feat: add taehv support for Wan/Qwen (#937)

This commit is contained in:
stduhpf 2025-12-16 15:57:34 +01:00 committed by GitHub
parent a23262dfde
commit 9fa7f415df
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 432 additions and 26 deletions

View File

@ -31,6 +31,7 @@ Context Options:
--high-noise-diffusion-model <string> path to the standalone high noise diffusion model --high-noise-diffusion-model <string> path to the standalone high noise diffusion model
--vae <string> path to standalone vae model --vae <string> path to standalone vae model
--taesd <string> path to taesd. Using Tiny AutoEncoder for fast decoding (low quality) --taesd <string> path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)
--tae <string> alias of --taesd
--control-net <string> path to control net model --control-net <string> path to control net model
--embd-dir <string> embeddings directory --embd-dir <string> embeddings directory
--lora-model-dir <string> lora model directory --lora-model-dir <string> lora model directory

View File

@ -406,6 +406,10 @@ struct SDContextParams {
"--taesd", "--taesd",
"path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)", "path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)",
&taesd_path}, &taesd_path},
{"",
"--tae",
"alias of --taesd",
&taesd_path},
{"", {"",
"--control-net", "--control-net",
"path to control net model", "path to control net model",

View File

@ -24,6 +24,7 @@ Context Options:
--high-noise-diffusion-model <string> path to the standalone high noise diffusion model --high-noise-diffusion-model <string> path to the standalone high noise diffusion model
--vae <string> path to standalone vae model --vae <string> path to standalone vae model
--taesd <string> path to taesd. Using Tiny AutoEncoder for fast decoding (low quality) --taesd <string> path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)
--tae <string> alias of --taesd
--control-net <string> path to control net model --control-net <string> path to control net model
--embd-dir <string> embeddings directory --embd-dir <string> embeddings directory
--lora-model-dir <string> lora model directory --lora-model-dir <string> lora model directory

View File

@ -562,6 +562,7 @@ public:
} }
if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) { if (sd_version_is_wan(version) || sd_version_is_qwen_image(version)) {
if (!use_tiny_autoencoder) {
first_stage_model = std::make_shared<WAN::WanVAERunner>(vae_backend, first_stage_model = std::make_shared<WAN::WanVAERunner>(vae_backend,
offload_params_to_cpu, offload_params_to_cpu,
tensor_storage_map, tensor_storage_map,
@ -570,6 +571,18 @@ public:
version); version);
first_stage_model->alloc_params_buffer(); first_stage_model->alloc_params_buffer();
first_stage_model->get_param_tensors(tensors, "first_stage_model"); first_stage_model->get_param_tensors(tensors, "first_stage_model");
} else {
tae_first_stage = std::make_shared<TinyVideoAutoEncoder>(vae_backend,
offload_params_to_cpu,
tensor_storage_map,
"decoder",
vae_decode_only,
version);
if (sd_ctx_params->vae_conv_direct) {
LOG_INFO("Using Conv2d direct in the tae model");
tae_first_stage->set_conv2d_direct_enabled(true);
}
}
} else if (version == VERSION_CHROMA_RADIANCE) { } else if (version == VERSION_CHROMA_RADIANCE) {
first_stage_model = std::make_shared<FakeVAE>(vae_backend, first_stage_model = std::make_shared<FakeVAE>(vae_backend,
offload_params_to_cpu); offload_params_to_cpu);
@ -596,9 +609,8 @@ public:
} }
first_stage_model->alloc_params_buffer(); first_stage_model->alloc_params_buffer();
first_stage_model->get_param_tensors(tensors, "first_stage_model"); first_stage_model->get_param_tensors(tensors, "first_stage_model");
} } else if (use_tiny_autoencoder) {
if (use_tiny_autoencoder) { tae_first_stage = std::make_shared<TinyImageAutoEncoder>(vae_backend,
tae_first_stage = std::make_shared<TinyAutoEncoder>(vae_backend,
offload_params_to_cpu, offload_params_to_cpu,
tensor_storage_map, tensor_storage_map,
"decoder.layers", "decoder.layers",
@ -3614,6 +3626,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
denoise_mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], init_latent->ne[2], 1); denoise_mask = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], init_latent->ne[2], 1);
ggml_set_f32(denoise_mask, 1.f); ggml_set_f32(denoise_mask, 1.f);
if (!sd_ctx->sd->use_tiny_autoencoder)
sd_ctx->sd->process_latent_out(init_latent); sd_ctx->sd->process_latent_out(init_latent);
ggml_ext_tensor_iter(init_image_latent, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) { ggml_ext_tensor_iter(init_image_latent, [&](ggml_tensor* t, int64_t i0, int64_t i1, int64_t i2, int64_t i3) {
@ -3624,6 +3637,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
} }
}); });
if (!sd_ctx->sd->use_tiny_autoencoder)
sd_ctx->sd->process_latent_in(init_latent); sd_ctx->sd->process_latent_in(init_latent);
int64_t t2 = ggml_time_ms(); int64_t t2 = ggml_time_ms();
@ -3847,7 +3861,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
struct ggml_tensor* vid = sd_ctx->sd->decode_first_stage(work_ctx, final_latent, true); struct ggml_tensor* vid = sd_ctx->sd->decode_first_stage(work_ctx, final_latent, true);
int64_t t5 = ggml_time_ms(); int64_t t5 = ggml_time_ms();
LOG_INFO("decode_first_stage completed, taking %.2fs", (t5 - t4) * 1.0f / 1000); LOG_INFO("decode_first_stage completed, taking %.2fs", (t5 - t4) * 1.0f / 1000);
if (sd_ctx->sd->free_params_immediately) { if (sd_ctx->sd->free_params_immediately && !sd_ctx->sd->use_tiny_autoencoder) {
sd_ctx->sd->first_stage_model->free_params_buffer(); sd_ctx->sd->first_stage_model->free_params_buffer();
} }

390
tae.hpp
View File

@ -162,6 +162,311 @@ public:
} }
}; };
class TPool : public UnaryBlock {
int stride;
public:
TPool(int channels, int stride)
: stride(stride) {
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels * stride, channels, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
auto conv = std::dynamic_pointer_cast<UnaryBlock>(blocks["conv"]);
auto h = x;
if (stride != 1) {
h = ggml_reshape_4d(ctx->ggml_ctx, h, h->ne[0], h->ne[1], h->ne[2] * stride, h->ne[3] / stride);
}
h = conv->forward(ctx, h);
return h;
}
};
class TGrow : public UnaryBlock {
int stride;
public:
TGrow(int channels, int stride)
: stride(stride) {
blocks["conv"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels * stride, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
auto conv = std::dynamic_pointer_cast<UnaryBlock>(blocks["conv"]);
auto h = conv->forward(ctx, x);
if (stride != 1) {
h = ggml_reshape_4d(ctx->ggml_ctx, h, h->ne[0], h->ne[1], h->ne[2] / stride, h->ne[3] * stride);
}
return h;
}
};
class MemBlock : public GGMLBlock {
bool has_skip_conv = false;
public:
MemBlock(int channels, int out_channels)
: has_skip_conv(channels != out_channels) {
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels * 2, out_channels, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(out_channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(out_channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
if (has_skip_conv) {
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {1, 1}, {1, 1}, {0, 0}, {1, 1}, false));
}
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x, struct ggml_tensor* past) {
// x: [n, channels, h, w]
auto conv0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]);
auto conv1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]);
auto conv2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]);
auto h = ggml_concat(ctx->ggml_ctx, x, past, 2);
h = conv0->forward(ctx, h);
h = ggml_relu_inplace(ctx->ggml_ctx, h);
h = conv1->forward(ctx, h);
h = ggml_relu_inplace(ctx->ggml_ctx, h);
h = conv2->forward(ctx, h);
auto skip = x;
if (has_skip_conv) {
auto skip_conv = std::dynamic_pointer_cast<Conv2d>(blocks["skip"]);
skip = skip_conv->forward(ctx, x);
}
h = ggml_add_inplace(ctx->ggml_ctx, h, skip);
h = ggml_relu_inplace(ctx->ggml_ctx, h);
return h;
}
};
struct ggml_tensor* patchify(struct ggml_context* ctx,
struct ggml_tensor* x,
int64_t patch_size,
int64_t b = 1) {
// x: [f, b*c, h*q, w*r]
// return: [f, b*c*r*q, h, w]
if (patch_size == 1) {
return x;
}
int64_t r = patch_size;
int64_t q = patch_size;
int64_t W = x->ne[0];
int64_t H = x->ne[1];
int64_t C = x->ne[2];
int64_t f = x->ne[3];
int64_t w = W / r;
int64_t h = H / q;
x = ggml_reshape_4d(ctx, x, W, q, h, C * f); // [W, q, h, C*f]
x = ggml_ext_cont(ctx, ggml_ext_torch_permute(ctx, x, 0, 2, 1, 3)); // [W, h, q, C*f]
x = ggml_reshape_4d(ctx, x, r, w, h, q * C * f); // [r, w, h, q*C*f]
x = ggml_ext_cont(ctx, ggml_ext_torch_permute(ctx, x, 1, 2, 0, 3)); // [w, h, r, q*C*f]
x = ggml_reshape_4d(ctx, x, w, h, r * q * C, f); // [f, b*c*r*q, h, w]
return x;
}
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
struct ggml_tensor* x,
int64_t patch_size,
int64_t b = 1) {
// x: [f, b*c*r*q, h, w]
// return: [f, b*c, h*q, w*r]
if (patch_size == 1) {
return x;
}
int64_t r = patch_size;
int64_t q = patch_size;
int64_t c = x->ne[2] / b / q / r;
int64_t f = x->ne[3];
int64_t h = x->ne[1];
int64_t w = x->ne[0];
x = ggml_reshape_4d(ctx, x, w, h, r, q * c * b * f); // [q*c*b*f, r, h, w]
x = ggml_ext_cont(ctx, ggml_ext_torch_permute(ctx, x, 2, 0, 1, 3)); // [r, w, h, q*c*b*f]
x = ggml_reshape_4d(ctx, x, r * w, h, q, c * b * f); // [c*b*f, q, h, r*w]
x = ggml_ext_cont(ctx, ggml_ext_torch_permute(ctx, x, 0, 2, 1, 3)); // [r*w, q, h, c*b*f]
x = ggml_reshape_4d(ctx, x, r * w, q * h, c * b, f);
return x;
}
class TinyVideoEncoder : public UnaryBlock {
int in_channels = 3;
int hidden = 64;
int z_channels = 4;
int num_blocks = 3;
int num_layers = 3;
int patch_size = 1;
public:
TinyVideoEncoder(int z_channels = 4, int patch_size = 1)
: z_channels(z_channels), patch_size(patch_size) {
int index = 0;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels * patch_size * patch_size, hidden, {3, 3}, {1, 1}, {1, 1}));
index++; // nn.ReLU()
for (int i = 0; i < num_layers; i++) {
int stride = i == num_layers - 1 ? 1 : 2;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TPool(hidden, stride));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(hidden, hidden, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int j = 0; j < num_blocks; j++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new MemBlock(hidden, hidden));
}
}
blocks[std::to_string(index)] = std::shared_ptr<GGMLBlock>(new Conv2d(hidden, z_channels, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* z) override {
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["0"]);
if (patch_size > 1) {
z = patchify(ctx->ggml_ctx, z, patch_size, 1);
}
auto h = first_conv->forward(ctx, z);
h = ggml_relu_inplace(ctx->ggml_ctx, h);
int index = 2;
for (int i = 0; i < num_layers; i++) {
auto pool = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(index++)]);
auto conv = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(index++)]);
h = pool->forward(ctx, h);
h = conv->forward(ctx, h);
for (int j = 0; j < num_blocks; j++) {
auto block = std::dynamic_pointer_cast<MemBlock>(blocks[std::to_string(index++)]);
auto mem = ggml_pad_ext(ctx->ggml_ctx, h, 0, 0, 0, 0, 0, 0, 1, 0);
mem = ggml_view_4d(ctx->ggml_ctx, mem, h->ne[0], h->ne[1], h->ne[2], h->ne[3], h->nb[1], h->nb[2], h->nb[3], 0);
h = block->forward(ctx, h, mem);
}
}
auto last_conv = std::dynamic_pointer_cast<Conv2d>(blocks[std::to_string(index)]);
h = last_conv->forward(ctx, h);
return h;
}
};
class TinyVideoDecoder : public UnaryBlock {
int z_channels = 4;
int out_channels = 3;
int num_blocks = 3;
static const int num_layers = 3;
int channels[num_layers + 1] = {256, 128, 64, 64};
int patch_size = 1;
public:
TinyVideoDecoder(int z_channels = 4, int patch_size = 1)
: z_channels(z_channels), patch_size(patch_size) {
int index = 1; // Clamp()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, channels[0], {3, 3}, {1, 1}, {1, 1}));
index++; // nn.ReLU()
for (int i = 0; i < num_layers; i++) {
int stride = i == 0 ? 1 : 2;
for (int j = 0; j < num_blocks; j++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new MemBlock(channels[i], channels[i]));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TGrow(channels[i], stride));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels[i], channels[i + 1], {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
}
index++; // nn.ReLU()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels[num_layers], out_channels * patch_size * patch_size, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* z) override {
auto first_conv = std::dynamic_pointer_cast<Conv2d>(blocks["1"]);
// Clamp()
auto h = ggml_scale_inplace(ctx->ggml_ctx,
ggml_tanh_inplace(ctx->ggml_ctx,
ggml_scale(ctx->ggml_ctx, z, 1.0f / 3.0f)),
3.0f);
h = first_conv->forward(ctx, h);
h = ggml_relu_inplace(ctx->ggml_ctx, h);
int index = 3;
for (int i = 0; i < num_layers; i++) {
for (int j = 0; j < num_blocks; j++) {
auto block = std::dynamic_pointer_cast<MemBlock>(blocks[std::to_string(index++)]);
auto mem = ggml_pad_ext(ctx->ggml_ctx, h, 0, 0, 0, 0, 0, 0, 1, 0);
mem = ggml_view_4d(ctx->ggml_ctx, mem, h->ne[0], h->ne[1], h->ne[2], h->ne[3], h->nb[1], h->nb[2], h->nb[3], 0);
h = block->forward(ctx, h, mem);
}
// upsample
index++;
h = ggml_upscale(ctx->ggml_ctx, h, 2, GGML_SCALE_MODE_NEAREST);
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(index++)]);
h = block->forward(ctx, h);
block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(index++)]);
h = block->forward(ctx, h);
}
h = ggml_relu_inplace(ctx->ggml_ctx, h);
auto last_conv = std::dynamic_pointer_cast<Conv2d>(blocks[std::to_string(++index)]);
h = last_conv->forward(ctx, h);
if (patch_size > 1) {
h = unpatchify(ctx->ggml_ctx, h, patch_size, 1);
}
// shape(W, H, 3, 3 + T) => shape(W, H, 3, T)
h = ggml_view_4d(ctx->ggml_ctx, h, h->ne[0], h->ne[1], h->ne[2], h->ne[3] - 3, h->nb[1], h->nb[2], h->nb[3], 3 * h->nb[3]);
return h;
}
};
class TAEHV : public GGMLBlock {
protected:
bool decode_only;
SDVersion version;
public:
TAEHV(bool decode_only = true, SDVersion version = VERSION_WAN2)
: decode_only(decode_only), version(version) {
int z_channels = 16;
int patch = 1;
if (version == VERSION_WAN2_2_TI2V) {
z_channels = 48;
patch = 2;
}
blocks["decoder"] = std::shared_ptr<GGMLBlock>(new TinyVideoDecoder(z_channels, patch));
if (!decode_only) {
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new TinyVideoEncoder(z_channels, patch));
}
}
struct ggml_tensor* decode(GGMLRunnerContext* ctx, struct ggml_tensor* z) {
auto decoder = std::dynamic_pointer_cast<TinyVideoDecoder>(blocks["decoder"]);
if (sd_version_is_wan(version)) {
// (W, H, C, T) -> (W, H, T, C)
z = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, z, 0, 1, 3, 2));
}
auto result = decoder->forward(ctx, z);
if (sd_version_is_wan(version)) {
// (W, H, C, T) -> (W, H, T, C)
result = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, result, 0, 1, 3, 2));
}
return result;
}
struct ggml_tensor* encode(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
auto encoder = std::dynamic_pointer_cast<TinyVideoEncoder>(blocks["encoder"]);
// (W, H, T, C) -> (W, H, C, T)
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 1, 3, 2));
int64_t num_frames = x->ne[3];
if (num_frames % 4) {
// pad to multiple of 4 at the end
auto last_frame = ggml_view_4d(ctx->ggml_ctx, x, x->ne[0], x->ne[1], x->ne[2], 1, x->nb[1], x->nb[2], x->nb[3], (num_frames - 1) * x->nb[3]);
for (int i = 0; i < 4 - num_frames % 4; i++) {
x = ggml_concat(ctx->ggml_ctx, x, last_frame, 3);
}
}
x = encoder->forward(ctx, x);
x = ggml_cont(ctx->ggml_ctx, ggml_permute(ctx->ggml_ctx, x, 0, 1, 3, 2));
return x;
}
};
class TAESD : public GGMLBlock { class TAESD : public GGMLBlock {
protected: protected:
bool decode_only; bool decode_only;
@ -192,10 +497,22 @@ public:
}; };
struct TinyAutoEncoder : public GGMLRunner { struct TinyAutoEncoder : public GGMLRunner {
TinyAutoEncoder(ggml_backend_t backend, bool offload_params_to_cpu)
: GGMLRunner(backend, offload_params_to_cpu) {}
virtual bool compute(const int n_threads,
struct ggml_tensor* z,
bool decode_graph,
struct ggml_tensor** output,
struct ggml_context* output_ctx = nullptr) = 0;
virtual bool load_from_file(const std::string& file_path, int n_threads) = 0;
};
struct TinyImageAutoEncoder : public TinyAutoEncoder {
TAESD taesd; TAESD taesd;
bool decode_only = false; bool decode_only = false;
TinyAutoEncoder(ggml_backend_t backend, TinyImageAutoEncoder(ggml_backend_t backend,
bool offload_params_to_cpu, bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map, const String2TensorStorage& tensor_storage_map,
const std::string prefix, const std::string prefix,
@ -203,7 +520,7 @@ struct TinyAutoEncoder : public GGMLRunner {
SDVersion version = VERSION_SD1) SDVersion version = VERSION_SD1)
: decode_only(decoder_only), : decode_only(decoder_only),
taesd(decoder_only, version), taesd(decoder_only, version),
GGMLRunner(backend, offload_params_to_cpu) { TinyAutoEncoder(backend, offload_params_to_cpu) {
taesd.init(params_ctx, tensor_storage_map, prefix); taesd.init(params_ctx, tensor_storage_map, prefix);
} }
@ -260,4 +577,73 @@ struct TinyAutoEncoder : public GGMLRunner {
} }
}; };
struct TinyVideoAutoEncoder : public TinyAutoEncoder {
TAEHV taehv;
bool decode_only = false;
TinyVideoAutoEncoder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2TensorStorage& tensor_storage_map,
const std::string prefix,
bool decoder_only = true,
SDVersion version = VERSION_WAN2)
: decode_only(decoder_only),
taehv(decoder_only, version),
TinyAutoEncoder(backend, offload_params_to_cpu) {
taehv.init(params_ctx, tensor_storage_map, prefix);
}
std::string get_desc() override {
return "taehv";
}
bool load_from_file(const std::string& file_path, int n_threads) {
LOG_INFO("loading taehv from '%s', decode_only = %s", file_path.c_str(), decode_only ? "true" : "false");
alloc_params_buffer();
std::map<std::string, ggml_tensor*> taehv_tensors;
taehv.get_param_tensors(taehv_tensors);
std::set<std::string> ignore_tensors;
if (decode_only) {
ignore_tensors.insert("encoder.");
}
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init taehv model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(taehv_tensors, ignore_tensors, n_threads);
if (!success) {
LOG_ERROR("load tae tensors from model loader failed");
return false;
}
LOG_INFO("taehv model loaded");
return success;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
z = to_backend(z);
auto runner_ctx = get_context();
struct ggml_tensor* out = decode_graph ? taehv.decode(&runner_ctx, z) : taehv.encode(&runner_ctx, z);
ggml_build_forward_expand(gf, out);
return gf;
}
bool compute(const int n_threads,
struct ggml_tensor* z,
bool decode_graph,
struct ggml_tensor** output,
struct ggml_context* output_ctx = nullptr) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(z, decode_graph);
};
return GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};
#endif // __TAE_HPP__ #endif // __TAE_HPP__