mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
feat: support applying LoRA at runtime (#969)
This commit is contained in:
parent
59ebdf0bb5
commit
347710f68f
2
clip.hpp
2
clip.hpp
@ -936,7 +936,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
|
||||
size_t max_token_idx = 0,
|
||||
bool return_pooled = false,
|
||||
int clip_skip = -1) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
struct ggml_cgraph* gf = new_graph_custom(2048);
|
||||
|
||||
input_ids = to_backend(input_ids);
|
||||
|
||||
|
||||
26
common.hpp
26
common.hpp
@ -182,31 +182,21 @@ protected:
|
||||
int64_t dim_in;
|
||||
int64_t dim_out;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override {
|
||||
enum ggml_type wtype = get_type(prefix + "proj.weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
enum ggml_type bias_wtype = GGML_TYPE_F32;
|
||||
params["proj.weight"] = ggml_new_tensor_2d(ctx, wtype, dim_in, dim_out * 2);
|
||||
params["proj.bias"] = ggml_new_tensor_1d(ctx, bias_wtype, dim_out * 2);
|
||||
}
|
||||
|
||||
public:
|
||||
GEGLU(int64_t dim_in, int64_t dim_out)
|
||||
: dim_in(dim_in), dim_out(dim_out) {}
|
||||
: dim_in(dim_in), dim_out(dim_out) {
|
||||
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim_in, dim_out * 2));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
|
||||
// x: [ne3, ne2, ne1, dim_in]
|
||||
// return: [ne3, ne2, ne1, dim_out]
|
||||
struct ggml_tensor* w = params["proj.weight"];
|
||||
struct ggml_tensor* b = params["proj.bias"];
|
||||
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
||||
|
||||
auto x_w = ggml_view_2d(ctx->ggml_ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], 0); // [dim_out, dim_in]
|
||||
auto x_b = ggml_view_1d(ctx->ggml_ctx, b, b->ne[0] / 2, 0); // [dim_out, dim_in]
|
||||
auto gate_w = ggml_view_2d(ctx->ggml_ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], w->nb[1] * w->ne[1] / 2); // [dim_out, ]
|
||||
auto gate_b = ggml_view_1d(ctx->ggml_ctx, b, b->ne[0] / 2, b->nb[0] * b->ne[0] / 2); // [dim_out, ]
|
||||
|
||||
auto x_in = x;
|
||||
x = ggml_ext_linear(ctx->ggml_ctx, x_in, x_w, x_b); // [ne3, ne2, ne1, dim_out]
|
||||
auto gate = ggml_ext_linear(ctx->ggml_ctx, x_in, gate_w, gate_b); // [ne3, ne2, ne1, dim_out]
|
||||
x = proj->forward(ctx, x); // [ne3, ne2, ne1, dim_out*2]
|
||||
auto x_vec = ggml_ext_chunk(ctx->ggml_ctx, x, 2, 0);
|
||||
x = x_vec[0]; // [ne3, ne2, ne1, dim_out]
|
||||
auto gate = x_vec[1]; // [ne3, ne2, ne1, dim_out]
|
||||
|
||||
gate = ggml_gelu_inplace(ctx->ggml_ctx, gate);
|
||||
|
||||
|
||||
@ -34,6 +34,7 @@ struct Conditioner {
|
||||
virtual void free_params_buffer() = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
|
||||
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
const ConditionerParams& conditioner_params) {
|
||||
@ -108,6 +109,13 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
text_model->set_weight_adapter(adapter);
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
text_model2->set_weight_adapter(adapter);
|
||||
}
|
||||
}
|
||||
|
||||
bool load_embedding(std::string embd_name, std::string embd_path, std::vector<int32_t>& bpe_tokens) {
|
||||
// the order matters
|
||||
ModelLoader model_loader;
|
||||
@ -764,6 +772,18 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
}
|
||||
if (clip_g) {
|
||||
clip_g->set_weight_adapter(adapter);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_weight_adapter(adapter);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text,
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
@ -1160,6 +1180,15 @@ struct FluxCLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||
if (clip_l) {
|
||||
clip_l->set_weight_adapter(adapter);
|
||||
}
|
||||
if (t5) {
|
||||
t5->set_weight_adapter(adapter);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text,
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
@ -1400,6 +1429,12 @@ struct T5CLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (t5) {
|
||||
t5->set_weight_adapter(adapter);
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> tokenize(std::string text,
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
@ -1589,6 +1624,12 @@ struct Qwen2_5_VLCLIPEmbedder : public Conditioner {
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
if (qwenvl) {
|
||||
qwenvl->set_weight_adapter(adapter);
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<std::vector<int>, std::vector<float>> tokenize(std::string text,
|
||||
size_t max_length = 0,
|
||||
size_t system_prompt_length = 0,
|
||||
|
||||
@ -380,7 +380,7 @@ struct ControlNet : public GGMLRunner {
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* y = nullptr) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, CONTROL_NET_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(CONTROL_NET_GRAPH_SIZE);
|
||||
|
||||
x = to_backend(x);
|
||||
if (guided_hint_cached) {
|
||||
|
||||
@ -35,8 +35,9 @@ struct DiffusionModel {
|
||||
virtual void free_compute_buffer() = 0;
|
||||
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
|
||||
virtual size_t get_params_buffer_size() = 0;
|
||||
virtual int64_t get_adm_in_channels() = 0;
|
||||
virtual void set_flash_attn_enabled(bool enabled) = 0;
|
||||
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
|
||||
virtual int64_t get_adm_in_channels() = 0;
|
||||
virtual void set_flash_attn_enabled(bool enabled) = 0;
|
||||
};
|
||||
|
||||
struct UNetModel : public DiffusionModel {
|
||||
@ -73,6 +74,10 @@ struct UNetModel : public DiffusionModel {
|
||||
return unet.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
unet.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return unet.unet.adm_in_channels;
|
||||
}
|
||||
@ -130,6 +135,10 @@ struct MMDiTModel : public DiffusionModel {
|
||||
return mmdit.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
mmdit.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return 768 + 1280;
|
||||
}
|
||||
@ -188,6 +197,10 @@ struct FluxModel : public DiffusionModel {
|
||||
return flux.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
flux.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return 768;
|
||||
}
|
||||
@ -251,6 +264,10 @@ struct WanModel : public DiffusionModel {
|
||||
return wan.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
wan.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return 768;
|
||||
}
|
||||
@ -313,6 +330,10 @@ struct QwenImageModel : public DiffusionModel {
|
||||
return qwen_image.get_params_buffer_size();
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
|
||||
qwen_image.set_weight_adapter(adapter);
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() override {
|
||||
return 768;
|
||||
}
|
||||
|
||||
41
docs/lora.md
41
docs/lora.md
@ -12,38 +12,15 @@ Here's a simple example:
|
||||
|
||||
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model
|
||||
|
||||
# Support matrix
|
||||
# Lora Apply Mode
|
||||
|
||||
> ℹ️ CUDA `get_rows` support is defined here:
|
||||
> [ggml-org/ggml/src/ggml-cuda/getrows.cu#L156](https://github.com/ggml-org/ggml/blob/7dee1d6a1e7611f238d09be96738388da97c88ed/src/ggml-cuda/getrows.cu#L156)
|
||||
> Currently only the basic types + Q4/Q5/Q8 are implemented. K-quants are **not** supported.
|
||||
There are two ways to apply LoRA: **immediately** and **at_runtime**. You can specify it using the `--lora-apply-mode` parameter.
|
||||
|
||||
NOTE: The other backends may have different support.
|
||||
By default, the mode is selected automatically:
|
||||
|
||||
* If the model weights contain any quantized parameters, the **at_runtime** mode is used;
|
||||
* Otherwise, the **immediately** mode is used.
|
||||
|
||||
The **immediately** mode may have precision and compatibility issues with quantized parameters, but it usually offers faster inference speed and, in some cases, lower memory usage.
|
||||
In contrast, the **at_runtime** mode provides better compatibility and higher precision, but inference may be slower and memory usage may be higher in some cases.
|
||||
|
||||
| Quant / Type | CUDA | Vulkan |
|
||||
|--------------|------|--------|
|
||||
| F32 | ✔️ | ✔️ |
|
||||
| F16 | ✔️ | ✔️ |
|
||||
| BF16 | ✔️ | ✔️ |
|
||||
| I32 | ✔️ | ❌ |
|
||||
| Q4_0 | ✔️ | ✔️ |
|
||||
| Q4_1 | ✔️ | ✔️ |
|
||||
| Q5_0 | ✔️ | ✔️ |
|
||||
| Q5_1 | ✔️ | ✔️ |
|
||||
| Q8_0 | ✔️ | ✔️ |
|
||||
| Q2_K | ❌ | ❌ |
|
||||
| Q3_K | ❌ | ❌ |
|
||||
| Q4_K | ❌ | ❌ |
|
||||
| Q5_K | ❌ | ❌ |
|
||||
| Q6_K | ❌ | ❌ |
|
||||
| Q8_K | ❌ | ❌ |
|
||||
| IQ1_S | ❌ | ✔️ |
|
||||
| IQ1_M | ❌ | ✔️ |
|
||||
| IQ2_XXS | ❌ | ✔️ |
|
||||
| IQ2_XS | ❌ | ✔️ |
|
||||
| IQ2_S | ❌ | ✔️ |
|
||||
| IQ3_XXS | ❌ | ✔️ |
|
||||
| IQ3_S | ❌ | ✔️ |
|
||||
| IQ4_XS | ❌ | ✔️ |
|
||||
| IQ4_NL | ❌ | ✔️ |
|
||||
| MXFP4 | ❌ | ✔️ |
|
||||
|
||||
@ -344,7 +344,7 @@ struct ESRGAN : public GGMLRunner {
|
||||
if (!rrdb_net)
|
||||
return nullptr;
|
||||
constexpr int kGraphNodes = 1 << 16; // 65k
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, kGraphNodes, /*grads*/ false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(kGraphNodes);
|
||||
x = to_backend(x);
|
||||
|
||||
auto runner_ctx = get_context();
|
||||
|
||||
@ -99,6 +99,12 @@ Options:
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--prediction prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]
|
||||
--lora-apply-mode the way to apply LoRA, one of [auto, immediately, at_runtime], default is auto. In auto mode, if the model weights
|
||||
contain any quantized parameters, the at_runtime mode will be used; otherwise,
|
||||
immediately will be used.The immediately mode may have precision and
|
||||
compatibility issues with quantized parameters, but it usually offers faster inference
|
||||
speed and, in some cases, lower memory usageThe at_runtime mode, on the other
|
||||
hand, is exactly the opposite.
|
||||
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default:
|
||||
discrete
|
||||
--skip-layers layers to skip for SLG steps (default: [7,8,9])
|
||||
|
||||
@ -137,7 +137,8 @@ struct SDParams {
|
||||
int chroma_t5_mask_pad = 1;
|
||||
float flow_shift = INFINITY;
|
||||
|
||||
prediction_t prediction = DEFAULT_PRED;
|
||||
prediction_t prediction = DEFAULT_PRED;
|
||||
lora_apply_mode_t lora_apply_mode = LORA_APPLY_AUTO;
|
||||
|
||||
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
|
||||
bool force_sdxl_vae_conv_scale = false;
|
||||
@ -209,6 +210,7 @@ void print_params(SDParams params) {
|
||||
printf(" high_noise_sample_params: %s\n", SAFE_STR(high_noise_sample_params_str));
|
||||
printf(" moe_boundary: %.3f\n", params.moe_boundary);
|
||||
printf(" prediction: %s\n", sd_prediction_name(params.prediction));
|
||||
printf(" lora_apply_mode: %s\n", sd_lora_apply_mode_name(params.lora_apply_mode));
|
||||
printf(" flow_shift: %.2f\n", params.flow_shift);
|
||||
printf(" strength(img2img): %.2f\n", params.strength);
|
||||
printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
|
||||
@ -926,6 +928,20 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_lora_apply_mode_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
}
|
||||
const char* arg = argv[index];
|
||||
params.lora_apply_mode = str_to_lora_apply_mode(arg);
|
||||
if (params.lora_apply_mode == LORA_APPLY_MODE_COUNT) {
|
||||
fprintf(stderr, "error: invalid lora apply model %s\n",
|
||||
arg);
|
||||
return -1;
|
||||
}
|
||||
return 1;
|
||||
};
|
||||
|
||||
auto on_sample_method_arg = [&](int argc, const char** argv, int index) {
|
||||
if (++index >= argc) {
|
||||
return -1;
|
||||
@ -1123,6 +1139,14 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
"--prediction",
|
||||
"prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]",
|
||||
on_prediction_arg},
|
||||
{"",
|
||||
"--lora-apply-mode",
|
||||
"the way to apply LoRA, one of [auto, immediately, at_runtime], default is auto. "
|
||||
"In auto mode, if the model weights contain any quantized parameters, the at_runtime mode will be used; otherwise, immediately will be used."
|
||||
"The immediately mode may have precision and compatibility issues with quantized parameters, "
|
||||
"but it usually offers faster inference speed and, in some cases, lower memory usage"
|
||||
"The at_runtime mode, on the other hand, is exactly the opposite.",
|
||||
on_lora_apply_mode_arg},
|
||||
{"",
|
||||
"--scheduler",
|
||||
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default: discrete",
|
||||
@ -1738,6 +1762,7 @@ int main(int argc, const char* argv[]) {
|
||||
params.wtype,
|
||||
params.rng_type,
|
||||
params.prediction,
|
||||
params.lora_apply_mode,
|
||||
params.offload_params_to_cpu,
|
||||
params.clip_on_cpu,
|
||||
params.control_net_cpu,
|
||||
|
||||
2
flux.hpp
2
flux.hpp
@ -1243,7 +1243,7 @@ namespace Flux {
|
||||
bool increase_ref_index = false,
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(FLUX_GRAPH_SIZE);
|
||||
|
||||
struct ggml_tensor* mod_index_arange = nullptr;
|
||||
struct ggml_tensor* dct = nullptr; // for chroma radiance
|
||||
|
||||
135
ggml_extend.hpp
135
ggml_extend.hpp
@ -959,12 +959,15 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
|
||||
int64_t ne3 = x->ne[3];
|
||||
x = ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2] * x->ne[3]);
|
||||
x = ggml_mul_mat(ctx, w, x);
|
||||
x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3);
|
||||
if (force_prec_f32) {
|
||||
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
|
||||
}
|
||||
x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3);
|
||||
} else {
|
||||
x = ggml_mul_mat(ctx, w, x);
|
||||
}
|
||||
if (force_prec_f32) {
|
||||
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
|
||||
if (force_prec_f32) {
|
||||
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
|
||||
}
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
@ -1119,6 +1122,18 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_ones(struct ggml_context* ctx,
|
||||
return ggml_ext_full(ctx, 1.f, ne0, ne1, ne2, ne3);
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ ggml_tensor* ggml_ext_cast_f32(ggml_context* ctx, ggml_tensor* a) {
|
||||
auto out = ggml_reshape_2d(ctx, a, 1, ggml_nelements(a));
|
||||
ggml_tensor* one = ggml_ext_ones(ctx, 1, 1, 1, 1); // [1,]
|
||||
if (ggml_is_transposed(out)) {
|
||||
out = ggml_mul_mat(ctx, one, out);
|
||||
} else {
|
||||
out = ggml_mul_mat(ctx, out, one);
|
||||
}
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
return out;
|
||||
}
|
||||
|
||||
// q: [N * n_head, n_token, d_head]
|
||||
// k: [N * n_head, n_k, d_head]
|
||||
// v: [N * n_head, d_head, n_k]
|
||||
@ -1460,11 +1475,43 @@ __STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) {
|
||||
#define MAX_PARAMS_TENSOR_NUM 32768
|
||||
#define MAX_GRAPH_SIZE 327680
|
||||
|
||||
struct WeightAdapter {
|
||||
struct ForwardParams {
|
||||
enum class op_type_t {
|
||||
OP_LINEAR,
|
||||
OP_CONV2D,
|
||||
} op_type;
|
||||
struct {
|
||||
bool force_prec_f32 = false;
|
||||
float scale = 1.f;
|
||||
} linear;
|
||||
struct {
|
||||
int s0 = 1;
|
||||
int s1 = 1;
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
int d0 = 1;
|
||||
int d1 = 1;
|
||||
bool direct = false;
|
||||
float scale = 1.f;
|
||||
} conv2d;
|
||||
};
|
||||
virtual ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) = 0;
|
||||
virtual ggml_tensor* forward_with_lora(ggml_context* ctx,
|
||||
ggml_tensor* x,
|
||||
ggml_tensor* w,
|
||||
ggml_tensor* b,
|
||||
const std::string& prefix,
|
||||
ForwardParams forward_params) = 0;
|
||||
virtual size_t get_extra_graph_size() = 0;
|
||||
};
|
||||
|
||||
struct GGMLRunnerContext {
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_context* ggml_ctx = nullptr;
|
||||
bool flash_attn_enabled = false;
|
||||
bool conv2d_direct_enabled = false;
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_context* ggml_ctx = nullptr;
|
||||
bool flash_attn_enabled = false;
|
||||
bool conv2d_direct_enabled = false;
|
||||
std::shared_ptr<WeightAdapter> weight_adapter = nullptr;
|
||||
};
|
||||
|
||||
struct GGMLRunner {
|
||||
@ -1486,6 +1533,8 @@ protected:
|
||||
struct ggml_context* compute_ctx = nullptr;
|
||||
struct ggml_gallocr* compute_allocr = nullptr;
|
||||
|
||||
std::shared_ptr<WeightAdapter> weight_adapter = nullptr;
|
||||
|
||||
std::vector<float> one_vec = {1.f};
|
||||
ggml_tensor* one_tensor = nullptr;
|
||||
|
||||
@ -1565,6 +1614,13 @@ protected:
|
||||
ggml_build_forward_expand(gf, one_tensor);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* new_graph_custom(size_t graph_size) {
|
||||
if (weight_adapter) {
|
||||
graph_size += weight_adapter->get_extra_graph_size();
|
||||
}
|
||||
return ggml_new_graph_custom(compute_ctx, graph_size, false);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* get_compute_graph(get_graph_cb_t get_graph) {
|
||||
prepare_build_in_tensor_before();
|
||||
struct ggml_cgraph* gf = get_graph();
|
||||
@ -1760,6 +1816,7 @@ public:
|
||||
runner_ctx.backend = runtime_backend;
|
||||
runner_ctx.flash_attn_enabled = flash_attn_enabled;
|
||||
runner_ctx.conv2d_direct_enabled = conv2d_direct_enabled;
|
||||
runner_ctx.weight_adapter = weight_adapter;
|
||||
return runner_ctx;
|
||||
}
|
||||
|
||||
@ -1891,6 +1948,10 @@ public:
|
||||
void set_conv2d_direct_enabled(bool enabled) {
|
||||
conv2d_direct_enabled = enabled;
|
||||
}
|
||||
|
||||
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
|
||||
weight_adapter = adapter;
|
||||
}
|
||||
};
|
||||
|
||||
class GGMLBlock {
|
||||
@ -2006,8 +2067,10 @@ protected:
|
||||
bool force_f32;
|
||||
bool force_prec_f32;
|
||||
float scale;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
|
||||
if (in_features % ggml_blck_size(wtype) != 0 || force_f32) {
|
||||
wtype = GGML_TYPE_F32;
|
||||
@ -2039,6 +2102,13 @@ public:
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
if (ctx->weight_adapter) {
|
||||
WeightAdapter::ForwardParams forward_params;
|
||||
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_LINEAR;
|
||||
forward_params.linear.force_prec_f32 = force_prec_f32;
|
||||
forward_params.linear.scale = scale;
|
||||
return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params);
|
||||
}
|
||||
return ggml_ext_linear(ctx->ggml_ctx, x, w, b, force_prec_f32, scale);
|
||||
}
|
||||
};
|
||||
@ -2098,8 +2168,10 @@ protected:
|
||||
std::pair<int, int> dilation;
|
||||
bool bias;
|
||||
float scale = 1.f;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
enum ggml_type wtype = GGML_TYPE_F16;
|
||||
params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels);
|
||||
if (bias) {
|
||||
@ -2138,6 +2210,19 @@ public:
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
if (ctx->weight_adapter) {
|
||||
WeightAdapter::ForwardParams forward_params;
|
||||
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
|
||||
forward_params.conv2d.s0 = stride.second;
|
||||
forward_params.conv2d.s1 = stride.first;
|
||||
forward_params.conv2d.p0 = padding.second;
|
||||
forward_params.conv2d.p1 = padding.first;
|
||||
forward_params.conv2d.d0 = dilation.second;
|
||||
forward_params.conv2d.d1 = dilation.first;
|
||||
forward_params.conv2d.direct = ctx->conv2d_direct_enabled;
|
||||
forward_params.conv2d.scale = scale;
|
||||
return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params);
|
||||
}
|
||||
return ggml_ext_conv_2d(ctx->ggml_ctx,
|
||||
x,
|
||||
w,
|
||||
@ -2209,8 +2294,10 @@ protected:
|
||||
std::tuple<int, int, int> padding;
|
||||
std::tuple<int, int, int> dilation;
|
||||
bool bias;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
enum ggml_type wtype = GGML_TYPE_F16;
|
||||
params["weight"] = ggml_new_tensor_4d(ctx,
|
||||
wtype,
|
||||
@ -2242,8 +2329,17 @@ public:
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
struct ggml_tensor* b = nullptr;
|
||||
if (ctx->weight_adapter) {
|
||||
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
|
||||
if (w->type != GGML_TYPE_F16) {
|
||||
w = ggml_cast(ctx->ggml_ctx, w, GGML_TYPE_F16);
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
if (ctx->weight_adapter) {
|
||||
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
|
||||
}
|
||||
}
|
||||
return ggml_ext_conv_3d(ctx->ggml_ctx, x, w, b, in_channels,
|
||||
std::get<2>(stride), std::get<1>(stride), std::get<0>(stride),
|
||||
@ -2258,8 +2354,10 @@ protected:
|
||||
float eps;
|
||||
bool elementwise_affine;
|
||||
bool bias;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
if (elementwise_affine) {
|
||||
enum ggml_type wtype = GGML_TYPE_F32;
|
||||
params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
|
||||
@ -2286,8 +2384,14 @@ public:
|
||||
|
||||
if (elementwise_affine) {
|
||||
w = params["weight"];
|
||||
if (ctx->weight_adapter) {
|
||||
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
|
||||
}
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
if (ctx->weight_adapter) {
|
||||
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
|
||||
}
|
||||
}
|
||||
}
|
||||
return ggml_ext_layer_norm(ctx->ggml_ctx, x, w, b, eps);
|
||||
@ -2300,8 +2404,10 @@ protected:
|
||||
int64_t num_channels;
|
||||
float eps;
|
||||
bool affine;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
if (affine) {
|
||||
enum ggml_type wtype = GGML_TYPE_F32;
|
||||
enum ggml_type bias_wtype = GGML_TYPE_F32;
|
||||
@ -2326,6 +2432,10 @@ public:
|
||||
if (affine) {
|
||||
w = params["weight"];
|
||||
b = params["bias"];
|
||||
if (ctx->weight_adapter) {
|
||||
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
|
||||
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
|
||||
}
|
||||
}
|
||||
return ggml_ext_group_norm(ctx->ggml_ctx, x, w, b, num_groups);
|
||||
}
|
||||
@ -2341,8 +2451,10 @@ class RMSNorm : public UnaryBlock {
|
||||
protected:
|
||||
int64_t hidden_size;
|
||||
float eps;
|
||||
std::string prefix;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override {
|
||||
this->prefix = prefix;
|
||||
enum ggml_type wtype = GGML_TYPE_F32;
|
||||
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
|
||||
}
|
||||
@ -2355,8 +2467,11 @@ public:
|
||||
|
||||
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
x = ggml_rms_norm(ctx->ggml_ctx, x, eps);
|
||||
x = ggml_mul_inplace(ctx->ggml_ctx, x, w);
|
||||
if (ctx->weight_adapter) {
|
||||
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
|
||||
}
|
||||
x = ggml_rms_norm(ctx->ggml_ctx, x, eps);
|
||||
x = ggml_mul_inplace(ctx->ggml_ctx, x, w);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
489
lora.hpp
489
lora.hpp
@ -7,22 +7,25 @@
|
||||
#define LORA_GRAPH_BASE_SIZE 10240
|
||||
|
||||
struct LoraModel : public GGMLRunner {
|
||||
std::string lora_id;
|
||||
float multiplier = 1.0f;
|
||||
std::map<std::string, struct ggml_tensor*> lora_tensors;
|
||||
std::unordered_map<std::string, struct ggml_tensor*> lora_tensors;
|
||||
std::map<ggml_tensor*, ggml_tensor*> original_tensor_to_final_tensor;
|
||||
std::set<std::string> applied_lora_tensors;
|
||||
std::string file_path;
|
||||
ModelLoader model_loader;
|
||||
bool load_failed = false;
|
||||
bool applied = false;
|
||||
bool tensor_preprocessed = false;
|
||||
std::vector<int> zero_index_vec = {0};
|
||||
ggml_tensor* zero_index = nullptr;
|
||||
bool load_failed = false;
|
||||
bool applied = false;
|
||||
bool tensor_preprocessed = false;
|
||||
|
||||
LoraModel(ggml_backend_t backend,
|
||||
typedef std::function<bool(const std::string&)> filter_t;
|
||||
|
||||
LoraModel(const std::string& lora_id,
|
||||
ggml_backend_t backend,
|
||||
const std::string& file_path = "",
|
||||
std::string prefix = "",
|
||||
SDVersion version = VERSION_COUNT)
|
||||
: file_path(file_path), GGMLRunner(backend, false) {
|
||||
: lora_id(lora_id), file_path(file_path), GGMLRunner(backend, false) {
|
||||
prefix = "lora." + prefix;
|
||||
if (!model_loader.init_from_file_and_convert_name(file_path, prefix, version)) {
|
||||
load_failed = true;
|
||||
@ -33,7 +36,7 @@ struct LoraModel : public GGMLRunner {
|
||||
return "lora";
|
||||
}
|
||||
|
||||
bool load_from_file(bool filter_tensor, int n_threads) {
|
||||
bool load_from_file(int n_threads, filter_t filter = nullptr) {
|
||||
LOG_INFO("loading LoRA from '%s'", file_path.c_str());
|
||||
|
||||
if (load_failed) {
|
||||
@ -48,7 +51,7 @@ struct LoraModel : public GGMLRunner {
|
||||
if (dry_run) {
|
||||
const std::string& name = tensor_storage.name;
|
||||
|
||||
if (filter_tensor && !contains(name, "lora.model")) {
|
||||
if (filter && !filter(name)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -68,6 +71,10 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
model_loader.load_tensors(on_new_tensor_cb, n_threads);
|
||||
|
||||
if (tensors_to_create.empty()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
for (const auto& pair : tensors_to_create) {
|
||||
const auto& name = pair.first;
|
||||
const auto& ts = pair.second;
|
||||
@ -87,14 +94,6 @@ struct LoraModel : public GGMLRunner {
|
||||
return true;
|
||||
}
|
||||
|
||||
ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) {
|
||||
auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a));
|
||||
out = ggml_get_rows(ctx, out, zero_index);
|
||||
out = ggml_reshape(ctx, out, a);
|
||||
// auto out = ggml_cast(ctx, a, GGML_TYPE_F32);
|
||||
return out;
|
||||
}
|
||||
|
||||
void preprocess_lora_tensors(const std::map<std::string, ggml_tensor*>& model_tensors) {
|
||||
if (tensor_preprocessed) {
|
||||
return;
|
||||
@ -102,7 +101,7 @@ struct LoraModel : public GGMLRunner {
|
||||
tensor_preprocessed = true;
|
||||
// I really hate these hardcoded processes.
|
||||
if (model_tensors.find("cond_stage_model.1.transformer.text_model.encoder.layers.0.self_attn.in_proj.weight") != model_tensors.end()) {
|
||||
std::map<std::string, ggml_tensor*> new_lora_tensors;
|
||||
std::unordered_map<std::string, ggml_tensor*> new_lora_tensors;
|
||||
for (auto& [old_name, tensor] : lora_tensors) {
|
||||
std::string new_name = old_name;
|
||||
|
||||
@ -130,7 +129,7 @@ struct LoraModel : public GGMLRunner {
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tensor* get_lora_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) {
|
||||
ggml_tensor* get_lora_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
|
||||
ggml_tensor* updown = nullptr;
|
||||
int index = 0;
|
||||
while (true) {
|
||||
@ -153,17 +152,17 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
auto iter = lora_tensors.find(lora_up_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_up = to_f32(compute_ctx, iter->second);
|
||||
lora_up = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lora_mid_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_mid = to_f32(compute_ctx, iter->second);
|
||||
lora_mid = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lora_down_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_down = to_f32(compute_ctx, iter->second);
|
||||
lora_down = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
if (lora_up == nullptr || lora_down == nullptr) {
|
||||
@ -195,32 +194,61 @@ struct LoraModel : public GGMLRunner {
|
||||
}
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_merge_lora(compute_ctx, lora_down, lora_up, lora_mid);
|
||||
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value);
|
||||
auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
|
||||
// diff
|
||||
if (updown == nullptr) {
|
||||
std::string lora_diff_name = "lora." + model_tensor_name + ".diff";
|
||||
|
||||
if (lora_tensors.find(lora_diff_name) != lora_tensors.end()) {
|
||||
updown = to_f32(compute_ctx, lora_tensors[lora_diff_name]);
|
||||
applied_lora_tensors.insert(lora_diff_name);
|
||||
}
|
||||
}
|
||||
|
||||
return updown;
|
||||
}
|
||||
|
||||
ggml_tensor* get_loha_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) {
|
||||
ggml_tensor* get_raw_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
|
||||
ggml_tensor* updown = nullptr;
|
||||
int index = 0;
|
||||
while (true) {
|
||||
std::string key;
|
||||
if (index == 0) {
|
||||
key = model_tensor_name;
|
||||
} else {
|
||||
key = model_tensor_name + "." + std::to_string(index);
|
||||
}
|
||||
|
||||
std::string diff_name = "lora." + key + ".diff";
|
||||
|
||||
ggml_tensor* curr_updown = nullptr;
|
||||
|
||||
auto iter = lora_tensors.find(diff_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
curr_updown = ggml_ext_cast_f32(ctx, iter->second);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
|
||||
applied_lora_tensors.insert(diff_name);
|
||||
|
||||
float scale_value = 1.0f;
|
||||
scale_value *= multiplier;
|
||||
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
return updown;
|
||||
}
|
||||
|
||||
ggml_tensor* get_loha_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
|
||||
ggml_tensor* updown = nullptr;
|
||||
int index = 0;
|
||||
while (true) {
|
||||
@ -248,34 +276,34 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
auto iter = lora_tensors.find(hada_1_down_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_1_down = to_f32(compute_ctx, iter->second);
|
||||
hada_1_down = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(hada_1_up_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_1_up = to_f32(compute_ctx, iter->second);
|
||||
hada_1_up = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(hada_1_mid_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_1_mid = to_f32(compute_ctx, iter->second);
|
||||
hada_1_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_1_up));
|
||||
hada_1_mid = ggml_ext_cast_f32(ctx, iter->second);
|
||||
hada_1_up = ggml_cont(ctx, ggml_transpose(ctx, hada_1_up));
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(hada_2_down_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_2_down = to_f32(compute_ctx, iter->second);
|
||||
hada_2_down = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(hada_2_up_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_2_up = to_f32(compute_ctx, iter->second);
|
||||
hada_2_up = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(hada_2_mid_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
hada_2_mid = to_f32(compute_ctx, iter->second);
|
||||
hada_2_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_2_up));
|
||||
hada_2_mid = ggml_ext_cast_f32(ctx, iter->second);
|
||||
hada_2_up = ggml_cont(ctx, ggml_transpose(ctx, hada_2_up));
|
||||
}
|
||||
|
||||
if (hada_1_up == nullptr || hada_1_down == nullptr || hada_2_up == nullptr || hada_2_down == nullptr) {
|
||||
@ -309,21 +337,21 @@ struct LoraModel : public GGMLRunner {
|
||||
}
|
||||
scale_value *= multiplier;
|
||||
|
||||
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(compute_ctx, hada_1_down, hada_1_up, hada_1_mid);
|
||||
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(compute_ctx, hada_2_down, hada_2_up, hada_2_mid);
|
||||
auto curr_updown = ggml_mul_inplace(compute_ctx, updown_1, updown_2);
|
||||
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value);
|
||||
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
|
||||
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
|
||||
auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
}
|
||||
index++;
|
||||
}
|
||||
return updown;
|
||||
}
|
||||
|
||||
ggml_tensor* get_lokr_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) {
|
||||
ggml_tensor* get_lokr_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
|
||||
ggml_tensor* updown = nullptr;
|
||||
int index = 0;
|
||||
while (true) {
|
||||
@ -350,24 +378,24 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
auto iter = lora_tensors.find(lokr_w1_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w1 = to_f32(compute_ctx, iter->second);
|
||||
lokr_w1 = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lokr_w2_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w2 = to_f32(compute_ctx, iter->second);
|
||||
lokr_w2 = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
int64_t rank = 1;
|
||||
if (lokr_w1 == nullptr) {
|
||||
iter = lora_tensors.find(lokr_w1_a_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w1_a = to_f32(compute_ctx, iter->second);
|
||||
lokr_w1_a = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lokr_w1_b_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w1_b = to_f32(compute_ctx, iter->second);
|
||||
lokr_w1_b = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
if (lokr_w1_a == nullptr || lokr_w1_b == nullptr) {
|
||||
@ -376,18 +404,18 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
rank = lokr_w1_b->ne[ggml_n_dims(lokr_w1_b) - 1];
|
||||
|
||||
lokr_w1 = ggml_ext_merge_lora(compute_ctx, lokr_w1_b, lokr_w1_a);
|
||||
lokr_w1 = ggml_ext_merge_lora(ctx, lokr_w1_b, lokr_w1_a);
|
||||
}
|
||||
|
||||
if (lokr_w2 == nullptr) {
|
||||
iter = lora_tensors.find(lokr_w2_a_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w2_a = to_f32(compute_ctx, iter->second);
|
||||
lokr_w2_a = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lokr_w2_b_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lokr_w2_b = to_f32(compute_ctx, iter->second);
|
||||
lokr_w2_b = ggml_ext_cast_f32(ctx, iter->second);
|
||||
}
|
||||
|
||||
if (lokr_w2_a == nullptr || lokr_w2_b == nullptr) {
|
||||
@ -396,7 +424,7 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
rank = lokr_w2_b->ne[ggml_n_dims(lokr_w2_b) - 1];
|
||||
|
||||
lokr_w2 = ggml_ext_merge_lora(compute_ctx, lokr_w2_b, lokr_w2_a);
|
||||
lokr_w2 = ggml_ext_merge_lora(ctx, lokr_w2_b, lokr_w2_a);
|
||||
}
|
||||
|
||||
if (!lokr_w1_a) {
|
||||
@ -427,49 +455,208 @@ struct LoraModel : public GGMLRunner {
|
||||
|
||||
scale_value *= multiplier;
|
||||
|
||||
auto curr_updown = ggml_ext_kronecker(compute_ctx, lokr_w1, lokr_w2);
|
||||
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value);
|
||||
auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
|
||||
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
|
||||
|
||||
if (updown == nullptr) {
|
||||
updown = curr_updown;
|
||||
} else {
|
||||
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
|
||||
}
|
||||
index++;
|
||||
}
|
||||
return updown;
|
||||
}
|
||||
|
||||
ggml_tensor* get_weight_diff(const std::string& model_tensor_name, ggml_context* ctx, ggml_tensor* model_tensor, bool with_lora = true) {
|
||||
// lora
|
||||
ggml_tensor* diff = nullptr;
|
||||
if (with_lora) {
|
||||
diff = get_lora_weight_diff(model_tensor_name, ctx);
|
||||
}
|
||||
// diff
|
||||
if (diff == nullptr) {
|
||||
diff = get_raw_weight_diff(model_tensor_name, ctx);
|
||||
}
|
||||
// loha
|
||||
if (diff == nullptr) {
|
||||
diff = get_loha_weight_diff(model_tensor_name, ctx);
|
||||
}
|
||||
// lokr
|
||||
if (diff == nullptr) {
|
||||
diff = get_lokr_weight_diff(model_tensor_name, ctx);
|
||||
}
|
||||
if (diff != nullptr) {
|
||||
if (ggml_nelements(diff) < ggml_nelements(model_tensor)) {
|
||||
if (ggml_n_dims(diff) == 2 && ggml_n_dims(model_tensor) == 2 && diff->ne[0] == model_tensor->ne[0]) {
|
||||
LOG_WARN("pad for %s", model_tensor_name.c_str());
|
||||
auto pad_tensor = ggml_ext_zeros(ctx, diff->ne[0], model_tensor->ne[1] - diff->ne[1], 1, 1);
|
||||
diff = ggml_concat(ctx, diff, pad_tensor, 1);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(ggml_nelements(diff) == ggml_nelements(model_tensor));
|
||||
diff = ggml_reshape(ctx, diff, model_tensor);
|
||||
}
|
||||
return diff;
|
||||
}
|
||||
|
||||
ggml_tensor* get_out_diff(ggml_context* ctx,
|
||||
ggml_tensor* x,
|
||||
WeightAdapter::ForwardParams forward_params,
|
||||
const std::string& model_tensor_name) {
|
||||
ggml_tensor* out_diff = nullptr;
|
||||
int index = 0;
|
||||
while (true) {
|
||||
std::string key;
|
||||
if (index == 0) {
|
||||
key = model_tensor_name;
|
||||
} else {
|
||||
key = model_tensor_name + "." + std::to_string(index);
|
||||
}
|
||||
|
||||
std::string lora_down_name = "lora." + key + ".lora_down";
|
||||
std::string lora_up_name = "lora." + key + ".lora_up";
|
||||
std::string lora_mid_name = "lora." + key + ".lora_mid";
|
||||
std::string scale_name = "lora." + key + ".scale";
|
||||
std::string alpha_name = "lora." + key + ".alpha";
|
||||
|
||||
ggml_tensor* lora_up = nullptr;
|
||||
ggml_tensor* lora_mid = nullptr;
|
||||
ggml_tensor* lora_down = nullptr;
|
||||
|
||||
bool is_conv2d = forward_params.op_type == WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
|
||||
|
||||
auto iter = lora_tensors.find(lora_up_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_up = iter->second;
|
||||
if (is_conv2d && lora_up->type != GGML_TYPE_F16) {
|
||||
lora_up = ggml_cast(ctx, lora_up, GGML_TYPE_F16);
|
||||
}
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lora_mid_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_mid = iter->second;
|
||||
if (is_conv2d && lora_mid->type != GGML_TYPE_F16) {
|
||||
lora_mid = ggml_cast(ctx, lora_mid, GGML_TYPE_F16);
|
||||
}
|
||||
}
|
||||
|
||||
iter = lora_tensors.find(lora_down_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
lora_down = iter->second;
|
||||
if (is_conv2d && lora_down->type != GGML_TYPE_F16) {
|
||||
lora_down = ggml_cast(ctx, lora_down, GGML_TYPE_F16);
|
||||
}
|
||||
}
|
||||
|
||||
if (lora_up == nullptr || lora_down == nullptr) {
|
||||
break;
|
||||
}
|
||||
|
||||
applied_lora_tensors.insert(lora_up_name);
|
||||
applied_lora_tensors.insert(lora_down_name);
|
||||
|
||||
if (lora_mid) {
|
||||
applied_lora_tensors.insert(lora_mid_name);
|
||||
}
|
||||
|
||||
float scale_value = 1.0f;
|
||||
|
||||
int64_t rank = lora_down->ne[ggml_n_dims(lora_down) - 1];
|
||||
iter = lora_tensors.find(scale_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
scale_value = ggml_ext_backend_tensor_get_f32(iter->second);
|
||||
applied_lora_tensors.insert(scale_name);
|
||||
} else {
|
||||
iter = lora_tensors.find(alpha_name);
|
||||
if (iter != lora_tensors.end()) {
|
||||
float alpha = ggml_ext_backend_tensor_get_f32(iter->second);
|
||||
scale_value = alpha / rank;
|
||||
// LOG_DEBUG("rank %s %ld %.2f %.2f", alpha_name.c_str(), rank, alpha, scale_value);
|
||||
applied_lora_tensors.insert(alpha_name);
|
||||
}
|
||||
}
|
||||
scale_value *= multiplier;
|
||||
|
||||
ggml_tensor* lx;
|
||||
if (!is_conv2d) {
|
||||
lx = ggml_ext_linear(ctx, x, lora_down, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
|
||||
if (lora_mid) {
|
||||
lx = ggml_ext_linear(ctx, lx, lora_mid, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
|
||||
}
|
||||
lx = ggml_ext_linear(ctx, lx, lora_up, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
|
||||
} else { // OP_CONV2D
|
||||
lx = ggml_ext_conv_2d(ctx,
|
||||
x,
|
||||
lora_down,
|
||||
nullptr,
|
||||
forward_params.conv2d.s0,
|
||||
forward_params.conv2d.s1,
|
||||
forward_params.conv2d.p0,
|
||||
forward_params.conv2d.p1,
|
||||
forward_params.conv2d.d0,
|
||||
forward_params.conv2d.d1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.scale);
|
||||
if (lora_mid) {
|
||||
lx = ggml_ext_conv_2d(ctx,
|
||||
lx,
|
||||
lora_mid,
|
||||
nullptr,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
lx = ggml_ext_conv_2d(ctx,
|
||||
lx,
|
||||
lora_up,
|
||||
nullptr,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
|
||||
auto curr_out_diff = ggml_scale_inplace(ctx, lx, scale_value);
|
||||
|
||||
if (out_diff == nullptr) {
|
||||
out_diff = curr_out_diff;
|
||||
} else {
|
||||
out_diff = ggml_concat(ctx, out_diff, curr_out_diff, ggml_n_dims(out_diff) - 1);
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
return out_diff;
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_lora_graph(const std::map<std::string, ggml_tensor*>& model_tensors, SDVersion version) {
|
||||
size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10;
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false);
|
||||
|
||||
zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1);
|
||||
set_backend_tensor_data(zero_index, zero_index_vec.data());
|
||||
ggml_build_forward_expand(gf, zero_index);
|
||||
|
||||
preprocess_lora_tensors(model_tensors);
|
||||
|
||||
original_tensor_to_final_tensor.clear();
|
||||
applied_lora_tensors.clear();
|
||||
|
||||
std::set<std::string> applied_lora_tensors;
|
||||
for (auto it : model_tensors) {
|
||||
std::string model_tensor_name = it.first;
|
||||
ggml_tensor* model_tensor = it.second;
|
||||
|
||||
// lora
|
||||
ggml_tensor* updown = get_lora_diff(model_tensor_name, applied_lora_tensors);
|
||||
// loha
|
||||
if (updown == nullptr) {
|
||||
updown = get_loha_diff(model_tensor_name, applied_lora_tensors);
|
||||
}
|
||||
|
||||
// lokr
|
||||
if (updown == nullptr) {
|
||||
updown = get_lokr_diff(model_tensor_name, applied_lora_tensors);
|
||||
}
|
||||
|
||||
if (updown == nullptr) {
|
||||
ggml_tensor* diff = get_weight_diff(model_tensor_name, compute_ctx, model_tensor);
|
||||
if (diff == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -479,53 +666,19 @@ struct LoraModel : public GGMLRunner {
|
||||
set_backend_tensor_data(model_tensor, original_tensor->data);
|
||||
}
|
||||
|
||||
if (ggml_nelements(updown) < ggml_nelements(model_tensor)) {
|
||||
if (ggml_n_dims(updown) == 2 && ggml_n_dims(model_tensor) == 2 && updown->ne[0] == model_tensor->ne[0]) {
|
||||
LOG_WARN("pad for %s", model_tensor_name.c_str());
|
||||
auto pad_tensor = ggml_ext_zeros(compute_ctx, updown->ne[0], model_tensor->ne[1] - updown->ne[1], 1, 1);
|
||||
updown = ggml_concat(compute_ctx, updown, pad_tensor, 1);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(model_tensor));
|
||||
updown = ggml_reshape(compute_ctx, updown, model_tensor);
|
||||
ggml_tensor* final_tensor;
|
||||
if (model_tensor->type != GGML_TYPE_F32 && model_tensor->type != GGML_TYPE_F16) {
|
||||
final_tensor = to_f32(compute_ctx, model_tensor);
|
||||
final_tensor = ggml_add_inplace(compute_ctx, final_tensor, updown);
|
||||
final_tensor = ggml_ext_cast_f32(compute_ctx, model_tensor);
|
||||
final_tensor = ggml_add_inplace(compute_ctx, final_tensor, diff);
|
||||
final_tensor = ggml_cpy(compute_ctx, final_tensor, model_tensor);
|
||||
} else {
|
||||
final_tensor = ggml_add_inplace(compute_ctx, model_tensor, updown);
|
||||
final_tensor = ggml_add_inplace(compute_ctx, model_tensor, diff);
|
||||
}
|
||||
ggml_build_forward_expand(gf, final_tensor);
|
||||
if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) {
|
||||
original_tensor_to_final_tensor[original_tensor] = final_tensor;
|
||||
}
|
||||
}
|
||||
size_t total_lora_tensors_count = 0;
|
||||
size_t applied_lora_tensors_count = 0;
|
||||
|
||||
for (auto& kv : lora_tensors) {
|
||||
total_lora_tensors_count++;
|
||||
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
|
||||
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
|
||||
print_ggml_tensor(kv.second, true);
|
||||
// exit(0);
|
||||
} else {
|
||||
applied_lora_tensors_count++;
|
||||
}
|
||||
}
|
||||
/* Don't worry if this message shows up twice in the logs per LoRA,
|
||||
* this function is called once to calculate the required buffer size
|
||||
* and then again to actually generate a graph to be used */
|
||||
if (applied_lora_tensors_count != total_lora_tensors_count) {
|
||||
LOG_WARN("Only (%lu / %lu) LoRA tensors will be applied",
|
||||
applied_lora_tensors_count, total_lora_tensors_count);
|
||||
} else {
|
||||
LOG_DEBUG("(%lu / %lu) LoRA tensors will be applied",
|
||||
applied_lora_tensors_count, total_lora_tensors_count);
|
||||
}
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
@ -534,6 +687,7 @@ struct LoraModel : public GGMLRunner {
|
||||
return build_lora_graph(model_tensors, version);
|
||||
};
|
||||
GGMLRunner::compute(get_graph, n_threads, false);
|
||||
stat();
|
||||
for (auto item : original_tensor_to_final_tensor) {
|
||||
ggml_tensor* original_tensor = item.first;
|
||||
ggml_tensor* final_tensor = item.second;
|
||||
@ -543,6 +697,107 @@ struct LoraModel : public GGMLRunner {
|
||||
original_tensor_to_final_tensor.clear();
|
||||
GGMLRunner::free_compute_buffer();
|
||||
}
|
||||
|
||||
void stat(bool at_runntime = false) {
|
||||
size_t total_lora_tensors_count = 0;
|
||||
size_t applied_lora_tensors_count = 0;
|
||||
|
||||
for (auto& kv : lora_tensors) {
|
||||
total_lora_tensors_count++;
|
||||
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
|
||||
if (!at_runntime) {
|
||||
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
|
||||
print_ggml_tensor(kv.second, true);
|
||||
}
|
||||
} else {
|
||||
applied_lora_tensors_count++;
|
||||
}
|
||||
}
|
||||
/* Don't worry if this message shows up twice in the logs per LoRA,
|
||||
* this function is called once to calculate the required buffer size
|
||||
* and then again to actually generate a graph to be used */
|
||||
if (!at_runntime && applied_lora_tensors_count != total_lora_tensors_count) {
|
||||
LOG_WARN("Only (%lu / %lu) LoRA tensors have been applied, lora_file_path = %s",
|
||||
applied_lora_tensors_count, total_lora_tensors_count, file_path.c_str());
|
||||
} else {
|
||||
LOG_INFO("(%lu / %lu) LoRA tensors have been applied, lora_file_path = %s",
|
||||
applied_lora_tensors_count, total_lora_tensors_count, file_path.c_str());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct MultiLoraAdapter : public WeightAdapter {
|
||||
protected:
|
||||
std::vector<std::shared_ptr<LoraModel>> lora_models;
|
||||
|
||||
public:
|
||||
explicit MultiLoraAdapter(const std::vector<std::shared_ptr<LoraModel>>& lora_models)
|
||||
: lora_models(lora_models) {
|
||||
}
|
||||
|
||||
ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name, bool with_lora) {
|
||||
for (auto& lora_model : lora_models) {
|
||||
ggml_tensor* diff = lora_model->get_weight_diff(weight_name, ctx, weight, with_lora);
|
||||
if (diff == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
|
||||
weight = ggml_ext_cast_f32(ctx, weight);
|
||||
}
|
||||
weight = ggml_add(ctx, weight, diff);
|
||||
}
|
||||
return weight;
|
||||
}
|
||||
|
||||
ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) override {
|
||||
return patch_weight(ctx, weight, weight_name, true);
|
||||
}
|
||||
|
||||
ggml_tensor* forward_with_lora(ggml_context* ctx,
|
||||
ggml_tensor* x,
|
||||
ggml_tensor* w,
|
||||
ggml_tensor* b,
|
||||
const std::string& prefix,
|
||||
WeightAdapter::ForwardParams forward_params) override {
|
||||
w = patch_weight(ctx, w, prefix + "weight", false);
|
||||
if (b) {
|
||||
b = patch_weight(ctx, b, prefix + "bias", false);
|
||||
}
|
||||
ggml_tensor* out;
|
||||
if (forward_params.op_type == ForwardParams::op_type_t::OP_LINEAR) {
|
||||
out = ggml_ext_linear(ctx, x, w, b, forward_params.linear.force_prec_f32, forward_params.linear.scale);
|
||||
} else { // OP_CONV2D
|
||||
out = ggml_ext_conv_2d(ctx,
|
||||
x,
|
||||
w,
|
||||
b,
|
||||
forward_params.conv2d.s0,
|
||||
forward_params.conv2d.s1,
|
||||
forward_params.conv2d.p0,
|
||||
forward_params.conv2d.p1,
|
||||
forward_params.conv2d.d0,
|
||||
forward_params.conv2d.d1,
|
||||
forward_params.conv2d.direct,
|
||||
forward_params.conv2d.scale);
|
||||
}
|
||||
for (auto& lora_model : lora_models) {
|
||||
ggml_tensor* out_diff = lora_model->get_out_diff(ctx, x, forward_params, prefix + "weight");
|
||||
if (out_diff == nullptr) {
|
||||
continue;
|
||||
}
|
||||
out = ggml_add_inplace(ctx, out, out_diff);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
size_t get_extra_graph_size() override {
|
||||
size_t lora_tensor_num = 0;
|
||||
for (auto& lora_model : lora_models) {
|
||||
lora_tensor_num += lora_model->lora_tensors.size();
|
||||
}
|
||||
return LORA_GRAPH_BASE_SIZE + lora_tensor_num * 10;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __LORA_HPP__
|
||||
|
||||
@ -870,7 +870,7 @@ struct MMDiTRunner : public GGMLRunner {
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* y,
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, MMDIT_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(MMDIT_GRAPH_SIZE);
|
||||
|
||||
x = to_backend(x);
|
||||
context = to_backend(context);
|
||||
|
||||
@ -855,6 +855,49 @@ std::string convert_sep_to_dot(std::string name) {
|
||||
return name;
|
||||
}
|
||||
|
||||
std::vector<std::string> cond_stage_model_prefix_vec = {
|
||||
"cond_stage_model.1.",
|
||||
"cond_stage_model.",
|
||||
"conditioner.embedders.",
|
||||
"text_encoders.",
|
||||
};
|
||||
|
||||
std::vector<std::string> diffuison_model_prefix_vec = {
|
||||
"model.diffusion_model.",
|
||||
};
|
||||
|
||||
std::vector<std::string> first_stage_model_prefix_vec = {
|
||||
"first_stage_model.",
|
||||
"vae.",
|
||||
};
|
||||
|
||||
bool is_cond_stage_model_name(const std::string& name) {
|
||||
for (const auto& prefix : cond_stage_model_prefix_vec) {
|
||||
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_diffusion_model_name(const std::string& name) {
|
||||
for (const auto& prefix : diffuison_model_prefix_vec) {
|
||||
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_first_stage_model_name(const std::string& name) {
|
||||
for (const auto& prefix : first_stage_model_prefix_vec) {
|
||||
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
bool is_lora = false;
|
||||
bool is_lycoris_underline = false;
|
||||
@ -956,9 +999,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
|
||||
// diffusion model
|
||||
{
|
||||
std::vector<std::string> diffuison_model_prefix_vec = {
|
||||
"model.diffusion_model.",
|
||||
};
|
||||
for (const auto& prefix : diffuison_model_prefix_vec) {
|
||||
if (starts_with(name, prefix)) {
|
||||
name = convert_diffusion_model_name(name.substr(prefix.size()), prefix, version);
|
||||
@ -970,12 +1010,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
|
||||
// cond_stage_model
|
||||
{
|
||||
std::vector<std::string> cond_stage_model_prefix_vec = {
|
||||
"cond_stage_model.1.",
|
||||
"cond_stage_model.",
|
||||
"conditioner.embedders.",
|
||||
"text_encoders.",
|
||||
};
|
||||
for (const auto& prefix : cond_stage_model_prefix_vec) {
|
||||
if (starts_with(name, prefix)) {
|
||||
name = convert_cond_stage_model_name(name.substr(prefix.size()), prefix);
|
||||
@ -987,10 +1021,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
|
||||
|
||||
// first_stage_model
|
||||
{
|
||||
std::vector<std::string> first_stage_model_prefix_vec = {
|
||||
"first_stage_model.",
|
||||
"vae.",
|
||||
};
|
||||
for (const auto& prefix : first_stage_model_prefix_vec) {
|
||||
if (starts_with(name, prefix)) {
|
||||
name = convert_first_stage_model_name(name.substr(prefix.size()), prefix);
|
||||
|
||||
@ -5,6 +5,10 @@
|
||||
|
||||
#include "model.h"
|
||||
|
||||
bool is_cond_stage_model_name(const std::string& name);
|
||||
bool is_diffusion_model_name(const std::string& name);
|
||||
bool is_first_stage_model_name(const std::string& name);
|
||||
|
||||
std::string convert_tensor_name(std::string name, SDVersion version);
|
||||
|
||||
#endif // __NAME_CONVERSTION_H__
|
||||
@ -543,7 +543,7 @@ namespace Qwen {
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
bool increase_ref_index = false) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWEN_IMAGE_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(QWEN_IMAGE_GRAPH_SIZE);
|
||||
|
||||
x = to_backend(x);
|
||||
context = to_backend(context);
|
||||
|
||||
@ -1049,7 +1049,7 @@ namespace Qwen {
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_encode_image_graph(struct ggml_tensor* image) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWENVL_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(QWENVL_GRAPH_SIZE);
|
||||
|
||||
GGML_ASSERT(image->ne[1] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
|
||||
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
|
||||
|
||||
@ -17,6 +17,7 @@
|
||||
#include "vae.hpp"
|
||||
|
||||
#include "latent-preview.h"
|
||||
#include "name_conversion.h"
|
||||
|
||||
const char* model_version_to_str[] = {
|
||||
"SD 1.x",
|
||||
@ -108,10 +109,14 @@ public:
|
||||
std::shared_ptr<DiffusionModel> high_noise_diffusion_model;
|
||||
std::shared_ptr<VAE> first_stage_model;
|
||||
std::shared_ptr<TinyAutoEncoder> tae_first_stage;
|
||||
std::shared_ptr<ControlNet> control_net = nullptr;
|
||||
std::shared_ptr<ControlNet> control_net;
|
||||
std::shared_ptr<PhotoMakerIDEncoder> pmid_model;
|
||||
std::shared_ptr<LoraModel> pmid_lora;
|
||||
std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds;
|
||||
std::vector<std::shared_ptr<LoraModel>> cond_stage_lora_models;
|
||||
std::vector<std::shared_ptr<LoraModel>> diffusion_lora_models;
|
||||
std::vector<std::shared_ptr<LoraModel>> first_stage_lora_models;
|
||||
bool apply_lora_immediately = false;
|
||||
|
||||
std::string taesd_path;
|
||||
bool use_tiny_autoencoder = false;
|
||||
@ -329,6 +334,25 @@ public:
|
||||
|
||||
LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor));
|
||||
|
||||
if (sd_ctx_params->lora_apply_mode == LORA_APPLY_AUTO) {
|
||||
bool have_quantized_weight = false;
|
||||
for (const auto& [type, _] : wtype_stat) {
|
||||
if (ggml_is_quantized(type)) {
|
||||
have_quantized_weight = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (have_quantized_weight) {
|
||||
apply_lora_immediately = false;
|
||||
} else {
|
||||
apply_lora_immediately = true;
|
||||
}
|
||||
} else if (sd_ctx_params->lora_apply_mode == LORA_APPLY_IMMEDIATELY) {
|
||||
apply_lora_immediately = true;
|
||||
} else {
|
||||
apply_lora_immediately = false;
|
||||
}
|
||||
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
scale_factor = 0.13025f;
|
||||
} else if (sd_version_is_sd3(version)) {
|
||||
@ -571,8 +595,14 @@ public:
|
||||
version);
|
||||
}
|
||||
if (strlen(SAFE_STR(sd_ctx_params->photo_maker_path)) > 0) {
|
||||
pmid_lora = std::make_shared<LoraModel>(backend, sd_ctx_params->photo_maker_path, "", version);
|
||||
if (!pmid_lora->load_from_file(true, n_threads)) {
|
||||
pmid_lora = std::make_shared<LoraModel>("pmid", backend, sd_ctx_params->photo_maker_path, "", version);
|
||||
auto lora_tensor_filter = [&](const std::string& tensor_name) {
|
||||
if (starts_with(tensor_name, "lora.model")) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
if (!pmid_lora->load_from_file(n_threads, lora_tensor_filter)) {
|
||||
LOG_WARN("load photomaker lora tensors from %s failed", sd_ctx_params->photo_maker_path);
|
||||
return false;
|
||||
}
|
||||
@ -907,8 +937,11 @@ public:
|
||||
return result < -1;
|
||||
}
|
||||
|
||||
void apply_lora(std::string lora_name, float multiplier) {
|
||||
int64_t t0 = ggml_time_ms();
|
||||
std::shared_ptr<LoraModel> load_lora_model_from_file(const std::string& lora_id,
|
||||
float multiplier,
|
||||
ggml_backend_t backend,
|
||||
LoraModel::filter_t lora_tensor_filter = nullptr) {
|
||||
std::string lora_name = lora_id;
|
||||
std::string high_noise_tag = "|high_noise|";
|
||||
bool is_high_noise = false;
|
||||
if (starts_with(lora_name, high_noise_tag)) {
|
||||
@ -925,25 +958,19 @@ public:
|
||||
file_path = ckpt_file_path;
|
||||
} else {
|
||||
LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str());
|
||||
return;
|
||||
return nullptr;
|
||||
}
|
||||
LoraModel lora(backend, file_path, is_high_noise ? "model.high_noise_" : "", version);
|
||||
if (!lora.load_from_file(false, n_threads)) {
|
||||
auto lora = std::make_shared<LoraModel>(lora_id, backend, file_path, is_high_noise ? "model.high_noise_" : "", version);
|
||||
if (!lora->load_from_file(n_threads, lora_tensor_filter)) {
|
||||
LOG_WARN("load lora tensors from %s failed", file_path.c_str());
|
||||
return;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
lora.multiplier = multiplier;
|
||||
// TODO: send version?
|
||||
lora.apply(tensors, version, n_threads);
|
||||
lora.free_params_buffer();
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
LOG_INFO("lora '%s' applied, taking %.2fs", lora_name.c_str(), (t1 - t0) * 1.0f / 1000);
|
||||
lora->multiplier = multiplier;
|
||||
return lora;
|
||||
}
|
||||
|
||||
void apply_loras(const std::unordered_map<std::string, float>& lora_state) {
|
||||
void apply_loras_immediately(const std::unordered_map<std::string, float>& lora_state) {
|
||||
std::unordered_map<std::string, float> lora_state_diff;
|
||||
for (auto& kv : lora_state) {
|
||||
const std::string& lora_name = kv.first;
|
||||
@ -964,12 +991,149 @@ public:
|
||||
}
|
||||
|
||||
for (auto& kv : lora_state_diff) {
|
||||
apply_lora(kv.first, kv.second);
|
||||
int64_t t0 = ggml_time_ms();
|
||||
|
||||
auto lora = load_lora_model_from_file(kv.first, kv.second, backend);
|
||||
lora->apply(tensors, version, n_threads);
|
||||
lora->free_params_buffer();
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
||||
LOG_INFO("lora '%s' applied, taking %.2fs", kv.first.c_str(), (t1 - t0) * 1.0f / 1000);
|
||||
}
|
||||
|
||||
curr_lora_state = lora_state;
|
||||
}
|
||||
|
||||
void apply_loras_at_runtime(const std::unordered_map<std::string, float>& lora_state) {
|
||||
cond_stage_lora_models.clear();
|
||||
diffusion_lora_models.clear();
|
||||
first_stage_lora_models.clear();
|
||||
if (cond_stage_model) {
|
||||
std::vector<std::shared_ptr<LoraModel>> lora_models;
|
||||
auto lora_state_diff = lora_state;
|
||||
for (auto& lora_model : cond_stage_lora_models) {
|
||||
auto iter = lora_state_diff.find(lora_model->lora_id);
|
||||
|
||||
if (iter != lora_state_diff.end()) {
|
||||
lora_model->multiplier = iter->second;
|
||||
lora_models.push_back(lora_model);
|
||||
lora_state_diff.erase(iter);
|
||||
}
|
||||
}
|
||||
cond_stage_lora_models = lora_models;
|
||||
auto lora_tensor_filter = [&](const std::string& tensor_name) {
|
||||
if (is_cond_stage_model_name(tensor_name)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
for (auto& kv : lora_state_diff) {
|
||||
const std::string& lora_id = kv.first;
|
||||
float multiplier = kv.second;
|
||||
|
||||
auto lora = load_lora_model_from_file(lora_id, multiplier, clip_backend, lora_tensor_filter);
|
||||
if (lora && !lora->lora_tensors.empty()) {
|
||||
lora->preprocess_lora_tensors(tensors);
|
||||
cond_stage_lora_models.push_back(lora);
|
||||
}
|
||||
}
|
||||
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(cond_stage_lora_models);
|
||||
cond_stage_model->set_weight_adapter(multi_lora_adapter);
|
||||
}
|
||||
if (diffusion_model) {
|
||||
std::vector<std::shared_ptr<LoraModel>> lora_models;
|
||||
auto lora_state_diff = lora_state;
|
||||
for (auto& lora_model : diffusion_lora_models) {
|
||||
auto iter = lora_state_diff.find(lora_model->lora_id);
|
||||
|
||||
if (iter != lora_state_diff.end()) {
|
||||
lora_model->multiplier = iter->second;
|
||||
lora_models.push_back(lora_model);
|
||||
lora_state_diff.erase(iter);
|
||||
}
|
||||
}
|
||||
diffusion_lora_models = lora_models;
|
||||
auto lora_tensor_filter = [&](const std::string& tensor_name) {
|
||||
if (is_diffusion_model_name(tensor_name)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
for (auto& kv : lora_state_diff) {
|
||||
const std::string& lora_name = kv.first;
|
||||
float multiplier = kv.second;
|
||||
|
||||
auto lora = load_lora_model_from_file(lora_name, multiplier, backend, lora_tensor_filter);
|
||||
if (lora && !lora->lora_tensors.empty()) {
|
||||
lora->preprocess_lora_tensors(tensors);
|
||||
diffusion_lora_models.push_back(lora);
|
||||
}
|
||||
}
|
||||
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(diffusion_lora_models);
|
||||
diffusion_model->set_weight_adapter(multi_lora_adapter);
|
||||
if (high_noise_diffusion_model) {
|
||||
high_noise_diffusion_model->set_weight_adapter(multi_lora_adapter);
|
||||
}
|
||||
}
|
||||
|
||||
if (first_stage_model) {
|
||||
std::vector<std::shared_ptr<LoraModel>> lora_models;
|
||||
auto lora_state_diff = lora_state;
|
||||
for (auto& lora_model : first_stage_lora_models) {
|
||||
auto iter = lora_state_diff.find(lora_model->lora_id);
|
||||
|
||||
if (iter != lora_state_diff.end()) {
|
||||
lora_model->multiplier = iter->second;
|
||||
lora_models.push_back(lora_model);
|
||||
lora_state_diff.erase(iter);
|
||||
}
|
||||
}
|
||||
first_stage_lora_models = lora_models;
|
||||
auto lora_tensor_filter = [&](const std::string& tensor_name) {
|
||||
if (is_first_stage_model_name(tensor_name)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
for (auto& kv : lora_state_diff) {
|
||||
const std::string& lora_name = kv.first;
|
||||
float multiplier = kv.second;
|
||||
|
||||
auto lora = load_lora_model_from_file(lora_name, multiplier, vae_backend, lora_tensor_filter);
|
||||
if (lora && !lora->lora_tensors.empty()) {
|
||||
lora->preprocess_lora_tensors(tensors);
|
||||
first_stage_lora_models.push_back(lora);
|
||||
}
|
||||
}
|
||||
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(first_stage_lora_models);
|
||||
first_stage_model->set_weight_adapter(multi_lora_adapter);
|
||||
}
|
||||
}
|
||||
|
||||
void lora_stat() {
|
||||
if (!cond_stage_lora_models.empty()) {
|
||||
LOG_INFO("cond_stage_lora_models:");
|
||||
for (auto& lora_model : cond_stage_lora_models) {
|
||||
lora_model->stat();
|
||||
}
|
||||
}
|
||||
|
||||
if (!diffusion_lora_models.empty()) {
|
||||
LOG_INFO("diffusion_lora_models:");
|
||||
for (auto& lora_model : diffusion_lora_models) {
|
||||
lora_model->stat();
|
||||
}
|
||||
}
|
||||
|
||||
if (!first_stage_lora_models.empty()) {
|
||||
LOG_INFO("first_stage_lora_models:");
|
||||
for (auto& lora_model : first_stage_lora_models) {
|
||||
lora_model->stat();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string apply_loras_from_prompt(const std::string& prompt) {
|
||||
auto result_pair = extract_and_remove_lora(prompt);
|
||||
std::unordered_map<std::string, float> lora_f2m = result_pair.first; // lora_name -> multiplier
|
||||
@ -978,10 +1142,18 @@ public:
|
||||
LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second);
|
||||
}
|
||||
int64_t t0 = ggml_time_ms();
|
||||
apply_loras(lora_f2m);
|
||||
if (apply_lora_immediately) {
|
||||
LOG_INFO("apply lora immediately");
|
||||
apply_loras_immediately(lora_f2m);
|
||||
} else {
|
||||
LOG_INFO("apply at runtime");
|
||||
apply_loras_at_runtime(lora_f2m);
|
||||
}
|
||||
int64_t t1 = ggml_time_ms();
|
||||
LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
LOG_DEBUG("prompt after extract and remove lora: \"%s\"", result_pair.second.c_str());
|
||||
if (!lora_f2m.empty()) {
|
||||
LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
LOG_DEBUG("prompt after extract and remove lora: \"%s\"", result_pair.second.c_str());
|
||||
}
|
||||
return result_pair.second;
|
||||
}
|
||||
|
||||
@ -2081,6 +2253,28 @@ enum preview_t str_to_preview(const char* str) {
|
||||
return PREVIEW_COUNT;
|
||||
}
|
||||
|
||||
const char* lora_apply_mode_to_str[] = {
|
||||
"auto",
|
||||
"immediately",
|
||||
"at_runtime",
|
||||
};
|
||||
|
||||
const char* sd_lora_apply_mode_name(enum lora_apply_mode_t mode) {
|
||||
if (mode < LORA_APPLY_MODE_COUNT) {
|
||||
return lora_apply_mode_to_str[mode];
|
||||
}
|
||||
return NONE_STR;
|
||||
}
|
||||
|
||||
enum lora_apply_mode_t str_to_lora_apply_mode(const char* str) {
|
||||
for (int i = 0; i < LORA_APPLY_MODE_COUNT; i++) {
|
||||
if (!strcmp(str, lora_apply_mode_to_str[i])) {
|
||||
return (enum lora_apply_mode_t)i;
|
||||
}
|
||||
}
|
||||
return LORA_APPLY_MODE_COUNT;
|
||||
}
|
||||
|
||||
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
||||
*sd_ctx_params = {};
|
||||
sd_ctx_params->vae_decode_only = true;
|
||||
@ -2089,6 +2283,7 @@ void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
|
||||
sd_ctx_params->wtype = SD_TYPE_COUNT;
|
||||
sd_ctx_params->rng_type = CUDA_RNG;
|
||||
sd_ctx_params->prediction = DEFAULT_PRED;
|
||||
sd_ctx_params->lora_apply_mode = LORA_APPLY_AUTO;
|
||||
sd_ctx_params->offload_params_to_cpu = false;
|
||||
sd_ctx_params->keep_clip_on_cpu = false;
|
||||
sd_ctx_params->keep_control_net_on_cpu = false;
|
||||
@ -2674,6 +2869,9 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
if (sd_ctx->sd->free_params_immediately && !sd_ctx->sd->use_tiny_autoencoder) {
|
||||
sd_ctx->sd->first_stage_model->free_params_buffer();
|
||||
}
|
||||
|
||||
sd_ctx->sd->lora_stat();
|
||||
|
||||
sd_image_t* result_images = (sd_image_t*)calloc(batch_count, sizeof(sd_image_t));
|
||||
if (result_images == nullptr) {
|
||||
ggml_free(work_ctx);
|
||||
@ -3343,6 +3541,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
sd_ctx->sd->first_stage_model->free_params_buffer();
|
||||
}
|
||||
|
||||
sd_ctx->sd->lora_stat();
|
||||
|
||||
sd_image_t* result_images = (sd_image_t*)calloc(vid->ne[2], sizeof(sd_image_t));
|
||||
if (result_images == nullptr) {
|
||||
ggml_free(work_ctx);
|
||||
|
||||
@ -134,6 +134,13 @@ enum preview_t {
|
||||
PREVIEW_COUNT
|
||||
};
|
||||
|
||||
enum lora_apply_mode_t {
|
||||
LORA_APPLY_AUTO,
|
||||
LORA_APPLY_IMMEDIATELY,
|
||||
LORA_APPLY_AT_RUNTIME,
|
||||
LORA_APPLY_MODE_COUNT,
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
bool enabled;
|
||||
int tile_size_x;
|
||||
@ -165,6 +172,7 @@ typedef struct {
|
||||
enum sd_type_t wtype;
|
||||
enum rng_type_t rng_type;
|
||||
enum prediction_t prediction;
|
||||
enum lora_apply_mode_t lora_apply_mode;
|
||||
bool offload_params_to_cpu;
|
||||
bool keep_clip_on_cpu;
|
||||
bool keep_control_net_on_cpu;
|
||||
@ -283,6 +291,8 @@ SD_API const char* sd_prediction_name(enum prediction_t prediction);
|
||||
SD_API enum prediction_t str_to_prediction(const char* str);
|
||||
SD_API const char* sd_preview_name(enum preview_t preview);
|
||||
SD_API enum preview_t str_to_preview(const char* str);
|
||||
SD_API const char* sd_lora_apply_mode_name(enum lora_apply_mode_t mode);
|
||||
SD_API enum lora_apply_mode_t str_to_lora_apply_mode(const char* str);
|
||||
|
||||
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
|
||||
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
|
||||
|
||||
4
unet.hpp
4
unet.hpp
@ -7,7 +7,7 @@
|
||||
|
||||
/*==================================================== UnetModel =====================================================*/
|
||||
|
||||
#define UNET_GRAPH_SIZE 10240
|
||||
#define UNET_GRAPH_SIZE 102400
|
||||
|
||||
class SpatialVideoTransformer : public SpatialTransformer {
|
||||
protected:
|
||||
@ -612,7 +612,7 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, UNET_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(UNET_GRAPH_SIZE);
|
||||
|
||||
if (num_video_frames == -1) {
|
||||
num_video_frames = x->ne[3];
|
||||
|
||||
6
wan.hpp
6
wan.hpp
@ -1133,7 +1133,7 @@ namespace WAN {
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, 10240 * z->ne[2], false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(10240 * z->ne[2]);
|
||||
|
||||
z = to_backend(z);
|
||||
|
||||
@ -1147,7 +1147,7 @@ namespace WAN {
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int64_t i) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, 20480, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(20480);
|
||||
|
||||
ae.clear_cache();
|
||||
|
||||
@ -2142,7 +2142,7 @@ namespace WAN {
|
||||
struct ggml_tensor* time_dim_concat = nullptr,
|
||||
struct ggml_tensor* vace_context = nullptr,
|
||||
float vace_strength = 1.f) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, WAN_GRAPH_SIZE, false);
|
||||
struct ggml_cgraph* gf = new_graph_custom(WAN_GRAPH_SIZE);
|
||||
|
||||
x = to_backend(x);
|
||||
timesteps = to_backend(timesteps);
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user