add qwen2vl vit support

This commit is contained in:
leejet 2025-09-29 23:05:30 +08:00
parent 95cae28465
commit 58e81adf61
6 changed files with 647 additions and 142 deletions

View File

@ -27,6 +27,8 @@
#include "avi_writer.h"
#include "qwenvl.hpp"
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
@ -1142,6 +1144,10 @@ bool load_images_from_dir(const std::string dir,
int main(int argc, const char* argv[]) {
SDParams params;
params.verbose = true;
sd_set_log_callback(sd_log_cb, (void*)&params);
Qwen::Qwen2_5_VLEmbedder::load_from_file_and_test(argv[1]);
return 1;
parse_args(argc, argv, params);
params.sample_params.guidance.slg.layers = params.skip_layers.data();
params.sample_params.guidance.slg.layer_count = params.skip_layers.size();

View File

@ -81,57 +81,6 @@ namespace Flux {
}
};
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* pe) {
// x: [N, L, n_head, d_head]
// pe: [L, d_head/2, 2, 2]
int64_t d_head = x->ne[0];
int64_t n_head = x->ne[1];
int64_t L = x->ne[2];
int64_t N = x->ne[3];
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N, n_head, L, d_head]
x = ggml_reshape_4d(ctx, x, 2, d_head / 2, L, n_head * N); // [N * n_head, L, d_head/2, 2]
x = ggml_cont(ctx, ggml_permute(ctx, x, 3, 0, 1, 2)); // [2, N * n_head, L, d_head/2]
int64_t offset = x->nb[2] * x->ne[2];
auto x_0 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 0); // [N * n_head, L, d_head/2]
auto x_1 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 1); // [N * n_head, L, d_head/2]
x_0 = ggml_reshape_4d(ctx, x_0, 1, x_0->ne[0], x_0->ne[1], x_0->ne[2]); // [N * n_head, L, d_head/2, 1]
x_1 = ggml_reshape_4d(ctx, x_1, 1, x_1->ne[0], x_1->ne[1], x_1->ne[2]); // [N * n_head, L, d_head/2, 1]
auto temp_x = ggml_new_tensor_4d(ctx, x_0->type, 2, x_0->ne[1], x_0->ne[2], x_0->ne[3]);
x_0 = ggml_repeat(ctx, x_0, temp_x); // [N * n_head, L, d_head/2, 2]
x_1 = ggml_repeat(ctx, x_1, temp_x); // [N * n_head, L, d_head/2, 2]
pe = ggml_cont(ctx, ggml_permute(ctx, pe, 3, 0, 1, 2)); // [2, L, d_head/2, 2]
offset = pe->nb[2] * pe->ne[2];
auto pe_0 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 0); // [L, d_head/2, 2]
auto pe_1 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 1); // [L, d_head/2, 2]
auto x_out = ggml_add_inplace(ctx, ggml_mul(ctx, x_0, pe_0), ggml_mul(ctx, x_1, pe_1)); // [N * n_head, L, d_head/2, 2]
x_out = ggml_reshape_3d(ctx, x_out, d_head, L, n_head * N); // [N*n_head, L, d_head]
return x_out;
}
__STATIC_INLINE__ struct ggml_tensor* attention(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* q,
struct ggml_tensor* k,
struct ggml_tensor* v,
struct ggml_tensor* pe,
struct ggml_tensor* mask,
bool flash_attn,
float kv_scale = 1.0f) {
// q,k,v: [N, L, n_head, d_head]
// pe: [L, d_head/2, 2, 2]
// return: [N, L, n_head*d_head]
q = apply_rope(ctx, q, pe); // [N*n_head, L, d_head]
k = apply_rope(ctx, k, pe); // [N*n_head, L, d_head]
auto x = ggml_nn_attention_ext(ctx, backend, q, k, v, v->ne[1], mask, false, true, flash_attn, kv_scale); // [N, L, n_head*d_head]
return x;
}
struct SelfAttention : public GGMLBlock {
public:
int64_t num_heads;
@ -179,9 +128,9 @@ namespace Flux {
// x: [N, n_token, dim]
// pe: [n_token, d_head/2, 2, 2]
// return [N, n_token, dim]
auto qkv = pre_attention(ctx, x); // q,k,v: [N, n_token, n_head, d_head]
x = attention(ctx, backend, qkv[0], qkv[1], qkv[2], pe, mask, flash_attn); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
auto qkv = pre_attention(ctx, x); // q,k,v: [N, n_token, n_head, d_head]
x = Rope::attention(ctx, backend, qkv[0], qkv[1], qkv[2], pe, mask, flash_attn); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
@ -369,8 +318,8 @@ namespace Flux {
auto k = ggml_concat(ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto v = ggml_concat(ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto attn = attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_txt_token + n_img_token, n_head*d_head]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
auto attn = Rope::attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_txt_token + n_img_token, n_head*d_head]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
auto txt_attn_out = ggml_view_3d(ctx,
attn,
attn->ne[0],
@ -504,7 +453,7 @@ namespace Flux {
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
q = norm->query_norm(ctx, q);
k = norm->key_norm(ctx, k);
auto attn = attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, hidden_size]
auto attn = Rope::attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, hidden_size]
auto attn_mlp = ggml_concat(ctx, attn, ggml_gelu_inplace(ctx, mlp), 0); // [N, n_token, hidden_size + mlp_hidden_dim]
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]

View File

@ -156,7 +156,7 @@ namespace Qwen {
auto k = ggml_concat(ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto v = ggml_concat(ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto attn = Flux::attention(ctx, backend, q, k, v, pe, mask, flash_attn, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
auto attn = Rope::attention(ctx, backend, q, k, v, pe, mask, flash_attn, (1.0f / 128.f)); // [N, n_txt_token + n_img_token, n_head*d_head]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
auto txt_attn_out = ggml_view_3d(ctx,
attn,

View File

@ -15,9 +15,11 @@
#include "clip.hpp"
#include "ggml_extend.hpp"
#include "json.hpp"
#include "rope.hpp"
#include "tokenize_util.h"
namespace Qwen {
constexpr int QWENVL_GRAPH_SIZE = 10240;
class Qwen2Tokenizer {
private:
@ -340,9 +342,9 @@ namespace Qwen {
struct Qwen2_5_VLMLP : public GGMLBlock {
public:
Qwen2_5_VLMLP(int64_t hidden_size, int64_t intermediate_size, bool bias = false) {
blocks["gate_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, false));
blocks["up_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, false));
blocks["down_proj"] = std::shared_ptr<GGMLBlock>(new Linear(intermediate_size, hidden_size, false));
blocks["gate_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, bias));
blocks["up_proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, intermediate_size, bias));
blocks["down_proj"] = std::shared_ptr<GGMLBlock>(new Linear(intermediate_size, hidden_size, bias));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
@ -359,6 +361,218 @@ namespace Qwen {
}
};
struct Qwen2_5_VisionPatchEmbed : public GGMLBlock {
protected:
int64_t patch_size;
int64_t temporal_patch_size;
int64_t embed_dim;
public:
Qwen2_5_VisionPatchEmbed(int64_t patch_size = 14,
int64_t temporal_patch_size = 2,
int64_t in_channels = 3,
int64_t embed_dim = 1152)
: patch_size(patch_size), temporal_patch_size(temporal_patch_size), embed_dim(embed_dim) {
std::tuple<int, int, int> kernel_size = {(int)temporal_patch_size, (int)patch_size, (int)patch_size};
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Conv3d(in_channels,
embed_dim,
kernel_size,
kernel_size, // stride
{0, 0, 0}, // padding
{1, 1, 1}, // dilation
false));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N*grid_t*grid_h*grid_w, in_channels, temporal_patch_size*patch_size*patch_size]
// return: [N*grid_t*grid_h*grid_w, embed_dim]
auto proj = std::dynamic_pointer_cast<Conv3d>(blocks["proj"]);
x = ggml_reshape_4d(ctx,
x,
patch_size,
patch_size,
temporal_patch_size,
ggml_nelements(x) / (temporal_patch_size * patch_size * patch_size));
x = proj->forward(ctx, x);
x = ggml_reshape_2d(ctx, x, embed_dim, ggml_nelements(x) / embed_dim);
return x;
}
};
struct Qwen2_5_VLPatchMerger : public GGMLBlock {
protected:
int64_t hidden_size;
public:
Qwen2_5_VLPatchMerger(int64_t dim,
int64_t context_dim,
int64_t spatial_merge_size) {
hidden_size = context_dim * spatial_merge_size * spatial_merge_size;
blocks["ln_q"] = std::shared_ptr<GGMLBlock>(new RMSNorm(context_dim, 1e-6f));
blocks["mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
// mlp.1 is nn.GELU()
blocks["mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
auto ln_q = std::dynamic_pointer_cast<RMSNorm>(blocks["ln_q"]);
auto mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["mlp.0"]);
auto mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["mlp.2"]);
x = ln_q->forward(ctx, x);
x = ggml_reshape_2d(ctx, x, hidden_size, ggml_nelements(x) / hidden_size);
x = mlp_0->forward(ctx, x);
x = ggml_gelu(ctx, x);
x = mlp_2->forward(ctx, x);
return x;
}
};
struct Qwen2_5_VLVisionAttention : public GGMLBlock {
protected:
int64_t head_dim;
int64_t num_heads;
public:
Qwen2_5_VLVisionAttention(int64_t hidden_size,
int64_t num_heads)
: num_heads(num_heads) {
head_dim = hidden_size / num_heads;
GGML_ASSERT(num_heads * head_dim == hidden_size);
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size * 3));
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask = nullptr) {
// x: [N, n_token, hidden_size]
int64_t n_token = x->ne[1];
int64_t N = x->ne[2];
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
auto qkv = qkv_proj->forward(ctx, x);
auto qkv_vec = split_qkv(ctx, qkv);
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
x = Rope::attention(ctx, backend, q, k, v, pe, mask, false, 1.f, false); // [N, n_token, hidden_size]
x = proj->forward(ctx, x); // [N, n_token, hidden_size]
return x;
}
};
struct Qwen2_5_VLVisionBlock : public GGMLBlock {
public:
Qwen2_5_VLVisionBlock(int64_t hidden_size,
int64_t intermediate_size,
int64_t num_heads,
float eps = 1e-6f) {
blocks["attn"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionAttention(hidden_size, num_heads));
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLMLP(hidden_size, intermediate_size, true));
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new RMSNorm(hidden_size, eps));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask = nullptr) {
// x: [N, n_token, hidden_size]
auto attn = std::dynamic_pointer_cast<Qwen2_5_VLVisionAttention>(blocks["attn"]);
auto mlp = std::dynamic_pointer_cast<Qwen2_5_VLMLP>(blocks["mlp"]);
auto norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["norm1"]);
auto norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["norm2"]);
auto residual = x;
x = norm1->forward(ctx, x);
x = attn->forward(ctx, backend, x, pe, mask);
x = ggml_add_inplace(ctx, x, residual);
residual = x;
x = norm2->forward(ctx, x);
x = mlp->forward(ctx, x);
x = ggml_add_inplace(ctx, x, residual);
return x;
}
};
struct Qwen2_5_VLVisionModel : public GGMLBlock {
protected:
int64_t num_layers;
int64_t spatial_merge_size;
std::set<int> fullatt_block_indexes;
public:
Qwen2_5_VLVisionModel(int64_t num_layers,
int64_t in_channels,
int64_t hidden_size,
int64_t out_hidden_size,
int64_t intermediate_size,
int64_t num_heads,
int64_t spatial_merge_size,
int64_t patch_size,
int64_t temporal_patch_size,
int64_t window_size,
std::set<int> fullatt_block_indexes = {7, 15, 23, 31},
float eps = 1e-6f)
: num_layers(num_layers), fullatt_block_indexes(fullatt_block_indexes), spatial_merge_size(spatial_merge_size) {
blocks["patch_embed"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VisionPatchEmbed(patch_size, temporal_patch_size, in_channels, hidden_size));
for (int i = 0; i < num_layers; i++) {
blocks["blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionBlock(hidden_size,
intermediate_size,
num_heads,
eps));
}
blocks["merger"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLPatchMerger(out_hidden_size, hidden_size, spatial_merge_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* pe,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
// pixel_values: [grid_t*(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw]
// window_index: [grid_t*(H/mh/ph)*(W/mw/pw)]
// window_inverse_index: [grid_t*(H/mh/ph)*(W/mw/pw)]
// window_mask: [grid_h*grid_w, grid_h*grid_w]
auto patch_embed = std::dynamic_pointer_cast<Qwen2_5_VisionPatchEmbed>(blocks["patch_embed"]);
auto merger = std::dynamic_pointer_cast<Qwen2_5_VLPatchMerger>(blocks["merger"]);
auto x = patch_embed->forward(ctx, pixel_values);
x = ggml_reshape_4d(ctx, x, x->ne[0] * spatial_merge_size * spatial_merge_size, x->ne[1] / spatial_merge_size / spatial_merge_size, x->ne[2], x->ne[3]);
x = ggml_get_rows(ctx, x, window_index);
x = ggml_reshape_4d(ctx, x, x->ne[0] / spatial_merge_size / spatial_merge_size, x->ne[1] * spatial_merge_size * spatial_merge_size, x->ne[2], x->ne[3]);
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<Qwen2_5_VLVisionBlock>(blocks["blocks." + std::to_string(i)]);
auto mask = window_mask;
if (fullatt_block_indexes.find(i) != fullatt_block_indexes.end()) {
mask = nullptr;
}
x = block->forward(ctx, backend, x, pe, mask);
}
x = merger->forward(ctx, x);
x = ggml_get_rows(ctx, x, window_inverse_index);
return x;
}
};
struct Qwen2_5_VLAttention : public GGMLBlock {
protected:
int64_t head_dim;
@ -498,6 +712,20 @@ namespace Qwen {
}
};
struct Qwen2_5_VLVisionParams {
int64_t num_layers = 32;
int64_t hidden_size = 1280;
int64_t intermediate_size = 3420;
int64_t num_heads = 16;
int64_t in_channels = 3;
int64_t out_hidden_size = 3584;
int64_t temporal_patch_size = 2;
int64_t patch_size = 14;
int64_t spatial_merge_size = 2;
int64_t window_size = 112;
std::set<int> fullatt_block_indexes = {7, 15, 23, 31};
};
struct Qwen2_5_VLParams {
int64_t num_layers = 28;
int64_t hidden_size = 3584;
@ -506,15 +734,17 @@ namespace Qwen {
int64_t num_kv_heads = 4;
int64_t vocab_size = 152064;
float rms_norm_eps = 1e-06f;
Qwen2_5_VLVisionParams vision;
};
struct Qwen2_5_VL : public GGMLBlock {
bool enable_vision;
Qwen2_5_VLParams params;
public:
Qwen2_5_VL() {}
Qwen2_5_VL(Qwen2_5_VLParams params)
: params(params) {
Qwen2_5_VL(Qwen2_5_VLParams params, bool enable_vision = false)
: enable_vision(enable_vision), params(params) {
blocks["model"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLTextModel(params.num_layers,
params.vocab_size,
params.hidden_size,
@ -522,6 +752,19 @@ namespace Qwen {
params.num_heads,
params.num_kv_heads,
params.rms_norm_eps));
if (enable_vision) {
blocks["visual"] = std::shared_ptr<GGMLBlock>(new Qwen2_5_VLVisionModel(params.vision.num_layers,
params.vision.in_channels,
params.vision.hidden_size,
params.vision.out_hidden_size,
params.vision.intermediate_size,
params.vision.num_heads,
params.vision.spatial_merge_size,
params.vision.patch_size,
params.vision.temporal_patch_size,
params.vision.window_size,
params.vision.fullatt_block_indexes));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
@ -534,6 +777,18 @@ namespace Qwen {
auto x = model->forward(ctx, backend, input_ids, input_pos);
return x;
}
struct ggml_tensor* vision_forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* pe,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
GGML_ASSERT(enable_vision);
auto vision_model = std::dynamic_pointer_cast<Qwen2_5_VLVisionModel>(blocks["visual"]);
return vision_model->forward(ctx, backend, pixel_values, pe, window_index, window_inverse_index, window_mask);
}
};
struct Qwen2_5_VLRunner : public GGMLRunner {
@ -541,13 +796,17 @@ namespace Qwen {
Qwen2_5_VL model;
std::vector<int> input_pos_vec;
std::vector<float> window_mask_vec;
std::vector<int> window_index_vec;
std::vector<int> window_inverse_index_vec;
std::vector<float> pe_vec;
Qwen2_5_VLRunner(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types,
const std::string prefix)
: GGMLRunner(backend, offload_params_to_cpu) {
model = Qwen2_5_VL(params);
const std::string prefix,
bool enable_vision = false)
: GGMLRunner(backend, offload_params_to_cpu), model(params, enable_vision) {
model.init(params_ctx, tensor_types, prefix);
}
@ -567,6 +826,17 @@ namespace Qwen {
return hidden_states;
}
struct ggml_tensor* vision_forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
struct ggml_tensor* input_pos,
struct ggml_tensor* window_index,
struct ggml_tensor* window_inverse_index,
struct ggml_tensor* window_mask) {
auto hidden_states = model.vision_forward(ctx, backend, pixel_values, input_pos, window_index, window_inverse_index, window_mask);
return hidden_states;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
@ -602,6 +872,166 @@ namespace Qwen {
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
struct ggml_tensor* process_image(struct ggml_context* ctx, struct ggml_tensor* image) {
// image: [C, H, W]
// return: [grid_t*(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw], grid_t == 1
int64_t C = image->ne[2];
int64_t H = image->ne[1];
int64_t W = image->ne[0];
int64_t mh = params.vision.spatial_merge_size;
int64_t mw = params.vision.spatial_merge_size;
int64_t pt = params.vision.temporal_patch_size;
int64_t ph = params.vision.patch_size;
int64_t pw = params.vision.patch_size;
image = ggml_reshape_4d(ctx, image, pw, mw, (W / mw / pw), H * C); // [C*H, (W/mw/pw), mw, pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 3, 1)); // [mw, C*H, (W/mw/pw), pw]
image = ggml_reshape_4d(ctx, image, pw * (W / mw / pw), H, C, mw); // [mw, C, H, (W/mw/pw)*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 3, 1)); // [H, mw, C, (W/mw/pw)*pw]
image = ggml_reshape_4d(ctx, image, pw, (W / mw / pw) * C * mw, ph, mh * (H / mh / ph)); // [(H/mh/ph)*mh, ph, mw*C*(W/mw/pw), pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph)*mh, mw*C*(W/mw/pw), ph, pw]
image = ggml_reshape_4d(ctx, image, pw * ph, (W / mw / pw), C, mw * mh * (H / mh / ph)); // [(H/mh/ph)*mh*mw, C, (W/mw/pw), ph*pw]
image = ggml_concat(ctx, image, image, 0); // [(H/mh/ph)*mh*mw, C, (W/mw/pw), pt*ph*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph)*mh*mw, (W/mw/pw), C, pt*ph*pw]
image = ggml_reshape_4d(ctx, image, pw * ph * pt * C, (W / mw / pw), mw * mh, (H / mh / ph)); // [(H/mh/ph), mh*mw, (W/mw/pw), C*pt*ph*pw]
image = ggml_cont(ctx, ggml_torch_permute(ctx, image, 0, 2, 1, 3)); // [(H/mh/ph), (W/mw/pw), mh*mw, C*pt*ph*pw]
image = ggml_reshape_2d(ctx, image, pw * ph * pt * C, mw * mh * (W / mw / pw) * (H / mh / ph)); // [(H/mh/ph)*(W/mw/pw)*mh*mw, C*pt*ph*pw]
return image;
}
struct ggml_cgraph* build_encode_image_graph(struct ggml_tensor* image) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWENVL_GRAPH_SIZE, false);
GGML_ASSERT(image->ne[1] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
int grid_t = 1;
int grid_h = image->ne[1] / params.vision.patch_size;
int grid_w = image->ne[0] / params.vision.patch_size;
int llm_grid_h = grid_h / params.vision.spatial_merge_size;
int llm_grid_w = grid_w / params.vision.spatial_merge_size;
int vit_merger_window_size = params.vision.window_size / params.vision.patch_size / params.vision.spatial_merge_size;
image = to_backend(image);
auto pixel_values = process_image(compute_ctx, image);
// window index
int inverse_index = 0;
window_index_vec.resize(llm_grid_h * llm_grid_w);
window_inverse_index_vec.resize(llm_grid_h * llm_grid_w);
std::vector<int> seqlens;
for (int ih = 0; ih < llm_grid_h; ih += vit_merger_window_size) {
for (int iw = 0; iw < llm_grid_w; iw += vit_merger_window_size) {
int win_h = std::min(vit_merger_window_size, llm_grid_h - ih);
int win_w = std::min(vit_merger_window_size, llm_grid_w - iw);
for (int iy = 0; iy < win_h; iy++) {
for (int ix = 0; ix < win_w; ix++) {
int index = (ih + iy) * llm_grid_w + iw + ix;
window_index_vec[inverse_index] = index;
window_inverse_index_vec[index] = inverse_index;
inverse_index++;
}
}
seqlens.push_back(win_h * win_w * params.vision.spatial_merge_size * params.vision.spatial_merge_size);
}
}
// printf("window_index: ");
// for (int i : window_index_vec) {
// printf("%d ", i);
// }
// printf("\n");
// printf("window_inverse_index: ");
// for (int i : window_inverse_index_vec) {
// printf("%d ", i);
// }
// printf("\n");
// printf("seqlens: ");
// for (int i : seqlens) {
// printf("%d ", i);
// }
// printf("\n");
auto window_index = ggml_new_tensor_1d(compute_ctx,
GGML_TYPE_I32,
llm_grid_h * llm_grid_w);
auto window_inverse_index = ggml_new_tensor_1d(compute_ctx,
GGML_TYPE_I32,
llm_grid_h * llm_grid_w);
set_backend_tensor_data(window_index, window_index_vec.data());
set_backend_tensor_data(window_inverse_index, window_inverse_index_vec.data());
// window mask
int seq_window_size = (vit_merger_window_size * params.vision.spatial_merge_size) * (vit_merger_window_size * params.vision.spatial_merge_size);
window_mask_vec.resize((grid_h * grid_w) * (grid_h * grid_w));
int window_start_index = 0;
for (int seq_index = 0; seq_index < seqlens.size(); seq_index++) {
int window_end_index = window_start_index + seqlens[seq_index];
// LOG_DEBUG("%d %d", window_start_index, window_end_index);
GGML_ASSERT(window_end_index <= grid_h * grid_w);
for (int i = window_start_index; i < window_end_index; i++) {
for (int j = 0; j < grid_h * grid_w; j++) {
float mask_value = -INFINITY;
if (j >= window_start_index && j < window_end_index) {
mask_value = 0;
}
GGML_ASSERT((i * (grid_h * grid_w) + j) < window_mask_vec.size());
window_mask_vec[i * (grid_h * grid_w) + j] = mask_value;
}
}
window_start_index = window_end_index;
// printf("\n");
}
// printf("window_mask: \n");
// for (int i = 0; i < grid_h*grid_w; i++) {
// for (int j = 0; j < grid_h*grid_w; j++) {
// printf("%f ", window_mask_vec[i * (grid_h * grid_w) + j]);
// }
// printf("\n");
// }
auto window_mask = ggml_new_tensor_2d(compute_ctx,
GGML_TYPE_F32,
grid_h * grid_w,
grid_h * grid_w);
set_backend_tensor_data(window_mask, window_mask_vec.data());
// pe
int head_dim = params.vision.hidden_size / params.vision.num_heads;
pe_vec = Rope::gen_qwen2vl_pe(grid_h,
grid_w,
params.vision.spatial_merge_size,
window_inverse_index_vec,
10000.f,
{head_dim / 2, head_dim / 2});
int pos_len = pe_vec.size() / head_dim / 2;
// LOG_DEBUG("pos_len %d", pos_len);
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, head_dim / 2, pos_len);
// pe->data = pe_vec.data();
// print_ggml_tensor(pe);
// pe->data = NULL;
set_backend_tensor_data(pe, pe_vec.data());
struct ggml_tensor* hidden_states = vision_forward(compute_ctx,
runtime_backend,
pixel_values,
pe,
window_index,
window_inverse_index,
window_mask);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void encode_image(const int n_threads,
struct ggml_tensor* image,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_encode_image_graph(image);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
};
struct Qwen2_5_VLEmbedder {
@ -611,8 +1041,9 @@ namespace Qwen {
Qwen2_5_VLEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {},
const std::string prefix = "")
: model(backend, offload_params_to_cpu, tensor_types, prefix) {
const std::string prefix = "",
bool enable_vision = false)
: model(backend, offload_params_to_cpu, tensor_types, prefix, enable_vision) {
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
@ -666,8 +1097,26 @@ namespace Qwen {
struct ggml_context* work_ctx = ggml_init(params);
GGML_ASSERT(work_ctx != NULL);
bool test_vit = true;
{
if (test_vit) {
// auto image = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 280, 280, 3);
// ggml_set_f32(image, 0.f);
auto image = load_tensor_from_file(work_ctx, "qwen2vl_normalized.bin");
print_ggml_tensor(image, false, "image");
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
model.encode_image(8, image, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out, false, "out");
// auto ref_out = load_tensor_from_file(work_ctx, "qwen2vl.bin");
// ggml_tensor_diff(ref_out, out, 0.01f);
LOG_DEBUG("qwen2vl test done in %dms", t1 - t0);
} else {
std::string text("<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\na lovely cat<|im_end|>\n<|im_start|>assistant\n");
auto tokens_and_weights = tokenize(text, 0, false);
std::vector<int>& tokens = std::get<0>(tokens_and_weights);
@ -692,7 +1141,7 @@ namespace Qwen {
// cpu f16: pass
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_Q8_0;
ggml_type model_data_type = GGML_TYPE_F16;
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path, "qwen2vl.")) {
@ -708,7 +1157,11 @@ namespace Qwen {
}
}
std::shared_ptr<Qwen2_5_VLEmbedder> qwenvl = std::shared_ptr<Qwen2_5_VLEmbedder>(new Qwen2_5_VLEmbedder(backend, false, tensor_types, "qwen2vl"));
std::shared_ptr<Qwen2_5_VLEmbedder> qwenvl = std::shared_ptr<Qwen2_5_VLEmbedder>(new Qwen2_5_VLEmbedder(backend,
false,
tensor_types,
"qwen2vl",
true));
qwenvl->alloc_params_buffer();
std::map<std::string, ggml_tensor*> tensors;

237
rope.hpp
View File

@ -4,9 +4,9 @@
#include <vector>
#include "ggml_extend.hpp"
struct Rope {
namespace Rope {
template <class T>
static std::vector<T> linspace(T start, T end, int num) {
__STATIC_INLINE__ std::vector<T> linspace(T start, T end, int num) {
std::vector<T> result(num);
if (num == 1) {
result[0] = start;
@ -19,7 +19,7 @@ struct Rope {
return result;
}
static std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) {
__STATIC_INLINE__ std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) {
int rows = mat.size();
int cols = mat[0].size();
std::vector<std::vector<float>> transposed(cols, std::vector<float>(rows));
@ -31,7 +31,7 @@ struct Rope {
return transposed;
}
static std::vector<float> flatten(const std::vector<std::vector<float>>& vec) {
__STATIC_INLINE__ std::vector<float> flatten(const std::vector<std::vector<float>>& vec) {
std::vector<float> flat_vec;
for (const auto& sub_vec : vec) {
flat_vec.insert(flat_vec.end(), sub_vec.begin(), sub_vec.end());
@ -39,7 +39,7 @@ struct Rope {
return flat_vec;
}
static std::vector<std::vector<float>> rope(const std::vector<float>& pos, int dim, int theta) {
__STATIC_INLINE__ std::vector<std::vector<float>> rope(const std::vector<float>& pos, int dim, int theta) {
assert(dim % 2 == 0);
int half_dim = dim / 2;
@ -72,11 +72,11 @@ struct Rope {
}
// Generate IDs for image patches and text
static std::vector<std::vector<float>> gen_txt_ids(int bs, int context_len) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_txt_ids(int bs, int context_len) {
return std::vector<std::vector<float>>(bs * context_len, std::vector<float>(3, 0.0));
}
static std::vector<std::vector<float>> gen_img_ids(int h, int w, int patch_size, int bs, int index = 0, int h_offset = 0, int w_offset = 0) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_img_ids(int h, int w, int patch_size, int bs, int index = 0, int h_offset = 0, int w_offset = 0) {
int h_len = (h + (patch_size / 2)) / patch_size;
int w_len = (w + (patch_size / 2)) / patch_size;
@ -102,9 +102,9 @@ struct Rope {
return img_ids_repeated;
}
static std::vector<std::vector<float>> concat_ids(const std::vector<std::vector<float>>& a,
const std::vector<std::vector<float>>& b,
int bs) {
__STATIC_INLINE__ std::vector<std::vector<float>> concat_ids(const std::vector<std::vector<float>>& a,
const std::vector<std::vector<float>>& b,
int bs) {
size_t a_len = a.size() / bs;
size_t b_len = b.size() / bs;
std::vector<std::vector<float>> ids(a.size() + b.size(), std::vector<float>(3));
@ -119,10 +119,10 @@ struct Rope {
return ids;
}
static std::vector<float> embed_nd(const std::vector<std::vector<float>>& ids,
int bs,
int theta,
const std::vector<int>& axes_dim) {
__STATIC_INLINE__ std::vector<float> embed_nd(const std::vector<std::vector<float>>& ids,
int bs,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> trans_ids = transpose(ids);
size_t pos_len = ids.size() / bs;
int num_axes = axes_dim.size();
@ -151,10 +151,10 @@ struct Rope {
return flatten(emb);
}
static std::vector<std::vector<float>> gen_refs_ids(int patch_size,
int bs,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_refs_ids(int patch_size,
int bs,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
std::vector<std::vector<float>> ids;
uint64_t curr_h_offset = 0;
uint64_t curr_w_offset = 0;
@ -183,13 +183,13 @@ struct Rope {
return ids;
}
static std::vector<std::vector<float>> gen_flux_ids(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_flux_ids(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
auto txt_ids = gen_txt_ids(bs, context_len);
auto img_ids = gen_img_ids(h, w, patch_size, bs);
@ -202,26 +202,26 @@ struct Rope {
}
// Generate flux positional embeddings
static std::vector<float> gen_flux_pe(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index,
int theta,
const std::vector<int>& axes_dim) {
__STATIC_INLINE__ std::vector<float> gen_flux_pe(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_flux_ids(h, w, patch_size, bs, context_len, ref_latents, increase_ref_index);
return embed_nd(ids, bs, theta, axes_dim);
}
static std::vector<std::vector<float>> gen_qwen_image_ids(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_qwen_image_ids(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index) {
int h_len = (h + (patch_size / 2)) / patch_size;
int w_len = (w + (patch_size / 2)) / patch_size;
int txt_id_start = std::max(h_len, w_len);
@ -242,29 +242,29 @@ struct Rope {
}
// Generate qwen_image positional embeddings
static std::vector<float> gen_qwen_image_pe(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index,
int theta,
const std::vector<int>& axes_dim) {
__STATIC_INLINE__ std::vector<float> gen_qwen_image_pe(int h,
int w,
int patch_size,
int bs,
int context_len,
const std::vector<ggml_tensor*>& ref_latents,
bool increase_ref_index,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_qwen_image_ids(h, w, patch_size, bs, context_len, ref_latents, increase_ref_index);
return embed_nd(ids, bs, theta, axes_dim);
}
static std::vector<std::vector<float>> gen_vid_ids(int t,
int h,
int w,
int pt,
int ph,
int pw,
int bs,
int t_offset = 0,
int h_offset = 0,
int w_offset = 0) {
__STATIC_INLINE__ std::vector<std::vector<float>> gen_vid_ids(int t,
int h,
int w,
int pt,
int ph,
int pw,
int bs,
int t_offset = 0,
int h_offset = 0,
int w_offset = 0) {
int t_len = (t + (pt / 2)) / pt;
int h_len = (h + (ph / 2)) / ph;
int w_len = (w + (pw / 2)) / pw;
@ -296,18 +296,115 @@ struct Rope {
}
// Generate wan positional embeddings
static std::vector<float> gen_wan_pe(int t,
int h,
int w,
int pt,
int ph,
int pw,
int bs,
int theta,
const std::vector<int>& axes_dim) {
__STATIC_INLINE__ std::vector<float> gen_wan_pe(int t,
int h,
int w,
int pt,
int ph,
int pw,
int bs,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_vid_ids(t, h, w, pt, ph, pw, bs);
return embed_nd(ids, bs, theta, axes_dim);
}
}; // struct Rope
__STATIC_INLINE__ std::vector<std::vector<float>> gen_qwen2vl_ids(int grid_h,
int grid_w,
int merge_size,
const std::vector<int>& window_index) {
std::vector<std::vector<float>> ids(grid_h * grid_w, std::vector<float>(2, 0.0));
int index = 0;
for (int ih = 0; ih < grid_h; ih += merge_size) {
for (int iw = 0; iw < grid_w; iw += merge_size) {
for (int iy = 0; iy < merge_size; iy++) {
for (int ix = 0; ix < merge_size; ix++) {
int inverse_index = window_index[index / (merge_size * merge_size)];
int i = inverse_index * (merge_size * merge_size) + index % (merge_size * merge_size);
GGML_ASSERT(i < grid_h * grid_w);
ids[i][0] = ih + iy;
ids[i][1] = iw + ix;
index++;
}
}
}
}
return ids;
}
// Generate qwen2vl positional embeddings
__STATIC_INLINE__ std::vector<float> gen_qwen2vl_pe(int grid_h,
int grid_w,
int merge_size,
const std::vector<int>& window_index,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_qwen2vl_ids(grid_h, grid_w, merge_size, window_index);
return embed_nd(ids, 1, theta, axes_dim);
}
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* pe,
bool rope_interleaved = true) {
// x: [N, L, n_head, d_head]
// pe: [L, d_head/2, 2, 2], [[cos, -sin], [sin, cos]]
int64_t d_head = x->ne[0];
int64_t n_head = x->ne[1];
int64_t L = x->ne[2];
int64_t N = x->ne[3];
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N, n_head, L, d_head]
if (rope_interleaved) {
x = ggml_reshape_4d(ctx, x, 2, d_head / 2, L, n_head * N); // [N * n_head, L, d_head/2, 2]
x = ggml_cont(ctx, ggml_permute(ctx, x, 3, 0, 1, 2)); // [2, N * n_head, L, d_head/2]
} else {
x = ggml_reshape_4d(ctx, x, d_head / 2, 2, L, n_head * N); // [N * n_head, L, 2, d_head/2]
x = ggml_cont(ctx, ggml_torch_permute(ctx, x, 0, 2, 3, 1)); // [2, N * n_head, L, d_head/2]
}
int64_t offset = x->nb[2] * x->ne[2];
auto x_0 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 0); // [N * n_head, L, d_head/2]
auto x_1 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 1); // [N * n_head, L, d_head/2]
x_0 = ggml_reshape_4d(ctx, x_0, 1, x_0->ne[0], x_0->ne[1], x_0->ne[2]); // [N * n_head, L, d_head/2, 1]
x_1 = ggml_reshape_4d(ctx, x_1, 1, x_1->ne[0], x_1->ne[1], x_1->ne[2]); // [N * n_head, L, d_head/2, 1]
auto temp_x = ggml_new_tensor_4d(ctx, x_0->type, 2, x_0->ne[1], x_0->ne[2], x_0->ne[3]);
x_0 = ggml_repeat(ctx, x_0, temp_x); // [N * n_head, L, d_head/2, 2]
x_1 = ggml_repeat(ctx, x_1, temp_x); // [N * n_head, L, d_head/2, 2]
pe = ggml_cont(ctx, ggml_permute(ctx, pe, 3, 0, 1, 2)); // [2, L, d_head/2, 2]
offset = pe->nb[2] * pe->ne[2];
auto pe_0 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 0); // [L, d_head/2, 2]
auto pe_1 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 1); // [L, d_head/2, 2]
auto x_out = ggml_add_inplace(ctx, ggml_mul(ctx, x_0, pe_0), ggml_mul(ctx, x_1, pe_1)); // [N * n_head, L, d_head/2, 2]
if (!rope_interleaved) {
x_out = ggml_cont(ctx, ggml_permute(ctx, x_out, 1, 0, 2, 3)); // [N * n_head, L, x, d_head/2]
}
x_out = ggml_reshape_3d(ctx, x_out, d_head, L, n_head * N); // [N*n_head, L, d_head]
return x_out;
}
__STATIC_INLINE__ struct ggml_tensor* attention(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* q,
struct ggml_tensor* k,
struct ggml_tensor* v,
struct ggml_tensor* pe,
struct ggml_tensor* mask,
bool flash_attn,
float kv_scale = 1.0f,
bool rope_interleaved = true) {
// q,k,v: [N, L, n_head, d_head]
// pe: [L, d_head/2, 2, 2]
// return: [N, L, n_head*d_head]
q = apply_rope(ctx, q, pe, rope_interleaved); // [N*n_head, L, d_head]
k = apply_rope(ctx, k, pe, rope_interleaved); // [N*n_head, L, d_head]
auto x = ggml_nn_attention_ext(ctx, backend, q, k, v, v->ne[1], mask, false, true, flash_attn, kv_scale); // [N, L, n_head*d_head]
return x;
}
}; // namespace Rope
#endif // __ROPE_HPP__

View File

@ -1333,7 +1333,7 @@ namespace WAN {
k = ggml_reshape_4d(ctx, k, head_dim, num_heads, n_token, N); // [N, n_token, n_head, d_head]
v = ggml_reshape_4d(ctx, v, head_dim, num_heads, n_token, N); // [N, n_token, n_head, d_head]
x = Flux::attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, dim]
x = Rope::attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, dim]
x = o_proj->forward(ctx, x); // [N, n_token, dim]
return x;