mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
Conv2D direct support (#744)
* Conv2DDirect for VAE stage * Enable only for Vulkan, reduced duplicated code * Cmake option to use conv2d direct * conv2d direct always on for opencl * conv direct as a flag * fix merge typo * Align conv2d behavior to flash attention's * fix readme * add conv2d direct for controlnet * add conv2d direct for esrgan * clean code, use enable_conv2d_direct/get_all_blocks * format code --------- Co-authored-by: leejet <leejet714@gmail.com>
This commit is contained in:
parent
f7f05fb185
commit
5b8996f74a
@ -341,6 +341,10 @@ arguments:
|
||||
--diffusion-fa use flash attention in the diffusion model (for low vram)
|
||||
Might lower quality, since it implies converting k and v to f16.
|
||||
This might crash if it is not supported by the backend.
|
||||
--diffusion-conv-direct use Conv2d direct in the diffusion model
|
||||
This might crash if it is not supported by the backend.
|
||||
--vae-conv-direct use Conv2d direct in the vae model (should improve the performance)
|
||||
This might crash if it is not supported by the backend.
|
||||
--control-net-cpu keep controlnet in cpu (for low vram)
|
||||
--canny apply canny preprocessor (edge detection)
|
||||
--color colors the logging tags according to level
|
||||
|
||||
11
control.hpp
11
control.hpp
@ -323,6 +323,17 @@ struct ControlNet : public GGMLRunner {
|
||||
control_net.init(params_ctx, tensor_types, "");
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
control_net.get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
auto conv_block = (Conv2d*)block;
|
||||
conv_block->enable_direct();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~ControlNet() {
|
||||
free_control_ctx();
|
||||
}
|
||||
|
||||
11
esrgan.hpp
11
esrgan.hpp
@ -147,6 +147,17 @@ struct ESRGAN : public GGMLRunner {
|
||||
rrdb_net.init(params_ctx, tensor_types, "");
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
rrdb_net.get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
auto conv_block = (Conv2d*)block;
|
||||
conv_block->enable_direct();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "esrgan";
|
||||
}
|
||||
|
||||
@ -97,6 +97,8 @@ struct SDParams {
|
||||
bool clip_on_cpu = false;
|
||||
bool vae_on_cpu = false;
|
||||
bool diffusion_flash_attn = false;
|
||||
bool diffusion_conv_direct = false;
|
||||
bool vae_conv_direct = false;
|
||||
bool canny_preprocess = false;
|
||||
bool color = false;
|
||||
int upscale_repeats = 1;
|
||||
@ -142,6 +144,8 @@ void print_params(SDParams params) {
|
||||
printf(" controlnet cpu: %s\n", params.control_net_cpu ? "true" : "false");
|
||||
printf(" vae decoder on cpu:%s\n", params.vae_on_cpu ? "true" : "false");
|
||||
printf(" diffusion flash attention:%s\n", params.diffusion_flash_attn ? "true" : "false");
|
||||
printf(" diffusion Conv2d direct:%s\n", params.diffusion_conv_direct ? "true" : "false");
|
||||
printf(" vae Conv2d direct:%s\n", params.vae_conv_direct ? "true" : "false");
|
||||
printf(" strength(control): %.2f\n", params.control_strength);
|
||||
printf(" prompt: %s\n", params.prompt.c_str());
|
||||
printf(" negative_prompt: %s\n", params.negative_prompt.c_str());
|
||||
@ -232,6 +236,10 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
|
||||
printf(" Might lower quality, since it implies converting k and v to f16.\n");
|
||||
printf(" This might crash if it is not supported by the backend.\n");
|
||||
printf(" --diffusion-conv-direct use Conv2d direct in the diffusion model");
|
||||
printf(" This might crash if it is not supported by the backend.\n");
|
||||
printf(" --vae-conv-direct use Conv2d direct in the vae model (should improve the performance)");
|
||||
printf(" This might crash if it is not supported by the backend.\n");
|
||||
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
|
||||
printf(" --canny apply canny preprocessor (edge detection)\n");
|
||||
printf(" --color colors the logging tags according to level\n");
|
||||
@ -422,6 +430,8 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
{"", "--clip-on-cpu", "", true, ¶ms.clip_on_cpu},
|
||||
{"", "--vae-on-cpu", "", true, ¶ms.vae_on_cpu},
|
||||
{"", "--diffusion-fa", "", true, ¶ms.diffusion_flash_attn},
|
||||
{"", "--diffusion-conv-direct", "", true, ¶ms.diffusion_conv_direct},
|
||||
{"", "--vae-conv-direct", "", true, ¶ms.vae_conv_direct},
|
||||
{"", "--canny", "", true, ¶ms.canny_preprocess},
|
||||
{"-v", "--verbos", "", true, ¶ms.verbose},
|
||||
{"", "--color", "", true, ¶ms.color},
|
||||
@ -901,6 +911,8 @@ int main(int argc, const char* argv[]) {
|
||||
params.control_net_cpu,
|
||||
params.vae_on_cpu,
|
||||
params.diffusion_flash_attn,
|
||||
params.diffusion_conv_direct,
|
||||
params.vae_conv_direct,
|
||||
params.chroma_use_dit_mask,
|
||||
params.chroma_use_t5_mask,
|
||||
params.chroma_t5_mask_pad,
|
||||
@ -1012,7 +1024,8 @@ int main(int argc, const char* argv[]) {
|
||||
int upscale_factor = 4; // unused for RealESRGAN_x4plus_anime_6B.pth
|
||||
if (params.esrgan_path.size() > 0 && params.upscale_repeats > 0) {
|
||||
upscaler_ctx_t* upscaler_ctx = new_upscaler_ctx(params.esrgan_path.c_str(),
|
||||
params.n_threads);
|
||||
params.n_threads,
|
||||
params.diffusion_conv_direct);
|
||||
|
||||
if (upscaler_ctx == NULL) {
|
||||
printf("new_upscaler_ctx failed\n");
|
||||
|
||||
@ -708,6 +708,25 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
|
||||
return x;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d_direct(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* w,
|
||||
struct ggml_tensor* b,
|
||||
int s0 = 1,
|
||||
int s1 = 1,
|
||||
int p0 = 0,
|
||||
int p1 = 0,
|
||||
int d0 = 1,
|
||||
int d1 = 1) {
|
||||
x = ggml_conv_2d_direct(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||||
if (b != NULL) {
|
||||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||||
// b = ggml_repeat(ctx, b, x);
|
||||
x = ggml_add(ctx, x, b);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
// w: [OC,IC, KD, 1 * 1]
|
||||
// x: [N, IC, IH, IW]
|
||||
// b: [OC,]
|
||||
@ -1377,6 +1396,19 @@ public:
|
||||
tensors[prefix + pair.first] = pair.second;
|
||||
}
|
||||
}
|
||||
|
||||
virtual std::string get_desc() {
|
||||
return "GGMLBlock";
|
||||
}
|
||||
|
||||
void get_all_blocks(std::vector<GGMLBlock*>& result) {
|
||||
result.push_back(this);
|
||||
for (auto& block_iter : blocks) {
|
||||
if (block_iter.second) {
|
||||
block_iter.second->get_all_blocks(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class UnaryBlock : public GGMLBlock {
|
||||
@ -1466,6 +1498,7 @@ protected:
|
||||
std::pair<int, int> padding;
|
||||
std::pair<int, int> dilation;
|
||||
bool bias;
|
||||
bool direct = false;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types, const std::string prefix = "") {
|
||||
enum ggml_type wtype = GGML_TYPE_F16;
|
||||
@ -1492,13 +1525,25 @@ public:
|
||||
dilation(dilation),
|
||||
bias(bias) {}
|
||||
|
||||
void enable_direct() {
|
||||
direct = true;
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "Conv2d";
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
struct ggml_tensor* b = NULL;
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
||||
if (direct) {
|
||||
return ggml_nn_conv_2d_direct(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
||||
} else {
|
||||
return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -374,6 +374,10 @@ public:
|
||||
model_loader.tensor_storages_types,
|
||||
version,
|
||||
sd_ctx_params->diffusion_flash_attn);
|
||||
if (sd_ctx_params->diffusion_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the diffusion model");
|
||||
std::dynamic_pointer_cast<UNetModel>(diffusion_model)->unet.enable_conv2d_direct();
|
||||
}
|
||||
}
|
||||
|
||||
cond_stage_model->alloc_params_buffer();
|
||||
@ -395,6 +399,10 @@ public:
|
||||
vae_decode_only,
|
||||
false,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the vae model");
|
||||
first_stage_model->enable_conv2d_direct();
|
||||
}
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
} else {
|
||||
@ -403,6 +411,10 @@ public:
|
||||
"decoder.layers",
|
||||
vae_decode_only,
|
||||
version);
|
||||
if (sd_ctx_params->vae_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the tae model");
|
||||
tae_first_stage->enable_conv2d_direct();
|
||||
}
|
||||
}
|
||||
// first_stage_model->get_param_tensors(tensors, "first_stage_model.");
|
||||
|
||||
@ -415,6 +427,10 @@ public:
|
||||
controlnet_backend = backend;
|
||||
}
|
||||
control_net = std::make_shared<ControlNet>(controlnet_backend, model_loader.tensor_storages_types, version);
|
||||
if (sd_ctx_params->diffusion_conv_direct) {
|
||||
LOG_INFO("Using Conv2d direct in the control net");
|
||||
control_net->enable_conv2d_direct();
|
||||
}
|
||||
}
|
||||
|
||||
if (strstr(SAFE_STR(sd_ctx_params->stacked_id_embed_dir), "v2")) {
|
||||
|
||||
@ -134,6 +134,8 @@ typedef struct {
|
||||
bool keep_control_net_on_cpu;
|
||||
bool keep_vae_on_cpu;
|
||||
bool diffusion_flash_attn;
|
||||
bool diffusion_conv_direct;
|
||||
bool vae_conv_direct;
|
||||
bool chroma_use_dit_mask;
|
||||
bool chroma_use_t5_mask;
|
||||
int chroma_t5_mask_pad;
|
||||
@ -236,7 +238,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
typedef struct upscaler_ctx_t upscaler_ctx_t;
|
||||
|
||||
SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path,
|
||||
int n_threads);
|
||||
int n_threads,
|
||||
bool direct);
|
||||
SD_API void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx);
|
||||
|
||||
SD_API sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor);
|
||||
|
||||
11
tae.hpp
11
tae.hpp
@ -206,6 +206,17 @@ struct TinyAutoEncoder : public GGMLRunner {
|
||||
taesd.init(params_ctx, tensor_types, prefix);
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
taesd.get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
auto conv_block = (Conv2d*)block;
|
||||
conv_block->enable_direct();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "taesd";
|
||||
}
|
||||
|
||||
12
unet.hpp
12
unet.hpp
@ -546,6 +546,18 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
unet.init(params_ctx, tensor_types, prefix);
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
unet.get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
LOG_DEBUG("block %s", block->get_desc().c_str());
|
||||
auto conv_block = (Conv2d*)block;
|
||||
conv_block->enable_direct();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "unet";
|
||||
}
|
||||
|
||||
15
upscaler.cpp
15
upscaler.cpp
@ -9,9 +9,12 @@ struct UpscalerGGML {
|
||||
std::shared_ptr<ESRGAN> esrgan_upscaler;
|
||||
std::string esrgan_path;
|
||||
int n_threads;
|
||||
bool direct = false;
|
||||
|
||||
UpscalerGGML(int n_threads)
|
||||
: n_threads(n_threads) {
|
||||
UpscalerGGML(int n_threads,
|
||||
bool direct = false)
|
||||
: n_threads(n_threads),
|
||||
direct(direct) {
|
||||
}
|
||||
|
||||
bool load_from_file(const std::string& esrgan_path) {
|
||||
@ -47,6 +50,9 @@ struct UpscalerGGML {
|
||||
}
|
||||
LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
|
||||
esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_loader.tensor_storages_types);
|
||||
if (direct) {
|
||||
esrgan_upscaler->enable_conv2d_direct();
|
||||
}
|
||||
if (!esrgan_upscaler->load_from_file(esrgan_path)) {
|
||||
return false;
|
||||
}
|
||||
@ -104,14 +110,15 @@ struct upscaler_ctx_t {
|
||||
};
|
||||
|
||||
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
|
||||
int n_threads) {
|
||||
int n_threads,
|
||||
bool direct = false) {
|
||||
upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
|
||||
if (upscaler_ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
std::string esrgan_path(esrgan_path_c_str);
|
||||
|
||||
upscaler_ctx->upscaler = new UpscalerGGML(n_threads);
|
||||
upscaler_ctx->upscaler = new UpscalerGGML(n_threads, direct);
|
||||
if (upscaler_ctx->upscaler == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
11
vae.hpp
11
vae.hpp
@ -534,6 +534,17 @@ struct AutoEncoderKL : public GGMLRunner {
|
||||
ae.init(params_ctx, tensor_types, prefix);
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
ae.get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
auto conv_block = (Conv2d*)block;
|
||||
conv_block->enable_direct();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "vae";
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user