Merge branch 'master' into vace

This commit is contained in:
leejet 2025-09-08 22:51:42 +08:00
commit 4b9bf2b513
21 changed files with 344 additions and 152 deletions

1
.gitignore vendored
View File

@ -4,6 +4,7 @@ test/
.cache/
*.swp
.vscode/
.idea/
*.bat
*.bin
*.exe

View File

@ -137,7 +137,9 @@ This provides BLAS acceleration using the ROCm cores of your AMD GPU. Make sure
Windows User Refer to [docs/hipBLAS_on_Windows.md](docs%2FhipBLAS_on_Windows.md) for a comprehensive guide.
```
cmake .. -G "Ninja" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=gfx1100 -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
export GFX_NAME=$(rocminfo | grep -m 1 -E "gfx[^0]{1}" | sed -e 's/ *Name: *//' | awk '{$1=$1; print}' || echo "rocminfo missing")
echo $GFX_NAME
cmake .. -G "Ninja" -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DSD_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGPU_TARGETS=$GFX_NAME -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
cmake --build . --config Release
```
@ -319,6 +321,7 @@ arguments:
-i, --end-img [IMAGE] path to the end image, required by flf2v
--control-image [IMAGE] path to image condition, control net
-r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times)
--increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).
-o, --output OUTPUT path to write result image to (default: ./output.png)
-p, --prompt [PROMPT] the prompt to render
-n, --negative-prompt PROMPT the negative prompt (default: "")

View File

@ -488,14 +488,14 @@ public:
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = true) {
struct ggml_tensor* forward(struct ggml_context* ctx, ggml_backend_t backend, struct ggml_tensor* x, bool mask = true) {
// x: [N, n_token, d_model]
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
auto layer_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm2"]);
auto mlp = std::dynamic_pointer_cast<CLIPMLP>(blocks["mlp"]);
x = ggml_add(ctx, x, self_attn->forward(ctx, layer_norm1->forward(ctx, x), mask));
x = ggml_add(ctx, x, self_attn->forward(ctx, backend, layer_norm1->forward(ctx, x), mask));
x = ggml_add(ctx, x, mlp->forward(ctx, layer_norm2->forward(ctx, x)));
return x;
}
@ -517,7 +517,11 @@ public:
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int clip_skip = -1, bool mask = true) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
int clip_skip = -1,
bool mask = true) {
// x: [N, n_token, d_model]
int layer_idx = n_layer - 1;
// LOG_DEBUG("clip_skip %d", clip_skip);
@ -532,7 +536,7 @@ public:
}
std::string name = "layers." + std::to_string(i);
auto layer = std::dynamic_pointer_cast<CLIPLayer>(blocks[name]);
x = layer->forward(ctx, x, mask); // [N, n_token, d_model]
x = layer->forward(ctx, backend, x, mask); // [N, n_token, d_model]
// LOG_DEBUG("layer %d", i);
}
return x;
@ -712,6 +716,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* tkn_embeddings,
size_t max_token_idx = 0,
@ -722,7 +727,7 @@ public:
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true);
x = encoder->forward(ctx, backend, x, return_pooled ? -1 : clip_skip, true);
if (return_pooled || with_final_ln) {
x = final_layer_norm->forward(ctx, x);
}
@ -775,6 +780,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
bool return_pooled = true,
int clip_skip = -1) {
@ -786,7 +792,7 @@ public:
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
x = pre_layernorm->forward(ctx, x);
x = encoder->forward(ctx, x, clip_skip, false);
x = encoder->forward(ctx, backend, x, clip_skip, false);
// print_ggml_tensor(x, true, "ClipVisionModel x: ");
auto last_hidden_state = x;
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
@ -855,6 +861,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* pixel_values,
bool return_pooled = true,
int clip_skip = -1) {
@ -863,7 +870,7 @@ public:
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]);
auto x = vision_model->forward(ctx, pixel_values, return_pooled, clip_skip); // [N, hidden_size] or [N, n_token, hidden_size]
auto x = vision_model->forward(ctx, backend, pixel_values, return_pooled, clip_skip); // [N, hidden_size] or [N, n_token, hidden_size]
if (return_pooled) {
x = visual_projection->forward(ctx, x); // [N, projection_dim]
@ -900,6 +907,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* embeddings,
size_t max_token_idx = 0,
@ -911,7 +919,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
input_ids = ggml_reshape_2d(ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
}
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled);
return model.forward(ctx, backend, input_ids, embeddings, max_token_idx, return_pooled);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
@ -937,7 +945,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
}
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, embeddings, max_token_idx, return_pooled);
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, embeddings, max_token_idx, return_pooled);
ggml_build_forward_expand(gf, hidden_states);

View File

@ -270,7 +270,10 @@ public:
// to_out_1 is nn.Dropout(), skip for inference
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
@ -288,7 +291,7 @@ public:
auto k = to_k->forward(ctx, context); // [N, n_context, inner_dim]
auto v = to_v->forward(ctx, context); // [N, n_context, inner_dim]
x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, false, false, flash_attn); // [N, n_token, inner_dim]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, n_head, NULL, false, false, flash_attn); // [N, n_token, inner_dim]
x = to_out_0->forward(ctx, x); // [N, n_token, query_dim]
return x;
@ -327,7 +330,10 @@ public:
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, n_token, query_dim]
// context: [N, n_context, context_dim]
// return: [N, n_token, query_dim]
@ -352,11 +358,11 @@ public:
auto r = x;
x = norm1->forward(ctx, x);
x = attn1->forward(ctx, x, x); // self-attention
x = attn1->forward(ctx, backend, x, x); // self-attention
x = ggml_add(ctx, x, r);
r = x;
x = norm2->forward(ctx, x);
x = attn2->forward(ctx, x, context); // cross-attention
x = attn2->forward(ctx, backend, x, context); // cross-attention
x = ggml_add(ctx, x, r);
r = x;
x = norm3->forward(ctx, x);
@ -401,7 +407,10 @@ public:
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Conv2d(inner_dim, in_channels, {1, 1}));
}
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* context) {
virtual struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context) {
// x: [N, in_channels, h, w]
// context: [N, max_position(aka n_token), hidden_size(aka context_dim)]
auto norm = std::dynamic_pointer_cast<GroupNorm32>(blocks["norm"]);
@ -424,7 +433,7 @@ public:
std::string name = "transformer_blocks." + std::to_string(i);
auto transformer_block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[name]);
x = transformer_block->forward(ctx, x, context);
x = transformer_block->forward(ctx, backend, x, context);
}
x = ggml_cont(ctx, ggml_permute(ctx, x, 1, 0, 2, 3)); // [N, inner_dim, h * w]

View File

@ -639,7 +639,7 @@ struct FrozenCLIPVisionEmbedder : public GGMLRunner {
pixel_values = to_backend(pixel_values);
struct ggml_tensor* hidden_states = vision_model.forward(compute_ctx, pixel_values, return_pooled, clip_skip);
struct ggml_tensor* hidden_states = vision_model.forward(compute_ctx, runtime_backend, pixel_values, return_pooled, clip_skip);
ggml_build_forward_expand(gf, hidden_states);

View File

@ -174,10 +174,11 @@ public:
struct ggml_tensor* attention_layer_forward(std::string name,
struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context) {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
return block->forward(ctx, backend, x, context);
}
struct ggml_tensor* input_hint_block_forward(struct ggml_context* ctx,
@ -199,6 +200,7 @@ public:
}
std::vector<struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* hint,
struct ggml_tensor* guided_hint,
@ -272,7 +274,7 @@ public:
h = resblock_forward(name, ctx, h, emb); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context); // [N, mult*model_channels, h, w]
h = attention_layer_forward(name, ctx, backend, h, context); // [N, mult*model_channels, h, w]
}
auto zero_conv = std::dynamic_pointer_cast<Conv2d>(blocks["zero_convs." + std::to_string(input_block_idx) + ".0"]);
@ -296,9 +298,9 @@ public:
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.0", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, backend, h, context); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb); // [N, 4*model_channels, h/8, w/8]
// out
outs.push_back(middle_block_out->forward(ctx, h));
@ -403,6 +405,7 @@ struct ControlNet : public GGMLRunner {
timesteps = to_backend(timesteps);
auto outs = control_net.forward(compute_ctx,
runtime_backend,
x,
hint,
guided_hint_cached ? guided_hint : NULL,

View File

@ -14,6 +14,7 @@ struct DiffusionParams {
struct ggml_tensor* y = NULL;
struct ggml_tensor* guidance = NULL;
std::vector<ggml_tensor*> ref_latents = {};
bool increase_ref_index = false;
int num_video_frames = -1;
std::vector<struct ggml_tensor*> controls = {};
float control_strength = 0.f;
@ -195,6 +196,7 @@ struct FluxModel : public DiffusionModel {
diffusion_params.y,
diffusion_params.guidance,
diffusion_params.ref_latents,
diffusion_params.increase_ref_index,
output,
output_ctx,
diffusion_params.skip_layers);

View File

@ -11,3 +11,29 @@ Here's a simple example:
```
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model
# Support matrix
> CUDA `get_rows` support is defined here:
> [ggml-org/ggml/src/ggml-cuda/getrows.cu#L156](https://github.com/ggml-org/ggml/blob/7dee1d6a1e7611f238d09be96738388da97c88ed/src/ggml-cuda/getrows.cu#L156)
> Currently only the basic types + Q4/Q5/Q8 are implemented. K-quants are **not** supported.
NOTE: The other backends may have different support.
| Quant / Type | CUDA |
|--------------|------|
| F32 | ✔️ |
| F16 | ✔️ |
| BF16 | ✔️ |
| I32 | ✔️ |
| Q4_0 | ✔️ |
| Q4_1 | ✔️ |
| Q5_0 | ✔️ |
| Q5_1 | ✔️ |
| Q8_0 | ✔️ |
| Q2_K | ❌ |
| Q3_K | ❌ |
| Q4_K | ❌ |
| Q5_K | ❌ |
| Q6_K | ❌ |
| Q8_K | ❌ |

View File

@ -1,6 +1,7 @@
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <filesystem>
#include <functional>
#include <iostream>
#include <map>
@ -74,6 +75,7 @@ struct SDParams {
std::string mask_image_path;
std::string control_image_path;
std::vector<std::string> ref_image_paths;
bool increase_ref_index = false;
std::string prompt;
std::string negative_prompt;
@ -156,6 +158,7 @@ void print_params(SDParams params) {
for (auto& path : params.ref_image_paths) {
printf(" %s\n", path.c_str());
};
printf(" increase_ref_index: %s\n", params.increase_ref_index ? "true" : "false");
printf(" offload_params_to_cpu: %s\n", params.offload_params_to_cpu ? "true" : "false");
printf(" clip_on_cpu: %s\n", params.clip_on_cpu ? "true" : "false");
printf(" control_net_cpu: %s\n", params.control_net_cpu ? "true" : "false");
@ -222,6 +225,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" -i, --end-img [IMAGE] path to the end image, required by flf2v\n");
printf(" --control-image [IMAGE] path to image condition, control net\n");
printf(" -r, --ref-image [PATH] reference image for Flux Kontext models (can be used multiple times) \n");
printf(" --increase-ref-index automatically increase the indices of references images based on the order they are listed (starting with 1).\n");
printf(" -o, --output OUTPUT path to write result image to (default: ./output.png)\n");
printf(" -p, --prompt [PROMPT] the prompt to render\n");
printf(" -n, --negative-prompt PROMPT the negative prompt (default: \"\")\n");
@ -536,6 +540,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"", "--color", "", true, &params.color},
{"", "--chroma-disable-dit-mask", "", false, &params.chroma_use_dit_mask},
{"", "--chroma-enable-t5-mask", "", true, &params.chroma_use_t5_mask},
{"", "--increase-ref-index", "", true, &params.increase_ref_index},
};
auto on_mode_arg = [&](int argc, const char** argv, int index) {
@ -1207,6 +1212,7 @@ int main(int argc, const char* argv[]) {
init_image,
ref_images.data(),
(int)ref_images.size(),
params.increase_ref_index,
mask_image,
params.width,
params.height,
@ -1278,6 +1284,21 @@ int main(int argc, const char* argv[]) {
}
}
// create directory if not exists
{
namespace fs = std::filesystem;
const fs::path out_path = params.output_path;
if (const fs::path out_dir = out_path.parent_path(); !out_dir.empty()) {
std::error_code ec;
fs::create_directories(out_dir, ec); // OK if already exists
if (ec) {
fprintf(stderr, "failed to create directory '%s': %s\n",
out_dir.string().c_str(), ec.message().c_str());
return 1;
}
}
}
std::string base_path;
std::string file_ext;
std::string file_ext_lower;

View File

@ -114,6 +114,7 @@ namespace Flux {
}
__STATIC_INLINE__ struct ggml_tensor* attention(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* q,
struct ggml_tensor* k,
struct ggml_tensor* v,
@ -126,7 +127,7 @@ namespace Flux {
q = apply_rope(ctx, q, pe); // [N*n_head, L, d_head]
k = apply_rope(ctx, k, pe); // [N*n_head, L, d_head]
auto x = ggml_nn_attention_ext(ctx, q, k, v, v->ne[1], mask, false, true, flash_attn); // [N, L, n_head*d_head]
auto x = ggml_nn_attention_ext(ctx, backend, q, k, v, v->ne[1], mask, false, true, flash_attn); // [N, L, n_head*d_head]
return x;
}
@ -169,13 +170,17 @@ namespace Flux {
return x;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* pe, struct ggml_tensor* mask) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask) {
// x: [N, n_token, dim]
// pe: [n_token, d_head/2, 2, 2]
// return [N, n_token, dim]
auto qkv = pre_attention(ctx, x); // q,k,v: [N, n_token, n_head, d_head]
x = attention(ctx, qkv[0], qkv[1], qkv[2], pe, mask, flash_attn); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
auto qkv = pre_attention(ctx, x); // q,k,v: [N, n_token, n_head, d_head]
x = attention(ctx, backend, qkv[0], qkv[1], qkv[2], pe, mask, flash_attn); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
@ -299,6 +304,7 @@ namespace Flux {
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* img,
struct ggml_tensor* txt,
struct ggml_tensor* vec,
@ -362,8 +368,8 @@ namespace Flux {
auto k = ggml_concat(ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto v = ggml_concat(ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
auto attn = attention(ctx, q, k, v, pe, mask, flash_attn); // [N, n_txt_token + n_img_token, n_head*d_head]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
auto attn = attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_txt_token + n_img_token, n_head*d_head]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
auto txt_attn_out = ggml_view_3d(ctx,
attn,
attn->ne[0],
@ -446,6 +452,7 @@ namespace Flux {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* vec,
struct ggml_tensor* pe,
@ -496,7 +503,7 @@ namespace Flux {
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
q = norm->query_norm(ctx, q);
k = norm->key_norm(ctx, k);
auto attn = attention(ctx, q, k, v, pe, mask, flash_attn); // [N, n_token, hidden_size]
auto attn = attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, hidden_size]
auto attn_mlp = ggml_concat(ctx, attn, ggml_gelu_inplace(ctx, mlp), 0); // [N, n_token, hidden_size + mlp_hidden_dim]
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
@ -699,6 +706,7 @@ namespace Flux {
}
struct ggml_tensor* forward_orig(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* img,
struct ggml_tensor* txt,
struct ggml_tensor* timesteps,
@ -763,7 +771,7 @@ namespace Flux {
auto block = std::dynamic_pointer_cast<DoubleStreamBlock>(blocks["double_blocks." + std::to_string(i)]);
auto img_txt = block->forward(ctx, img, txt, vec, pe, txt_img_mask);
auto img_txt = block->forward(ctx, backend, img, txt, vec, pe, txt_img_mask);
img = img_txt.first; // [N, n_img_token, hidden_size]
txt = img_txt.second; // [N, n_txt_token, hidden_size]
}
@ -775,7 +783,7 @@ namespace Flux {
}
auto block = std::dynamic_pointer_cast<SingleStreamBlock>(blocks["single_blocks." + std::to_string(i)]);
txt_img = block->forward(ctx, txt_img, vec, pe, txt_img_mask);
txt_img = block->forward(ctx, backend, txt_img, vec, pe, txt_img_mask);
}
txt_img = ggml_cont(ctx, ggml_permute(ctx, txt_img, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
@ -808,6 +816,7 @@ namespace Flux {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
@ -857,7 +866,7 @@ namespace Flux {
}
}
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
auto out = forward_orig(ctx, backend, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
if (out->ne[1] > img_tokens) {
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
out = ggml_view_3d(ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
@ -951,6 +960,7 @@ namespace Flux {
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
bool increase_ref_index = false,
std::vector<int> skip_layers = {}) {
GGML_ASSERT(x->ne[3] == 1);
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
@ -990,6 +1000,7 @@ namespace Flux {
x->ne[3],
context->ne[1],
ref_latents,
increase_ref_index,
flux_params.theta,
flux_params.axes_dim);
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2;
@ -1001,6 +1012,7 @@ namespace Flux {
set_backend_tensor_data(pe, pe_vec.data());
struct ggml_tensor* out = flux.forward(compute_ctx,
runtime_backend,
x,
timesteps,
context,
@ -1025,6 +1037,7 @@ namespace Flux {
struct ggml_tensor* y,
struct ggml_tensor* guidance,
std::vector<ggml_tensor*> ref_latents = {},
bool increase_ref_index = false,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
@ -1034,7 +1047,7 @@ namespace Flux {
// y: [N, adm_in_channels] or [1, adm_in_channels]
// guidance: [N, ]
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x, timesteps, context, c_concat, y, guidance, ref_latents, skip_layers);
return build_graph(x, timesteps, context, c_concat, y, guidance, ref_latents, increase_ref_index, skip_layers);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
@ -1074,7 +1087,7 @@ namespace Flux {
struct ggml_tensor* out = NULL;
int t0 = ggml_time_ms();
compute(8, x, timesteps, context, NULL, y, guidance, {}, &out, work_ctx);
compute(8, x, timesteps, context, NULL, y, guidance, {}, false, &out, work_ctx);
int t1 = ggml_time_ms();
print_ggml_tensor(out);

View File

@ -1032,6 +1032,7 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx
// mask: [N, L_q, L_k]
// return: [N, L_q, C]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* q,
struct ggml_tensor* k,
struct ggml_tensor* v,
@ -1070,7 +1071,48 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context*
float scale = (1.0f / sqrt((float)d_head));
int kv_pad = 0;
int kv_pad = 0;
ggml_tensor* kqv = nullptr;
auto build_kqv = [&](ggml_tensor* q_in, ggml_tensor* k_in, ggml_tensor* v_in, ggml_tensor* mask_in) -> ggml_tensor* {
if (kv_pad != 0) {
k_in = ggml_pad(ctx, k_in, 0, kv_pad, 0, 0);
}
k_in = ggml_cast(ctx, k_in, GGML_TYPE_F16);
v_in = ggml_nn_cont(ctx, ggml_permute(ctx, v_in, 0, 2, 1, 3));
v_in = ggml_reshape_3d(ctx, v_in, d_head, L_k, n_head * N);
if (kv_pad != 0) {
v_in = ggml_pad(ctx, v_in, 0, kv_pad, 0, 0);
}
v_in = ggml_cast(ctx, v_in, GGML_TYPE_F16);
if (mask_in != nullptr) {
mask_in = ggml_transpose(ctx, mask_in);
} else {
if (kv_pad > 0) {
mask_in = ggml_zeros(ctx, L_k, L_q, 1, 1);
auto pad_tensor = ggml_full(ctx, -INFINITY, kv_pad, L_q, 1, 1);
mask_in = ggml_concat(ctx, mask_in, pad_tensor, 0);
}
}
if (mask_in != nullptr) {
int mask_pad = 0;
if (mask_in->ne[1] % GGML_KQ_MASK_PAD != 0) {
mask_pad = GGML_PAD(L_q, GGML_KQ_MASK_PAD) - mask_in->ne[1];
}
if (mask_pad > 0) {
mask_in = ggml_pad(ctx, mask_in, 0, mask_pad, 0, 0);
}
mask_in = ggml_cast(ctx, mask_in, GGML_TYPE_F16);
}
auto out = ggml_flash_attn_ext(ctx, q_in, k_in, v_in, mask_in, scale, 0, 0);
ggml_flash_attn_ext_set_prec(out, GGML_PREC_F32);
return out;
};
if (flash_attn) {
// LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
bool can_use_flash_attn = true;
@ -1079,60 +1121,24 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context*
}
if (mask != nullptr) {
// TODO(Green-Sky): figure out if we can bend t5 to work too
// TODO: figure out if we can bend t5 to work too
can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1;
}
if (!can_use_flash_attn) {
flash_attn = false;
if (can_use_flash_attn) {
kqv = build_kqv(q, k, v, mask);
if (!ggml_backend_supports_op(backend, kqv)) {
kqv = nullptr;
} else {
kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0);
}
}
}
ggml_tensor* kqv = nullptr;
if (flash_attn) {
// LOG_DEBUG(" uses flash attention");
if (kv_pad != 0) {
// LOG_DEBUG(" padding k and v dim1 by %d", kv_pad);
k = ggml_pad(ctx, k, 0, kv_pad, 0, 0);
}
k = ggml_cast(ctx, k, GGML_TYPE_F16);
v = ggml_nn_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
if (kv_pad != 0) {
v = ggml_pad(ctx, v, 0, kv_pad, 0, 0);
}
v = ggml_cast(ctx, v, GGML_TYPE_F16);
if (mask != nullptr) {
mask = ggml_transpose(ctx, mask);
} else {
if (kv_pad > 0) {
mask = ggml_zeros(ctx, L_k, L_q, 1, 1); // [L_q, L_k]
auto pad_tensor = ggml_full(ctx, -INFINITY, kv_pad, L_q, 1, 1); // [L_q, kv_pad]
mask = ggml_concat(ctx, mask, pad_tensor, 0); // [L_q, L_k + kv_pad]
}
}
// mask pad
if (mask != nullptr) {
int mask_pad = 0;
if (mask->ne[1] % GGML_KQ_MASK_PAD != 0) {
mask_pad = GGML_PAD(L_q, GGML_KQ_MASK_PAD) - mask->ne[1];
}
if (mask_pad > 0) {
mask = ggml_pad(ctx, mask, 0, mask_pad, 0, 0); // [L_q + mask_pad, L_k + kv_pad]
}
mask = ggml_cast(ctx, mask, GGML_TYPE_F16);
// LOG_DEBUG("L_k: %ld, L_q: %ld, mask->ne[1]: %ld, mask_pad: %d, kv_pad: %d", L_k, L_q, mask->ne[1], mask_pad, kv_pad);
}
kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0, 0);
ggml_flash_attn_ext_set_prec(kqv, GGML_PREC_F32);
// kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_k, kqv->nb[1], kqv->nb[2], 0);
kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0);
} else {
if (kqv == nullptr) {
// if (flash_attn) {
// LOG_DEBUG("fallback to default attention, L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
// }
v = ggml_nn_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, L_k]
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); // [N * n_head, d_head, L_k]
@ -2196,7 +2202,10 @@ public:
}
// x: [N, n_token, embed_dim]
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = false) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
bool mask = false) {
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks[q_proj_name]);
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks[k_proj_name]);
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks[v_proj_name]);
@ -2206,7 +2215,7 @@ public:
struct ggml_tensor* k = k_proj->forward(ctx, x);
struct ggml_tensor* v = v_proj->forward(ctx, x);
x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, mask); // [N, n_token, embed_dim]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, n_head, NULL, mask); // [N, n_token, embed_dim]
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
return x;

View File

@ -58,6 +58,7 @@ struct LoraModel : public GGMLRunner {
{"x_block.attn.proj", "attn.to_out.0"},
{"x_block.attn2.proj", "attn2.to_out.0"},
// flux
{"img_in", "x_embedder"},
// singlestream
{"linear2", "proj_out"},
{"modulation.lin", "norm.linear"},

View File

@ -202,10 +202,12 @@ public:
}
// x: [N, n_token, dim]
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x) {
auto qkv = pre_attention(ctx, x);
x = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
@ -415,7 +417,10 @@ public:
return x;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* c) {
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* c) {
// x: [N, n_token, hidden_size]
// c: [N, hidden_size]
// return: [N, n_token, hidden_size]
@ -430,8 +435,8 @@ public:
auto qkv2 = std::get<1>(qkv_intermediates);
auto intermediates = std::get<2>(qkv_intermediates);
auto attn_out = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, qkv2[0], qkv2[1], qkv2[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, backend, qkv2[0], qkv2[1], qkv2[2], num_heads); // [N, n_token, dim]
x = post_attention_x(ctx,
attn_out,
attn2_out,
@ -447,7 +452,7 @@ public:
auto qkv = qkv_intermediates.first;
auto intermediates = qkv_intermediates.second;
auto attn_out = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx,
attn_out,
intermediates[0],
@ -462,6 +467,7 @@ public:
__STATIC_INLINE__ std::pair<struct ggml_tensor*, struct ggml_tensor*>
block_mixing(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c,
@ -491,8 +497,8 @@ block_mixing(struct ggml_context* ctx,
qkv.push_back(ggml_concat(ctx, context_qkv[i], x_qkv[i], 1));
}
auto attn = ggml_nn_attention_ext(ctx, qkv[0], qkv[1], qkv[2], x_block->num_heads); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto attn = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], x_block->num_heads); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto context_attn = ggml_view_3d(ctx,
attn,
attn->ne[0],
@ -525,7 +531,7 @@ block_mixing(struct ggml_context* ctx,
}
if (x_block->self_attn) {
auto attn2 = ggml_nn_attention_ext(ctx, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads); // [N, n_token, hidden_size]
auto attn2 = ggml_nn_attention_ext(ctx, backend, x_qkv2[0], x_qkv2[1], x_qkv2[2], x_block->num_heads); // [N, n_token, hidden_size]
x = x_block->post_attention_x(ctx,
x_attn,
@ -563,13 +569,14 @@ public:
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c) {
auto context_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["context_block"]);
auto x_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["x_block"]);
return block_mixing(ctx, context, x, c, context_block, x_block);
return block_mixing(ctx, backend, context, x, c, context_block, x_block);
}
};
@ -771,6 +778,7 @@ public:
}
struct ggml_tensor* forward_core_with_concat(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* c_mod,
struct ggml_tensor* context,
@ -789,7 +797,7 @@ public:
auto block = std::dynamic_pointer_cast<JointBlock>(blocks["joint_blocks." + std::to_string(i)]);
auto context_x = block->forward(ctx, context, x, c_mod);
auto context_x = block->forward(ctx, backend, context, x, c_mod);
context = context_x.first;
x = context_x.second;
}
@ -800,6 +808,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* t,
struct ggml_tensor* y = NULL,
@ -835,7 +844,7 @@ public:
context = context_embedder->forward(ctx, context); // [N, L, D] aka [N, L, 1536]
}
x = forward_core_with_concat(ctx, x, c, context, skip_layers); // (N, H*W, patch_size ** 2 * out_channels)
x = forward_core_with_concat(ctx, backend, x, c, context, skip_layers); // (N, H*W, patch_size ** 2 * out_channels)
x = unpatchify(ctx, x, h, w); // [N, C, H, W]
@ -874,6 +883,7 @@ struct MMDiTRunner : public GGMLRunner {
timesteps = to_backend(timesteps);
struct ggml_tensor* out = mmdit.forward(compute_ctx,
runtime_backend,
x,
timesteps,
y,

View File

@ -1966,6 +1966,16 @@ std::vector<TensorStorage> remove_duplicates(const std::vector<TensorStorage>& v
}
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
int64_t process_time_ms = 0;
int64_t read_time_ms = 0;
int64_t memcpy_time_ms = 0;
int64_t copy_to_backend_time_ms = 0;
int64_t convert_time_ms = 0;
int64_t prev_time_ms = 0;
int64_t curr_time_ms = 0;
int64_t start_time = ggml_time_ms();
prev_time_ms = start_time;
std::vector<TensorStorage> processed_tensor_storages;
for (auto& tensor_storage : tensor_storages) {
// LOG_DEBUG("%s", name.c_str());
@ -1978,6 +1988,9 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
}
std::vector<TensorStorage> dedup = remove_duplicates(processed_tensor_storages);
processed_tensor_storages = dedup;
curr_time_ms = ggml_time_ms();
process_time_ms = curr_time_ms - prev_time_ms;
prev_time_ms = curr_time_ms;
bool success = true;
for (size_t file_index = 0; file_index < file_paths_.size(); file_index++) {
@ -2019,15 +2032,27 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
size_t entry_size = zip_entry_size(zip);
if (entry_size != n) {
read_buffer.resize(entry_size);
prev_time_ms = ggml_time_ms();
zip_entry_noallocread(zip, (void*)read_buffer.data(), entry_size);
curr_time_ms = ggml_time_ms();
read_time_ms += curr_time_ms - prev_time_ms;
prev_time_ms = curr_time_ms;
memcpy((void*)buf, (void*)(read_buffer.data() + tensor_storage.offset), n);
curr_time_ms = ggml_time_ms();
memcpy_time_ms += curr_time_ms - prev_time_ms;
} else {
prev_time_ms = ggml_time_ms();
zip_entry_noallocread(zip, (void*)buf, n);
curr_time_ms = ggml_time_ms();
read_time_ms += curr_time_ms - prev_time_ms;
}
zip_entry_close(zip);
} else {
prev_time_ms = ggml_time_ms();
file.seekg(tensor_storage.offset);
file.read(buf, n);
curr_time_ms = ggml_time_ms();
read_time_ms += curr_time_ms - prev_time_ms;
if (!file) {
LOG_ERROR("read tensor data failed: '%s'", file_path.c_str());
return false;
@ -2072,6 +2097,7 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
read_data(tensor_storage, (char*)dst_tensor->data, nbytes_to_read);
}
prev_time_ms = ggml_time_ms();
if (tensor_storage.is_bf16) {
// inplace op
bf16_to_f32_vec((uint16_t*)dst_tensor->data, (float*)dst_tensor->data, tensor_storage.nelements());
@ -2086,10 +2112,13 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
} else if (tensor_storage.is_i64) {
i64_to_i32_vec((int64_t*)read_buffer.data(), (int32_t*)dst_tensor->data, tensor_storage.nelements());
}
curr_time_ms = ggml_time_ms();
convert_time_ms += curr_time_ms - prev_time_ms;
} else {
read_buffer.resize(std::max(tensor_storage.nbytes(), tensor_storage.nbytes_to_read()));
read_data(tensor_storage, (char*)read_buffer.data(), nbytes_to_read);
prev_time_ms = ggml_time_ms();
if (tensor_storage.is_bf16) {
// inplace op
bf16_to_f32_vec((uint16_t*)read_buffer.data(), (float*)read_buffer.data(), tensor_storage.nelements());
@ -2109,11 +2138,14 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
convert_tensor((void*)read_buffer.data(), tensor_storage.type, dst_tensor->data,
dst_tensor->type, (int)tensor_storage.nelements() / (int)tensor_storage.ne[0], (int)tensor_storage.ne[0]);
curr_time_ms = ggml_time_ms();
convert_time_ms += curr_time_ms - prev_time_ms;
}
} else {
read_buffer.resize(std::max(tensor_storage.nbytes(), tensor_storage.nbytes_to_read()));
read_data(tensor_storage, (char*)read_buffer.data(), nbytes_to_read);
prev_time_ms = ggml_time_ms();
if (tensor_storage.is_bf16) {
// inplace op
bf16_to_f32_vec((uint16_t*)read_buffer.data(), (float*)read_buffer.data(), tensor_storage.nelements());
@ -2133,14 +2165,24 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
if (tensor_storage.type == dst_tensor->type) {
// copy to device memory
curr_time_ms = ggml_time_ms();
convert_time_ms += curr_time_ms - prev_time_ms;
prev_time_ms = curr_time_ms;
ggml_backend_tensor_set(dst_tensor, read_buffer.data(), 0, ggml_nbytes(dst_tensor));
curr_time_ms = ggml_time_ms();
copy_to_backend_time_ms += curr_time_ms - prev_time_ms;
} else {
// convert first, then copy to device memory
convert_buffer.resize(ggml_nbytes(dst_tensor));
convert_tensor((void*)read_buffer.data(), tensor_storage.type,
(void*)convert_buffer.data(), dst_tensor->type,
(int)tensor_storage.nelements() / (int)tensor_storage.ne[0], (int)tensor_storage.ne[0]);
curr_time_ms = ggml_time_ms();
convert_time_ms += curr_time_ms - prev_time_ms;
prev_time_ms = curr_time_ms;
ggml_backend_tensor_set(dst_tensor, convert_buffer.data(), 0, ggml_nbytes(dst_tensor));
curr_time_ms = ggml_time_ms();
copy_to_backend_time_ms += curr_time_ms - prev_time_ms;
}
}
++tensor_count;
@ -2170,6 +2212,14 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb) {
break;
}
}
int64_t end_time = ggml_time_ms();
LOG_INFO("loading tensors completed, taking %.2fs (process: %.2fs, read: %.2fs, memcpy: %.2fs, convert: %.2fs, copy_to_backend: %.2fs)",
(end_time - start_time) / 1000.f,
process_time_ms / 1000.f,
read_time_ms / 1000.f,
memcpy_time_ms / 1000.f,
convert_time_ms / 1000.f,
copy_to_backend_time_ms / 1000.f);
return success;
}

View File

@ -508,6 +508,7 @@ struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
@ -520,9 +521,9 @@ struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
auto visual_projection_2 = std::dynamic_pointer_cast<Linear>(blocks["visual_projection_2"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); // [N, proj_dim(768)]
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); // [N, 1280]
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, backend, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); // [N, proj_dim(768)]
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); // [N, 1280]
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
id_embeds_2 = ggml_cont(ctx, ggml_permute(ctx, id_embeds_2, 2, 0, 1, 3));
@ -579,6 +580,7 @@ struct PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock : public CLIPVisionMo
*/
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
@ -592,7 +594,7 @@ struct PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock : public CLIPVisionMo
auto qformer_perceiver = std::dynamic_pointer_cast<QFormerPerceiver>(blocks["qformer_perceiver"]);
// struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values, false); // [N, hidden_size]
struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, backend, id_pixel_values, false); // [N, hidden_size]
id_embeds = qformer_perceiver->forward(ctx, id_embeds, last_hidden_state);
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
@ -742,6 +744,7 @@ public:
struct ggml_tensor* updated_prompt_embeds = NULL;
if (pm_version == PM_VERSION_1)
updated_prompt_embeds = id_encoder.forward(ctx0,
runtime_backend,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
@ -749,6 +752,7 @@ public:
left, right);
else if (pm_version == PM_VERSION_2)
updated_prompt_embeds = id_encoder2.forward(ctx0,
runtime_backend,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,

View File

@ -156,25 +156,33 @@ struct Rope {
int patch_size,
int bs,
int context_len,
std::vector<ggml_tensor*> ref_latents) {
std::vector<ggml_tensor*> ref_latents,
bool increase_ref_index) {
auto txt_ids = gen_txt_ids(bs, context_len);
auto img_ids = gen_img_ids(h, w, patch_size, bs);
auto ids = concat_ids(txt_ids, img_ids, bs);
uint64_t curr_h_offset = 0;
uint64_t curr_w_offset = 0;
int index = 1;
for (ggml_tensor* ref : ref_latents) {
uint64_t h_offset = 0;
uint64_t w_offset = 0;
if (ref->ne[1] + curr_h_offset > ref->ne[0] + curr_w_offset) {
w_offset = curr_w_offset;
} else {
h_offset = curr_h_offset;
if (!increase_ref_index) {
if (ref->ne[1] + curr_h_offset > ref->ne[0] + curr_w_offset) {
w_offset = curr_w_offset;
} else {
h_offset = curr_h_offset;
}
}
auto ref_ids = gen_img_ids(ref->ne[1], ref->ne[0], patch_size, bs, 1, h_offset, w_offset);
auto ref_ids = gen_img_ids(ref->ne[1], ref->ne[0], patch_size, bs, index, h_offset, w_offset);
ids = concat_ids(ids, ref_ids, bs);
if (increase_ref_index) {
index++;
}
curr_h_offset = std::max(curr_h_offset, ref->ne[1] + h_offset);
curr_w_offset = std::max(curr_w_offset, ref->ne[0] + w_offset);
}
@ -188,9 +196,10 @@ struct Rope {
int bs,
int context_len,
std::vector<ggml_tensor*> ref_latents,
bool increase_ref_index,
int theta,
const std::vector<int>& axes_dim) {
std::vector<std::vector<float>> ids = gen_flux_ids(h, w, patch_size, bs, context_len, ref_latents);
std::vector<std::vector<float>> ids = gen_flux_ids(h, w, patch_size, bs, context_len, ref_latents, increase_ref_index);
return embed_nd(ids, bs, theta, axes_dim);
}

View File

@ -330,7 +330,7 @@ public:
if (sd_version_is_dit(version)) {
use_t5xxl = true;
}
if (!ggml_backend_is_cpu(backend) && use_t5xxl) {
if (!clip_on_cpu && !ggml_backend_is_cpu(backend) && use_t5xxl) {
LOG_WARN(
"!!!It appears that you are using the T5 model. Some backends may encounter issues with it."
"If you notice that the generated images are completely black,"
@ -557,8 +557,6 @@ public:
// load weights
LOG_DEBUG("loading weights");
int64_t t0 = ggml_time_ms();
std::set<std::string> ignore_tensors;
tensors["alphas_cumprod"] = alphas_cumprod_tensor;
if (use_tiny_autoencoder) {
@ -656,11 +654,7 @@ public:
ggml_backend_is_cpu(clip_backend) ? "RAM" : "VRAM");
}
int64_t t1 = ggml_time_ms();
LOG_INFO("loading model from '%s' completed, taking %.2fs", SAFE_STR(sd_ctx_params->model_path), (t1 - t0) * 1.0f / 1000);
// check is_using_v_parameterization_for_sd2
if (sd_version_is_sd2(version)) {
if (is_using_v_parameterization_for_sd2(ctx, sd_version_is_inpaint(version))) {
is_using_v_parameterization = true;
@ -1037,6 +1031,7 @@ public:
int start_merge_step,
SDCondition id_cond,
std::vector<ggml_tensor*> ref_latents = {},
bool increase_ref_index = false,
ggml_tensor* denoise_mask = NULL,
ggml_tensor* vace_context = NULL,
float vace_strength = 1.f) {
@ -1128,6 +1123,7 @@ public:
diffusion_params.timesteps = timesteps;
diffusion_params.guidance = guidance_tensor;
diffusion_params.ref_latents = ref_latents;
diffusion_params.increase_ref_index = increase_ref_index;
diffusion_params.controls = controls;
diffusion_params.control_strength = control_strength;
diffusion_params.vace_context = vace_context;
@ -1697,6 +1693,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
"\n"
"batch_count: %d\n"
"ref_images_count: %d\n"
"increase_ref_index: %s\n"
"control_strength: %.2f\n"
"style_strength: %.2f\n"
"normalize_input: %s\n"
@ -1711,6 +1708,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
sd_img_gen_params->seed,
sd_img_gen_params->batch_count,
sd_img_gen_params->ref_images_count,
BOOL_STR(sd_img_gen_params->increase_ref_index),
sd_img_gen_params->control_strength,
sd_img_gen_params->style_strength,
BOOL_STR(sd_img_gen_params->normalize_input),
@ -1784,6 +1782,7 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
bool normalize_input,
std::string input_id_images_path,
std::vector<ggml_tensor*> ref_latents,
bool increase_ref_index,
ggml_tensor* concat_latent = NULL,
ggml_tensor* denoise_mask = NULL) {
if (seed < 0) {
@ -2041,6 +2040,7 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
start_merge_step,
id_cond,
ref_latents,
increase_ref_index,
denoise_mask);
// print_ggml_tensor(x_0);
int64_t sampling_end = ggml_time_ms();
@ -2291,7 +2291,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
LOG_INFO("EDIT mode");
}
std::vector<struct ggml_tensor*> ref_latents;
std::vector<ggml_tensor*> ref_latents;
for (int i = 0; i < sd_img_gen_params->ref_images_count; i++) {
ggml_tensor* img = ggml_new_tensor_4d(work_ctx,
GGML_TYPE_F32,
@ -2346,6 +2346,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
sd_img_gen_params->normalize_input,
sd_img_gen_params->input_id_images_path,
ref_latents,
sd_img_gen_params->increase_ref_index,
concat_latent,
denoise_mask);
@ -2641,6 +2642,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
-1,
{},
{},
false,
denoise_mask,
vace_context);
@ -2674,6 +2676,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
-1,
{},
{},
false,
denoise_mask,
vace_context);

View File

@ -182,6 +182,7 @@ typedef struct {
sd_image_t init_image;
sd_image_t* ref_images;
int ref_images_count;
bool increase_ref_index;
sd_image_t mask_image;
int width;
int height;

20
t5.hpp
View File

@ -578,6 +578,7 @@ public:
// x: [N, n_token, model_dim]
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
@ -608,7 +609,7 @@ public:
k = ggml_scale_inplace(ctx, k, sqrt(d_head));
x = ggml_nn_attention_ext(ctx, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, num_heads, mask); // [N, n_token, d_head * n_head]
x = out_proj->forward(ctx, x); // [N, n_token, model_dim]
return {x, past_bias};
@ -627,6 +628,7 @@ public:
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
@ -636,7 +638,7 @@ public:
auto layer_norm = std::dynamic_pointer_cast<T5LayerNorm>(blocks["layer_norm"]);
auto normed_hidden_state = layer_norm->forward(ctx, x);
auto ret = SelfAttention->forward(ctx, normed_hidden_state, past_bias, mask, relative_position_bucket);
auto ret = SelfAttention->forward(ctx, backend, normed_hidden_state, past_bias, mask, relative_position_bucket);
auto output = ret.first;
past_bias = ret.second;
@ -653,6 +655,7 @@ public:
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* mask = NULL,
@ -661,7 +664,7 @@ public:
auto layer_0 = std::dynamic_pointer_cast<T5LayerSelfAttention>(blocks["layer.0"]);
auto layer_1 = std::dynamic_pointer_cast<T5LayerFF>(blocks["layer.1"]);
auto ret = layer_0->forward(ctx, x, past_bias, mask, relative_position_bucket);
auto ret = layer_0->forward(ctx, backend, x, past_bias, mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
x = layer_1->forward(ctx, x);
@ -688,6 +691,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
@ -696,7 +700,7 @@ public:
for (int i = 0; i < num_layers; i++) {
auto block = std::dynamic_pointer_cast<T5Block>(blocks["block." + std::to_string(i)]);
auto ret = block->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
auto ret = block->forward(ctx, backend, x, past_bias, attention_mask, relative_position_bucket);
x = ret.first;
past_bias = ret.second;
}
@ -735,6 +739,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* past_bias = NULL,
struct ggml_tensor* attention_mask = NULL,
@ -745,7 +750,7 @@ public:
auto encoder = std::dynamic_pointer_cast<T5Stack>(blocks["encoder"]);
auto x = shared->forward(ctx, input_ids);
x = encoder->forward(ctx, x, past_bias, attention_mask, relative_position_bucket);
x = encoder->forward(ctx, backend, x, past_bias, attention_mask, relative_position_bucket);
return x;
}
};
@ -778,13 +783,14 @@ struct T5Runner : public GGMLRunner {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* input_ids,
struct ggml_tensor* relative_position_bucket,
struct ggml_tensor* attention_mask = NULL) {
size_t N = input_ids->ne[1];
size_t n_token = input_ids->ne[0];
auto hidden_states = model.forward(ctx, input_ids, NULL, attention_mask, relative_position_bucket); // [N, n_token, model_dim]
auto hidden_states = model.forward(ctx, backend, input_ids, NULL, attention_mask, relative_position_bucket); // [N, n_token, model_dim]
return hidden_states;
}
@ -810,7 +816,7 @@ struct T5Runner : public GGMLRunner {
input_ids->ne[0]);
set_backend_tensor_data(relative_position_bucket, relative_position_bucket_vec.data());
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, relative_position_bucket, attention_mask);
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, relative_position_bucket, attention_mask);
ggml_build_forward_expand(gf, hidden_states);

View File

@ -61,6 +61,7 @@ public:
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context,
int timesteps) {
@ -127,7 +128,7 @@ public:
auto block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[transformer_name]);
auto mix_block = std::dynamic_pointer_cast<BasicTransformerBlock>(blocks[time_stack_name]);
x = block->forward(ctx, x, spatial_context); // [N, h * w, inner_dim]
x = block->forward(ctx, backend, x, spatial_context); // [N, h * w, inner_dim]
// in_channels == inner_dim
auto x_mix = x;
@ -143,7 +144,7 @@ public:
x_mix = ggml_cont(ctx, ggml_permute(ctx, x_mix, 0, 2, 1, 3)); // b t s c -> b s t c
x_mix = ggml_reshape_3d(ctx, x_mix, C, T, S * B); // b s t c -> (b s) t c
x_mix = mix_block->forward(ctx, x_mix, time_context); // [B * h * w, T, inner_dim]
x_mix = mix_block->forward(ctx, backend, x_mix, time_context); // [B * h * w, T, inner_dim]
x_mix = ggml_reshape_4d(ctx, x_mix, C, T, S, B); // (b s) t c -> b s t c
x_mix = ggml_cont(ctx, ggml_permute(ctx, x_mix, 0, 2, 1, 3)); // b s t c -> b t s c
@ -363,21 +364,23 @@ public:
struct ggml_tensor* attention_layer_forward(std::string name,
struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context,
int timesteps) {
if (version == VERSION_SVD) {
auto block = std::dynamic_pointer_cast<SpatialVideoTransformer>(blocks[name]);
return block->forward(ctx, x, context, timesteps);
return block->forward(ctx, backend, x, context, timesteps);
} else {
auto block = std::dynamic_pointer_cast<SpatialTransformer>(blocks[name]);
return block->forward(ctx, x, context);
return block->forward(ctx, backend, x, context);
}
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
@ -456,7 +459,7 @@ public:
h = resblock_forward(name, ctx, h, emb, num_video_frames); // [N, mult*model_channels, h, w]
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "input_blocks." + std::to_string(input_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context, num_video_frames); // [N, mult*model_channels, h, w]
h = attention_layer_forward(name, ctx, backend, h, context, num_video_frames); // [N, mult*model_channels, h, w]
}
hs.push_back(h);
}
@ -474,9 +477,9 @@ public:
// [N, 4*model_channels, h/8, w/8]
// middle_block
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.0", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = attention_layer_forward("middle_block.1", ctx, backend, h, context, num_video_frames); // [N, 4*model_channels, h/8, w/8]
h = resblock_forward("middle_block.2", ctx, h, emb, num_video_frames); // [N, 4*model_channels, h/8, w/8]
if (controls.size() > 0) {
auto cs = ggml_scale_inplace(ctx, controls[controls.size() - 1], control_strength);
@ -507,7 +510,7 @@ public:
if (std::find(attention_resolutions.begin(), attention_resolutions.end(), ds) != attention_resolutions.end()) {
std::string name = "output_blocks." + std::to_string(output_block_idx) + ".1";
h = attention_layer_forward(name, ctx, h, context, num_video_frames);
h = attention_layer_forward(name, ctx, backend, h, context, num_video_frames);
up_sample_idx++;
}
@ -592,6 +595,7 @@ struct UNetModelRunner : public GGMLRunner {
}
struct ggml_tensor* out = unet.forward(compute_ctx,
runtime_backend,
x,
timesteps,
context,

39
wan.hpp
View File

@ -1306,6 +1306,7 @@ namespace WAN {
}
virtual struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* pe,
struct ggml_tensor* mask = NULL) {
@ -1332,7 +1333,7 @@ namespace WAN {
k = ggml_reshape_4d(ctx, k, head_dim, num_heads, n_token, N); // [N, n_token, n_head, d_head]
v = ggml_reshape_4d(ctx, v, head_dim, num_heads, n_token, N); // [N, n_token, n_head, d_head]
x = Flux::attention(ctx, q, k, v, pe, mask, flash_attn); // [N, n_token, dim]
x = Flux::attention(ctx, backend, q, k, v, pe, mask, flash_attn); // [N, n_token, dim]
x = o_proj->forward(ctx, x); // [N, n_token, dim]
return x;
@ -1348,6 +1349,7 @@ namespace WAN {
bool flash_attn = false)
: WanSelfAttention(dim, num_heads, qk_norm, eps, flash_attn) {}
virtual struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context,
int64_t context_img_len) = 0;
@ -1362,6 +1364,7 @@ namespace WAN {
bool flash_attn = false)
: WanCrossAttention(dim, num_heads, qk_norm, eps, flash_attn) {}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context,
int64_t context_img_len) {
@ -1385,7 +1388,7 @@ namespace WAN {
k = norm_k->forward(ctx, k);
auto v = v_proj->forward(ctx, context); // [N, n_context, dim]
x = ggml_nn_attention_ext(ctx, q, k, v, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = o_proj->forward(ctx, x); // [N, n_token, dim]
return x;
@ -1411,6 +1414,7 @@ namespace WAN {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* context,
int64_t context_img_len) {
@ -1451,8 +1455,8 @@ namespace WAN {
k_img = norm_k_img->forward(ctx, k_img);
auto v_img = v_img_proj->forward(ctx, context_img); // [N, context_img_len, dim]
auto img_x = ggml_nn_attention_ext(ctx, q, k_img, v_img, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, q, k, v, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
auto img_x = ggml_nn_attention_ext(ctx, backend, q, k_img, v_img, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, backend, q, k, v, num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = ggml_add(ctx, x, img_x);
@ -1529,11 +1533,12 @@ namespace WAN {
}
virtual struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* e,
struct ggml_tensor* pe,
struct ggml_tensor* context,
int64_t context_img_len = 257) {
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* e,
struct ggml_tensor* pe,
struct ggml_tensor* context,
int64_t context_img_len = 257) {
// x: [N, n_token, dim]
// e: [N, 6, dim] or [N, T, 6, dim]
// context: [N, context_img_len + context_txt_len, dim]
@ -1555,14 +1560,14 @@ namespace WAN {
auto y = norm1->forward(ctx, x);
y = ggml_add(ctx, y, modulate_mul(ctx, y, es[1]));
y = modulate_add(ctx, y, es[0]);
y = self_attn->forward(ctx, y, pe);
y = self_attn->forward(ctx, backend, y, pe);
x = ggml_add(ctx, x, modulate_mul(ctx, y, es[2]));
// cross-attention
x = ggml_add(ctx,
x,
cross_attn->forward(ctx, norm3->forward(ctx, x), context, context_img_len));
cross_attn->forward(ctx, backend, norm3->forward(ctx, x), context, context_img_len));
// ffn
y = norm2->forward(ctx, x);
@ -1605,6 +1610,7 @@ namespace WAN {
}
std::pair<ggml_tensor*, ggml_tensor*> forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* c,
struct ggml_tensor* x,
struct ggml_tensor* e,
@ -1624,7 +1630,7 @@ namespace WAN {
auto after_proj = std::dynamic_pointer_cast<Linear>(blocks["after_proj"]);
c = WanAttentionBlock::forward(ctx, c, e, pe, context, context_img_len);
c = WanAttentionBlock::forward(ctx, backend, c, e, pe, context, context_img_len);
auto c_skip = after_proj->forward(ctx, c);
return {c_skip, c};
@ -1865,6 +1871,7 @@ namespace WAN {
}
struct ggml_tensor* forward_orig(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
@ -1937,7 +1944,7 @@ namespace WAN {
for (int i = 0; i < params.num_layers; i++) {
auto block = std::dynamic_pointer_cast<WanAttentionBlock>(blocks["blocks." + std::to_string(i)]);
x = block->forward(ctx, x, e0, pe, context, context_img_len);
x = block->forward(ctx, backend, x, e0, pe, context, context_img_len);
auto iter = params.vace_layers_mapping.find(i);
if (iter != params.vace_layers_mapping.end()) {
@ -1945,7 +1952,7 @@ namespace WAN {
auto vace_block = std::dynamic_pointer_cast<VaceWanAttentionBlock>(blocks["vace_blocks." + std::to_string(n)]);
auto result = vace_block->forward(ctx, c, x_orig, e0, pe, context, context_img_len);
auto result = vace_block->forward(ctx, backend, c, x_orig, e0, pe, context, context_img_len);
auto c_skip = result.first;
c = result.second;
c_skip = ggml_scale(ctx, c_skip, vace_strength);
@ -1959,6 +1966,7 @@ namespace WAN {
}
struct ggml_tensor* forward(struct ggml_context* ctx,
ggml_backend_t backend,
struct ggml_tensor* x,
struct ggml_tensor* timestep,
struct ggml_tensor* context,
@ -1995,7 +2003,7 @@ namespace WAN {
t_len = ((x->ne[2] + (std::get<0>(params.patch_size) / 2)) / std::get<0>(params.patch_size));
}
auto out = forward_orig(ctx, x, timestep, context, pe, clip_fea, vace_context, vace_strength, N); // [N, t_len*h_len*w_len, pt*ph*pw*C]
auto out = forward_orig(ctx, backend, x, timestep, context, pe, clip_fea, vace_context, vace_strength, N); // [N, t_len*h_len*w_len, pt*ph*pw*C]
out = unpatchify(ctx, out, t_len, h_len, w_len); // [N*C, (T+pad_t) + (T2+pad_t2), H + pad_h, W + pad_w]
@ -2174,6 +2182,7 @@ namespace WAN {
}
struct ggml_tensor* out = wan.forward(compute_ctx,
runtime_backend,
x,
timesteps,
context,