidden_size]
|
||||
// return: [N, n_token, patch_size * patch_size * out_channels]
|
||||
auto norm_final = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]);
|
||||
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto scale = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c)); // [N, hidden_size]
|
||||
x = norm_final->forward(ctx, x);
|
||||
x = modulate(ctx->ggml_ctx, x, scale);
|
||||
x = linear->forward(ctx, x);
|
||||
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
struct ZImageParams {
|
||||
int64_t patch_size = 2;
|
||||
int64_t hidden_size = 3840;
|
||||
int64_t in_channels = 16;
|
||||
int64_t out_channels = 16;
|
||||
int64_t num_layers = 30;
|
||||
int64_t num_refiner_layers = 2;
|
||||
int64_t head_dim = 128;
|
||||
int64_t num_heads = 30;
|
||||
int64_t num_kv_heads = 30;
|
||||
int64_t multiple_of = 256;
|
||||
float ffn_dim_multiplier = 8.0 / 3.0f;
|
||||
float norm_eps = 1e-5f;
|
||||
bool qk_norm = true;
|
||||
int64_t cap_feat_dim = 2560;
|
||||
float theta = 256.f;
|
||||
std::vector<int> axes_dim = {32, 48, 48};
|
||||
int64_t axes_dim_sum = 128;
|
||||
};
|
||||
|
||||
class ZImageModel : public GGMLBlock {
|
||||
protected:
|
||||
ZImageParams z_image_params;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
params["cap_pad_token"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
|
||||
params["x_pad_token"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
|
||||
}
|
||||
|
||||
public:
|
||||
ZImageModel() = default;
|
||||
ZImageModel(ZImageParams z_image_params)
|
||||
: z_image_params(z_image_params) {
|
||||
blocks["x_embedder"] = std::make_shared<Linear>(z_image_params.patch_size * z_image_params.patch_size * z_image_params.in_channels, z_image_params.hidden_size);
|
||||
blocks["t_embedder"] = std::make_shared<TimestepEmbedder>(MIN(z_image_params.hidden_size, 1024), 256, 256);
|
||||
blocks["cap_embedder.0"] = std::make_shared<RMSNorm>(z_image_params.cap_feat_dim, z_image_params.norm_eps);
|
||||
blocks["cap_embedder.1"] = std::make_shared<Linear>(z_image_params.cap_feat_dim, z_image_params.hidden_size);
|
||||
|
||||
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
||||
auto block = std::make_shared<JointTransformerBlock>(i,
|
||||
z_image_params.hidden_size,
|
||||
z_image_params.head_dim,
|
||||
z_image_params.num_heads,
|
||||
z_image_params.num_kv_heads,
|
||||
z_image_params.multiple_of,
|
||||
z_image_params.ffn_dim_multiplier,
|
||||
z_image_params.norm_eps,
|
||||
z_image_params.qk_norm,
|
||||
true);
|
||||
|
||||
blocks["noise_refiner." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
||||
auto block = std::make_shared<JointTransformerBlock>(i,
|
||||
z_image_params.hidden_size,
|
||||
z_image_params.head_dim,
|
||||
z_image_params.num_heads,
|
||||
z_image_params.num_kv_heads,
|
||||
z_image_params.multiple_of,
|
||||
z_image_params.ffn_dim_multiplier,
|
||||
z_image_params.norm_eps,
|
||||
z_image_params.qk_norm,
|
||||
false);
|
||||
|
||||
blocks["context_refiner." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
for (int i = 0; i < z_image_params.num_layers; i++) {
|
||||
auto block = std::make_shared<JointTransformerBlock>(i,
|
||||
z_image_params.hidden_size,
|
||||
z_image_params.head_dim,
|
||||
z_image_params.num_heads,
|
||||
z_image_params.num_kv_heads,
|
||||
z_image_params.multiple_of,
|
||||
z_image_params.ffn_dim_multiplier,
|
||||
z_image_params.norm_eps,
|
||||
z_image_params.qk_norm,
|
||||
true);
|
||||
|
||||
blocks["layers." + std::to_string(i)] = block;
|
||||
}
|
||||
|
||||
blocks["final_layer"] = std::make_shared<FinalLayer>(z_image_params.hidden_size, z_image_params.patch_size, z_image_params.out_channels);
|
||||
}
|
||||
|
||||
struct ggml_tensor* pad_to_patch_size(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
|
||||
int pad_h = (z_image_params.patch_size - H % z_image_params.patch_size) % z_image_params.patch_size;
|
||||
int pad_w = (z_image_params.patch_size - W % z_image_params.patch_size) % z_image_params.patch_size;
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* patchify(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
// x: [N, C, H, W]
|
||||
// return: [N, h*w, patch_size*patch_size*C]
|
||||
int64_t N = x->ne[3];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t W = x->ne[0];
|
||||
int64_t p = z_image_params.patch_size;
|
||||
int64_t h = H / z_image_params.patch_size;
|
||||
int64_t w = W / z_image_params.patch_size;
|
||||
|
||||
GGML_ASSERT(h * p == H && w * p == W);
|
||||
|
||||
x = ggml_reshape_4d(ctx, x, p, w, p, h * C * N); // [N*C*h, p, w, p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, w, p, p]
|
||||
x = ggml_reshape_4d(ctx, x, p * p, w * h, C, N); // [N, C, h*w, p*p]
|
||||
x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 2, 0, 1, 3)); // [N, h*w, C, p*p]
|
||||
x = ggml_reshape_3d(ctx, x, C * p * p, w * h, N); // [N, h*w, p*p*C]
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* process_img(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x) {
|
||||
x = pad_to_patch_size(ctx, x);
|
||||
x = patchify(ctx, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int64_t h,
|
||||
int64_t w) {
|
||||
// x: [N, h*w, patch_size*patch_size*C]
|
||||
// return: [N, C, H, W]
|
||||
int64_t N = x->ne[2];
|
||||
int64_t C = x->ne[0] / z_image_params.patch_size / z_image_params.patch_size;
|
||||
int64_t H = h * z_image_params.patch_size;
|
||||
int64_t W = w * z_image_params.patch_size;
|
||||
int64_t p = z_image_params.patch_size;
|
||||
|
||||
GGML_ASSERT(C * p * p == x->ne[0]);
|
||||
|
||||
x = ggml_reshape_4d(ctx, x, C, p * p, w * h, N); // [N, h*w, p*p, C]
|
||||
x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 1, 2, 0, 3)); // [N, C, h*w, p*p]
|
||||
x = ggml_reshape_4d(ctx, x, p, p, w, h * C * N); // [N*C*h, w, p, p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, p, w, p]
|
||||
x = ggml_reshape_4d(ctx, x, W, H, C, N); // [N, C, h*p, w*p]
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward_core(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe) {
|
||||
auto x_embedder = std::dynamic_pointer_cast<Linear>(blocks["x_embedder"]);
|
||||
auto t_embedder = std::dynamic_pointer_cast<TimestepEmbedder>(blocks["t_embedder"]);
|
||||
auto cap_embedder_0 = std::dynamic_pointer_cast<RMSNorm>(blocks["cap_embedder.0"]);
|
||||
auto cap_embedder_1 = std::dynamic_pointer_cast<Linear>(blocks["cap_embedder.1"]);
|
||||
auto norm_final = std::dynamic_pointer_cast<RMSNorm>(blocks["norm_final"]);
|
||||
auto final_layer = std::dynamic_pointer_cast<FinalLayer>(blocks["final_layer"]);
|
||||
|
||||
auto txt_pad_token = params["cap_pad_token"];
|
||||
auto img_pad_token = params["x_pad_token"];
|
||||
|
||||
int64_t N = x->ne[2];
|
||||
int64_t n_img_token = x->ne[1];
|
||||
int64_t n_txt_token = context->ne[1];
|
||||
|
||||
auto t_emb = t_embedder->forward(ctx, timestep);
|
||||
|
||||
auto txt = cap_embedder_1->forward(ctx, cap_embedder_0->forward(ctx, context)); // [N, n_txt_token, hidden_size]
|
||||
auto img = x_embedder->forward(ctx, x); // [N, n_img_token, hidden_size]
|
||||
|
||||
int64_t n_txt_pad_token = Rope::bound_mod(n_txt_token, SEQ_MULTI_OF);
|
||||
if (n_txt_pad_token > 0) {
|
||||
auto txt_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, txt_pad_token, txt_pad_token->ne[0], n_txt_pad_token, N, 1);
|
||||
txt = ggml_concat(ctx->ggml_ctx, txt, txt_pad_tokens, 1); // [N, n_txt_token + n_txt_pad_token, hidden_size]
|
||||
}
|
||||
|
||||
int64_t n_img_pad_token = Rope::bound_mod(n_img_token, SEQ_MULTI_OF);
|
||||
if (n_img_pad_token > 0) {
|
||||
auto img_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, img_pad_token, img_pad_token->ne[0], n_img_pad_token, N, 1);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, img_pad_tokens, 1); // [N, n_img_token + n_img_pad_token, hidden_size]
|
||||
}
|
||||
|
||||
GGML_ASSERT(txt->ne[1] + img->ne[1] == pe->ne[3]);
|
||||
|
||||
auto txt_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, 0, txt->ne[1]);
|
||||
auto img_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, txt->ne[1], pe->ne[3]);
|
||||
|
||||
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["context_refiner." + std::to_string(i)]);
|
||||
|
||||
txt = block->forward(ctx, txt, txt_pe, nullptr, nullptr);
|
||||
}
|
||||
|
||||
for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["noise_refiner." + std::to_string(i)]);
|
||||
|
||||
img = block->forward(ctx, img, img_pe, nullptr, t_emb);
|
||||
}
|
||||
|
||||
auto txt_img = ggml_concat(ctx->ggml_ctx, txt, img, 1); // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, hidden_size]
|
||||
|
||||
for (int i = 0; i < z_image_params.num_layers; i++) {
|
||||
auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["layers." + std::to_string(i)]);
|
||||
|
||||
txt_img = block->forward(ctx, txt_img, pe, nullptr, t_emb);
|
||||
}
|
||||
|
||||
txt_img = final_layer->forward(ctx, txt_img, t_emb); // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, ph*pw*C]
|
||||
|
||||
img = ggml_ext_slice(ctx->ggml_ctx, txt_img, 1, n_txt_token + n_txt_pad_token, n_txt_token + n_txt_pad_token + n_img_token); // [N, n_img_token, ph*pw*C]
|
||||
|
||||
return img;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* pe,
|
||||
std::vector<ggml_tensor*> ref_latents = {}) {
|
||||
// Forward pass of DiT.
|
||||
// x: [N, C, H, W]
|
||||
// timestep: [N,]
|
||||
// context: [N, L, D]
|
||||
// pe: [L, d_head/2, 2, 2]
|
||||
// return: [N, C, H, W]
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t N = x->ne[3];
|
||||
|
||||
auto img = process_img(ctx->ggml_ctx, x);
|
||||
uint64_t n_img_token = img->ne[1];
|
||||
|
||||
if (ref_latents.size() > 0) {
|
||||
for (ggml_tensor* ref : ref_latents) {
|
||||
ref = process_img(ctx->ggml_ctx, ref);
|
||||
img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t h_len = ((H + (z_image_params.patch_size / 2)) / z_image_params.patch_size);
|
||||
int64_t w_len = ((W + (z_image_params.patch_size / 2)) / z_image_params.patch_size);
|
||||
|
||||
auto out = forward_core(ctx, img, timestep, context, pe);
|
||||
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, n_img_token); // [N, n_img_token, ph*pw*C]
|
||||
out = unpatchify(ctx->ggml_ctx, out, h_len, w_len); // [N, C, H + pad_h, W + pad_w]
|
||||
|
||||
// slice
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H); // [N, C, H, W + pad_w]
|
||||
out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W); // [N, C, H, W]
|
||||
|
||||
out = ggml_scale(ctx->ggml_ctx, out, -1.f);
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
struct ZImageRunner : public GGMLRunner {
|
||||
public:
|
||||
ZImageParams z_image_params;
|
||||
ZImageModel z_image;
|
||||
std::vector<float> pe_vec;
|
||||
std::vector<float> timestep_vec;
|
||||
SDVersion version;
|
||||
|
||||
ZImageRunner(ggml_backend_t backend,
|
||||
bool offload_params_to_cpu,
|
||||
const String2TensorStorage& tensor_storage_map = {},
|
||||
const std::string prefix = "",
|
||||
SDVersion version = VERSION_Z_IMAGE)
|
||||
: GGMLRunner(backend, offload_params_to_cpu) {
|
||||
z_image = ZImageModel(z_image_params);
|
||||
z_image.init(params_ctx, tensor_storage_map, prefix);
|
||||
}
|
||||
|
||||
std::string get_desc() override {
|
||||
return "z_image";
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
z_image.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
struct ggml_cgraph* gf = new_graph_custom(Z_IMAGE_GRAPH_SIZE);
|
||||
|
||||
x = to_backend(x);
|
||||
context = to_backend(context);
|
||||
timesteps = to_backend(timesteps);
|
||||
|
||||
for (int i = 0; i < ref_latents.size(); i++) {
|
||||
ref_latents[i] = to_backend(ref_latents[i]);
|
||||
}
|
||||
|
||||
pe_vec = Rope::gen_z_image_pe(x->ne[1],
|
||||
x->ne[0],
|
||||
z_image_params.patch_size,
|
||||
x->ne[3],
|
||||
context->ne[1],
|
||||
SEQ_MULTI_OF,
|
||||
ref_latents,
|
||||
increase_ref_index,
|
||||
z_image_params.theta,
|
||||
z_image_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / z_image_params.axes_dim_sum / 2;
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, z_image_params.axes_dim_sum / 2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
// print_ggml_tensor(pe, true, "pe");
|
||||
// pe->data = nullptr;
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
struct ggml_tensor* out = z_image.forward(&runner_ctx,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
pe,
|
||||
ref_latents);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false,
|
||||
struct ggml_tensor** output = nullptr,
|
||||
struct ggml_context* output_ctx = nullptr) {
|
||||
// x: [N, in_channels, h, w]
|
||||
// timesteps: [N, ]
|
||||
// context: [N, max_position, hidden_size]
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(x, timesteps, context, ref_latents, increase_ref_index);
|
||||
};
|
||||
|
||||
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
|
||||
}
|
||||
|
||||
void test() {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1GB
|
||||
params.mem_buffer = nullptr;
|
||||
params.no_alloc = false;
|
||||
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
GGML_ASSERT(work_ctx != nullptr);
|
||||
|
||||
{
|
||||
// auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
|
||||
// ggml_set_f32(x, 0.01f);
|
||||
auto x = load_tensor_from_file(work_ctx, "./z_image_x.bin");
|
||||
print_ggml_tensor(x);
|
||||
|
||||
std::vector<float> timesteps_vec(1, 0.f);
|
||||
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
|
||||
|
||||
// auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 2560, 256, 1);
|
||||
// ggml_set_f32(context, 0.01f);
|
||||
auto context = load_tensor_from_file(work_ctx, "./z_image_context.bin");
|
||||
print_ggml_tensor(context);
|
||||
|
||||
struct ggml_tensor* out = nullptr;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, {}, false, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("z_image test done in %dms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
static void load_from_file_and_test(const std::string& file_path) {
|
||||
// cuda q8: pass
|
||||
// cuda q8 fa: pass
|
||||
// ggml_backend_t backend = ggml_backend_cuda_init(0);
|
||||
ggml_backend_t backend = ggml_backend_cpu_init();
|
||||
ggml_type model_data_type = GGML_TYPE_Q8_0;
|
||||
|
||||
ModelLoader model_loader;
|
||||
if (!model_loader.init_from_file_and_convert_name(file_path, "model.diffusion_model.")) {
|
||||
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
auto& tensor_storage_map = model_loader.get_tensor_storage_map();
|
||||
if (model_data_type != GGML_TYPE_COUNT) {
|
||||
for (auto& [name, tensor_storage] : tensor_storage_map) {
|
||||
if (ends_with(name, "weight")) {
|
||||
tensor_storage.expected_type = model_data_type;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<ZImageRunner> z_image = std::make_shared<ZImageRunner>(backend,
|
||||
false,
|
||||
tensor_storage_map,
|
||||
"model.diffusion_model",
|
||||
VERSION_QWEN_IMAGE);
|
||||
|
||||
z_image->alloc_params_buffer();
|
||||
std::map<std::string, ggml_tensor*> tensors;
|
||||
z_image->get_param_tensors(tensors, "model.diffusion_model");
|
||||
|
||||
bool success = model_loader.load_tensors(tensors);
|
||||
|
||||
if (!success) {
|
||||
LOG_ERROR("load tensors from model loader failed");
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INFO("z_image model loaded");
|
||||
z_image->test();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace ZImage
|
||||
|
||||
#endif // __Z_IMAGE_HPP__
|
||||
Loading…
x
Reference in New Issue
Block a user