feat: support applying LoRA at runtime (#969)

This commit is contained in:
leejet 2025-11-13 21:48:44 +08:00 committed by GitHub
parent 59ebdf0bb5
commit 347710f68f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 901 additions and 227 deletions

View File

@ -936,7 +936,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
size_t max_token_idx = 0, size_t max_token_idx = 0,
bool return_pooled = false, bool return_pooled = false,
int clip_skip = -1) { int clip_skip = -1) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx); struct ggml_cgraph* gf = new_graph_custom(2048);
input_ids = to_backend(input_ids); input_ids = to_backend(input_ids);

View File

@ -182,31 +182,21 @@ protected:
int64_t dim_in; int64_t dim_in;
int64_t dim_out; int64_t dim_out;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override {
enum ggml_type wtype = get_type(prefix + "proj.weight", tensor_storage_map, GGML_TYPE_F32);
enum ggml_type bias_wtype = GGML_TYPE_F32;
params["proj.weight"] = ggml_new_tensor_2d(ctx, wtype, dim_in, dim_out * 2);
params["proj.bias"] = ggml_new_tensor_1d(ctx, bias_wtype, dim_out * 2);
}
public: public:
GEGLU(int64_t dim_in, int64_t dim_out) GEGLU(int64_t dim_in, int64_t dim_out)
: dim_in(dim_in), dim_out(dim_out) {} : dim_in(dim_in), dim_out(dim_out) {
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim_in, dim_out * 2));
}
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override { struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) override {
// x: [ne3, ne2, ne1, dim_in] // x: [ne3, ne2, ne1, dim_in]
// return: [ne3, ne2, ne1, dim_out] // return: [ne3, ne2, ne1, dim_out]
struct ggml_tensor* w = params["proj.weight"]; auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
struct ggml_tensor* b = params["proj.bias"];
auto x_w = ggml_view_2d(ctx->ggml_ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], 0); // [dim_out, dim_in] x = proj->forward(ctx, x); // [ne3, ne2, ne1, dim_out*2]
auto x_b = ggml_view_1d(ctx->ggml_ctx, b, b->ne[0] / 2, 0); // [dim_out, dim_in] auto x_vec = ggml_ext_chunk(ctx->ggml_ctx, x, 2, 0);
auto gate_w = ggml_view_2d(ctx->ggml_ctx, w, w->ne[0], w->ne[1] / 2, w->nb[1], w->nb[1] * w->ne[1] / 2); // [dim_out, ] x = x_vec[0]; // [ne3, ne2, ne1, dim_out]
auto gate_b = ggml_view_1d(ctx->ggml_ctx, b, b->ne[0] / 2, b->nb[0] * b->ne[0] / 2); // [dim_out, ] auto gate = x_vec[1]; // [ne3, ne2, ne1, dim_out]
auto x_in = x;
x = ggml_ext_linear(ctx->ggml_ctx, x_in, x_w, x_b); // [ne3, ne2, ne1, dim_out]
auto gate = ggml_ext_linear(ctx->ggml_ctx, x_in, gate_w, gate_b); // [ne3, ne2, ne1, dim_out]
gate = ggml_gelu_inplace(ctx->ggml_ctx, gate); gate = ggml_gelu_inplace(ctx->ggml_ctx, gate);

View File

@ -34,6 +34,7 @@ struct Conditioner {
virtual void free_params_buffer() = 0; virtual void free_params_buffer() = 0;
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0; virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
virtual size_t get_params_buffer_size() = 0; virtual size_t get_params_buffer_size() = 0;
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {}
virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx, virtual std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
int n_threads, int n_threads,
const ConditionerParams& conditioner_params) { const ConditionerParams& conditioner_params) {
@ -108,6 +109,13 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
return buffer_size; return buffer_size;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
text_model->set_weight_adapter(adapter);
if (sd_version_is_sdxl(version)) {
text_model2->set_weight_adapter(adapter);
}
}
bool load_embedding(std::string embd_name, std::string embd_path, std::vector<int32_t>& bpe_tokens) { bool load_embedding(std::string embd_name, std::string embd_path, std::vector<int32_t>& bpe_tokens) {
// the order matters // the order matters
ModelLoader model_loader; ModelLoader model_loader;
@ -764,6 +772,18 @@ struct SD3CLIPEmbedder : public Conditioner {
return buffer_size; return buffer_size;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
if (clip_l) {
clip_l->set_weight_adapter(adapter);
}
if (clip_g) {
clip_g->set_weight_adapter(adapter);
}
if (t5) {
t5->set_weight_adapter(adapter);
}
}
std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text, std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text,
size_t max_length = 0, size_t max_length = 0,
bool padding = false) { bool padding = false) {
@ -1160,6 +1180,15 @@ struct FluxCLIPEmbedder : public Conditioner {
return buffer_size; return buffer_size;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
if (clip_l) {
clip_l->set_weight_adapter(adapter);
}
if (t5) {
t5->set_weight_adapter(adapter);
}
}
std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text, std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text,
size_t max_length = 0, size_t max_length = 0,
bool padding = false) { bool padding = false) {
@ -1400,6 +1429,12 @@ struct T5CLIPEmbedder : public Conditioner {
return buffer_size; return buffer_size;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
if (t5) {
t5->set_weight_adapter(adapter);
}
}
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> tokenize(std::string text, std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0, size_t max_length = 0,
bool padding = false) { bool padding = false) {
@ -1589,6 +1624,12 @@ struct Qwen2_5_VLCLIPEmbedder : public Conditioner {
return buffer_size; return buffer_size;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
if (qwenvl) {
qwenvl->set_weight_adapter(adapter);
}
}
std::tuple<std::vector<int>, std::vector<float>> tokenize(std::string text, std::tuple<std::vector<int>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0, size_t max_length = 0,
size_t system_prompt_length = 0, size_t system_prompt_length = 0,

View File

@ -380,7 +380,7 @@ struct ControlNet : public GGMLRunner {
struct ggml_tensor* timesteps, struct ggml_tensor* timesteps,
struct ggml_tensor* context, struct ggml_tensor* context,
struct ggml_tensor* y = nullptr) { struct ggml_tensor* y = nullptr) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, CONTROL_NET_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(CONTROL_NET_GRAPH_SIZE);
x = to_backend(x); x = to_backend(x);
if (guided_hint_cached) { if (guided_hint_cached) {

View File

@ -35,6 +35,7 @@ struct DiffusionModel {
virtual void free_compute_buffer() = 0; virtual void free_compute_buffer() = 0;
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0; virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
virtual size_t get_params_buffer_size() = 0; virtual size_t get_params_buffer_size() = 0;
virtual void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter){};
virtual int64_t get_adm_in_channels() = 0; virtual int64_t get_adm_in_channels() = 0;
virtual void set_flash_attn_enabled(bool enabled) = 0; virtual void set_flash_attn_enabled(bool enabled) = 0;
}; };
@ -73,6 +74,10 @@ struct UNetModel : public DiffusionModel {
return unet.get_params_buffer_size(); return unet.get_params_buffer_size();
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
unet.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override { int64_t get_adm_in_channels() override {
return unet.unet.adm_in_channels; return unet.unet.adm_in_channels;
} }
@ -130,6 +135,10 @@ struct MMDiTModel : public DiffusionModel {
return mmdit.get_params_buffer_size(); return mmdit.get_params_buffer_size();
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
mmdit.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override { int64_t get_adm_in_channels() override {
return 768 + 1280; return 768 + 1280;
} }
@ -188,6 +197,10 @@ struct FluxModel : public DiffusionModel {
return flux.get_params_buffer_size(); return flux.get_params_buffer_size();
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
flux.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override { int64_t get_adm_in_channels() override {
return 768; return 768;
} }
@ -251,6 +264,10 @@ struct WanModel : public DiffusionModel {
return wan.get_params_buffer_size(); return wan.get_params_buffer_size();
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
wan.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override { int64_t get_adm_in_channels() override {
return 768; return 768;
} }
@ -313,6 +330,10 @@ struct QwenImageModel : public DiffusionModel {
return qwen_image.get_params_buffer_size(); return qwen_image.get_params_buffer_size();
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) override {
qwen_image.set_weight_adapter(adapter);
}
int64_t get_adm_in_channels() override { int64_t get_adm_in_channels() override {
return 768; return 768;
} }

View File

@ -12,38 +12,15 @@ Here's a simple example:
`../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model `../models/marblesh.safetensors` or `../models/marblesh.ckpt` will be applied to the model
# Support matrix # Lora Apply Mode
> CUDA `get_rows` support is defined here: There are two ways to apply LoRA: **immediately** and **at_runtime**. You can specify it using the `--lora-apply-mode` parameter.
> [ggml-org/ggml/src/ggml-cuda/getrows.cu#L156](https://github.com/ggml-org/ggml/blob/7dee1d6a1e7611f238d09be96738388da97c88ed/src/ggml-cuda/getrows.cu#L156)
> Currently only the basic types + Q4/Q5/Q8 are implemented. K-quants are **not** supported.
NOTE: The other backends may have different support. By default, the mode is selected automatically:
* If the model weights contain any quantized parameters, the **at_runtime** mode is used;
* Otherwise, the **immediately** mode is used.
The **immediately** mode may have precision and compatibility issues with quantized parameters, but it usually offers faster inference speed and, in some cases, lower memory usage.
In contrast, the **at_runtime** mode provides better compatibility and higher precision, but inference may be slower and memory usage may be higher in some cases.
| Quant / Type | CUDA | Vulkan |
|--------------|------|--------|
| F32 | ✔️ | ✔️ |
| F16 | ✔️ | ✔️ |
| BF16 | ✔️ | ✔️ |
| I32 | ✔️ | ❌ |
| Q4_0 | ✔️ | ✔️ |
| Q4_1 | ✔️ | ✔️ |
| Q5_0 | ✔️ | ✔️ |
| Q5_1 | ✔️ | ✔️ |
| Q8_0 | ✔️ | ✔️ |
| Q2_K | ❌ | ❌ |
| Q3_K | ❌ | ❌ |
| Q4_K | ❌ | ❌ |
| Q5_K | ❌ | ❌ |
| Q6_K | ❌ | ❌ |
| Q8_K | ❌ | ❌ |
| IQ1_S | ❌ | ✔️ |
| IQ1_M | ❌ | ✔️ |
| IQ2_XXS | ❌ | ✔️ |
| IQ2_XS | ❌ | ✔️ |
| IQ2_S | ❌ | ✔️ |
| IQ3_XXS | ❌ | ✔️ |
| IQ3_S | ❌ | ✔️ |
| IQ4_XS | ❌ | ✔️ |
| IQ4_NL | ❌ | ✔️ |
| MXFP4 | ❌ | ✔️ |

View File

@ -344,7 +344,7 @@ struct ESRGAN : public GGMLRunner {
if (!rrdb_net) if (!rrdb_net)
return nullptr; return nullptr;
constexpr int kGraphNodes = 1 << 16; // 65k constexpr int kGraphNodes = 1 << 16; // 65k
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, kGraphNodes, /*grads*/ false); struct ggml_cgraph* gf = new_graph_custom(kGraphNodes);
x = to_backend(x); x = to_backend(x);
auto runner_ctx = get_context(); auto runner_ctx = get_context();

View File

@ -99,6 +99,12 @@ Options:
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, --sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise) tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
--prediction prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow] --prediction prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]
--lora-apply-mode the way to apply LoRA, one of [auto, immediately, at_runtime], default is auto. In auto mode, if the model weights
contain any quantized parameters, the at_runtime mode will be used; otherwise,
immediately will be used.The immediately mode may have precision and
compatibility issues with quantized parameters, but it usually offers faster inference
speed and, in some cases, lower memory usageThe at_runtime mode, on the other
hand, is exactly the opposite.
--scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default: --scheduler denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default:
discrete discrete
--skip-layers layers to skip for SLG steps (default: [7,8,9]) --skip-layers layers to skip for SLG steps (default: [7,8,9])

View File

@ -138,6 +138,7 @@ struct SDParams {
float flow_shift = INFINITY; float flow_shift = INFINITY;
prediction_t prediction = DEFAULT_PRED; prediction_t prediction = DEFAULT_PRED;
lora_apply_mode_t lora_apply_mode = LORA_APPLY_AUTO;
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f}; sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
bool force_sdxl_vae_conv_scale = false; bool force_sdxl_vae_conv_scale = false;
@ -209,6 +210,7 @@ void print_params(SDParams params) {
printf(" high_noise_sample_params: %s\n", SAFE_STR(high_noise_sample_params_str)); printf(" high_noise_sample_params: %s\n", SAFE_STR(high_noise_sample_params_str));
printf(" moe_boundary: %.3f\n", params.moe_boundary); printf(" moe_boundary: %.3f\n", params.moe_boundary);
printf(" prediction: %s\n", sd_prediction_name(params.prediction)); printf(" prediction: %s\n", sd_prediction_name(params.prediction));
printf(" lora_apply_mode: %s\n", sd_lora_apply_mode_name(params.lora_apply_mode));
printf(" flow_shift: %.2f\n", params.flow_shift); printf(" flow_shift: %.2f\n", params.flow_shift);
printf(" strength(img2img): %.2f\n", params.strength); printf(" strength(img2img): %.2f\n", params.strength);
printf(" rng: %s\n", sd_rng_type_name(params.rng_type)); printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
@ -926,6 +928,20 @@ void parse_args(int argc, const char** argv, SDParams& params) {
return 1; return 1;
}; };
auto on_lora_apply_mode_arg = [&](int argc, const char** argv, int index) {
if (++index >= argc) {
return -1;
}
const char* arg = argv[index];
params.lora_apply_mode = str_to_lora_apply_mode(arg);
if (params.lora_apply_mode == LORA_APPLY_MODE_COUNT) {
fprintf(stderr, "error: invalid lora apply model %s\n",
arg);
return -1;
}
return 1;
};
auto on_sample_method_arg = [&](int argc, const char** argv, int index) { auto on_sample_method_arg = [&](int argc, const char** argv, int index) {
if (++index >= argc) { if (++index >= argc) {
return -1; return -1;
@ -1123,6 +1139,14 @@ void parse_args(int argc, const char** argv, SDParams& params) {
"--prediction", "--prediction",
"prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]", "prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]",
on_prediction_arg}, on_prediction_arg},
{"",
"--lora-apply-mode",
"the way to apply LoRA, one of [auto, immediately, at_runtime], default is auto. "
"In auto mode, if the model weights contain any quantized parameters, the at_runtime mode will be used; otherwise, immediately will be used."
"The immediately mode may have precision and compatibility issues with quantized parameters, "
"but it usually offers faster inference speed and, in some cases, lower memory usage"
"The at_runtime mode, on the other hand, is exactly the opposite.",
on_lora_apply_mode_arg},
{"", {"",
"--scheduler", "--scheduler",
"denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default: discrete", "denoiser sigma scheduler, one of [discrete, karras, exponential, ays, gits, smoothstep, sgm_uniform, simple], default: discrete",
@ -1738,6 +1762,7 @@ int main(int argc, const char* argv[]) {
params.wtype, params.wtype,
params.rng_type, params.rng_type,
params.prediction, params.prediction,
params.lora_apply_mode,
params.offload_params_to_cpu, params.offload_params_to_cpu,
params.clip_on_cpu, params.clip_on_cpu,
params.control_net_cpu, params.control_net_cpu,

View File

@ -1243,7 +1243,7 @@ namespace Flux {
bool increase_ref_index = false, bool increase_ref_index = false,
std::vector<int> skip_layers = {}) { std::vector<int> skip_layers = {}) {
GGML_ASSERT(x->ne[3] == 1); GGML_ASSERT(x->ne[3] == 1);
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(FLUX_GRAPH_SIZE);
struct ggml_tensor* mod_index_arange = nullptr; struct ggml_tensor* mod_index_arange = nullptr;
struct ggml_tensor* dct = nullptr; // for chroma radiance struct ggml_tensor* dct = nullptr; // for chroma radiance

View File

@ -959,13 +959,16 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_linear(struct ggml_context* ctx,
int64_t ne3 = x->ne[3]; int64_t ne3 = x->ne[3];
x = ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2] * x->ne[3]); x = ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2] * x->ne[3]);
x = ggml_mul_mat(ctx, w, x); x = ggml_mul_mat(ctx, w, x);
if (force_prec_f32) {
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
}
x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3); x = ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1] / ne2 / ne3, ne2, ne3);
} else { } else {
x = ggml_mul_mat(ctx, w, x); x = ggml_mul_mat(ctx, w, x);
}
if (force_prec_f32) { if (force_prec_f32) {
ggml_mul_mat_set_prec(x, GGML_PREC_F32); ggml_mul_mat_set_prec(x, GGML_PREC_F32);
} }
}
if (scale != 1.f) { if (scale != 1.f) {
x = ggml_scale(ctx, x, 1.f / scale); x = ggml_scale(ctx, x, 1.f / scale);
} }
@ -1119,6 +1122,18 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_ext_ones(struct ggml_context* ctx,
return ggml_ext_full(ctx, 1.f, ne0, ne1, ne2, ne3); return ggml_ext_full(ctx, 1.f, ne0, ne1, ne2, ne3);
} }
__STATIC_INLINE__ ggml_tensor* ggml_ext_cast_f32(ggml_context* ctx, ggml_tensor* a) {
auto out = ggml_reshape_2d(ctx, a, 1, ggml_nelements(a));
ggml_tensor* one = ggml_ext_ones(ctx, 1, 1, 1, 1); // [1,]
if (ggml_is_transposed(out)) {
out = ggml_mul_mat(ctx, one, out);
} else {
out = ggml_mul_mat(ctx, out, one);
}
out = ggml_reshape(ctx, out, a);
return out;
}
// q: [N * n_head, n_token, d_head] // q: [N * n_head, n_token, d_head]
// k: [N * n_head, n_k, d_head] // k: [N * n_head, n_k, d_head]
// v: [N * n_head, d_head, n_k] // v: [N * n_head, d_head, n_k]
@ -1460,11 +1475,43 @@ __STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) {
#define MAX_PARAMS_TENSOR_NUM 32768 #define MAX_PARAMS_TENSOR_NUM 32768
#define MAX_GRAPH_SIZE 327680 #define MAX_GRAPH_SIZE 327680
struct WeightAdapter {
struct ForwardParams {
enum class op_type_t {
OP_LINEAR,
OP_CONV2D,
} op_type;
struct {
bool force_prec_f32 = false;
float scale = 1.f;
} linear;
struct {
int s0 = 1;
int s1 = 1;
int p0 = 0;
int p1 = 0;
int d0 = 1;
int d1 = 1;
bool direct = false;
float scale = 1.f;
} conv2d;
};
virtual ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) = 0;
virtual ggml_tensor* forward_with_lora(ggml_context* ctx,
ggml_tensor* x,
ggml_tensor* w,
ggml_tensor* b,
const std::string& prefix,
ForwardParams forward_params) = 0;
virtual size_t get_extra_graph_size() = 0;
};
struct GGMLRunnerContext { struct GGMLRunnerContext {
ggml_backend_t backend = nullptr; ggml_backend_t backend = nullptr;
ggml_context* ggml_ctx = nullptr; ggml_context* ggml_ctx = nullptr;
bool flash_attn_enabled = false; bool flash_attn_enabled = false;
bool conv2d_direct_enabled = false; bool conv2d_direct_enabled = false;
std::shared_ptr<WeightAdapter> weight_adapter = nullptr;
}; };
struct GGMLRunner { struct GGMLRunner {
@ -1486,6 +1533,8 @@ protected:
struct ggml_context* compute_ctx = nullptr; struct ggml_context* compute_ctx = nullptr;
struct ggml_gallocr* compute_allocr = nullptr; struct ggml_gallocr* compute_allocr = nullptr;
std::shared_ptr<WeightAdapter> weight_adapter = nullptr;
std::vector<float> one_vec = {1.f}; std::vector<float> one_vec = {1.f};
ggml_tensor* one_tensor = nullptr; ggml_tensor* one_tensor = nullptr;
@ -1565,6 +1614,13 @@ protected:
ggml_build_forward_expand(gf, one_tensor); ggml_build_forward_expand(gf, one_tensor);
} }
struct ggml_cgraph* new_graph_custom(size_t graph_size) {
if (weight_adapter) {
graph_size += weight_adapter->get_extra_graph_size();
}
return ggml_new_graph_custom(compute_ctx, graph_size, false);
}
struct ggml_cgraph* get_compute_graph(get_graph_cb_t get_graph) { struct ggml_cgraph* get_compute_graph(get_graph_cb_t get_graph) {
prepare_build_in_tensor_before(); prepare_build_in_tensor_before();
struct ggml_cgraph* gf = get_graph(); struct ggml_cgraph* gf = get_graph();
@ -1760,6 +1816,7 @@ public:
runner_ctx.backend = runtime_backend; runner_ctx.backend = runtime_backend;
runner_ctx.flash_attn_enabled = flash_attn_enabled; runner_ctx.flash_attn_enabled = flash_attn_enabled;
runner_ctx.conv2d_direct_enabled = conv2d_direct_enabled; runner_ctx.conv2d_direct_enabled = conv2d_direct_enabled;
runner_ctx.weight_adapter = weight_adapter;
return runner_ctx; return runner_ctx;
} }
@ -1891,6 +1948,10 @@ public:
void set_conv2d_direct_enabled(bool enabled) { void set_conv2d_direct_enabled(bool enabled) {
conv2d_direct_enabled = enabled; conv2d_direct_enabled = enabled;
} }
void set_weight_adapter(const std::shared_ptr<WeightAdapter>& adapter) {
weight_adapter = adapter;
}
}; };
class GGMLBlock { class GGMLBlock {
@ -2006,8 +2067,10 @@ protected:
bool force_f32; bool force_f32;
bool force_prec_f32; bool force_prec_f32;
float scale; float scale;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
this->prefix = prefix;
enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32); enum ggml_type wtype = get_type(prefix + "weight", tensor_storage_map, GGML_TYPE_F32);
if (in_features % ggml_blck_size(wtype) != 0 || force_f32) { if (in_features % ggml_blck_size(wtype) != 0 || force_f32) {
wtype = GGML_TYPE_F32; wtype = GGML_TYPE_F32;
@ -2039,6 +2102,13 @@ public:
if (bias) { if (bias) {
b = params["bias"]; b = params["bias"];
} }
if (ctx->weight_adapter) {
WeightAdapter::ForwardParams forward_params;
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_LINEAR;
forward_params.linear.force_prec_f32 = force_prec_f32;
forward_params.linear.scale = scale;
return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params);
}
return ggml_ext_linear(ctx->ggml_ctx, x, w, b, force_prec_f32, scale); return ggml_ext_linear(ctx->ggml_ctx, x, w, b, force_prec_f32, scale);
} }
}; };
@ -2098,8 +2168,10 @@ protected:
std::pair<int, int> dilation; std::pair<int, int> dilation;
bool bias; bool bias;
float scale = 1.f; float scale = 1.f;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
this->prefix = prefix;
enum ggml_type wtype = GGML_TYPE_F16; enum ggml_type wtype = GGML_TYPE_F16;
params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels); params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels);
if (bias) { if (bias) {
@ -2138,6 +2210,19 @@ public:
if (bias) { if (bias) {
b = params["bias"]; b = params["bias"];
} }
if (ctx->weight_adapter) {
WeightAdapter::ForwardParams forward_params;
forward_params.op_type = WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
forward_params.conv2d.s0 = stride.second;
forward_params.conv2d.s1 = stride.first;
forward_params.conv2d.p0 = padding.second;
forward_params.conv2d.p1 = padding.first;
forward_params.conv2d.d0 = dilation.second;
forward_params.conv2d.d1 = dilation.first;
forward_params.conv2d.direct = ctx->conv2d_direct_enabled;
forward_params.conv2d.scale = scale;
return ctx->weight_adapter->forward_with_lora(ctx->ggml_ctx, x, w, b, prefix, forward_params);
}
return ggml_ext_conv_2d(ctx->ggml_ctx, return ggml_ext_conv_2d(ctx->ggml_ctx,
x, x,
w, w,
@ -2209,8 +2294,10 @@ protected:
std::tuple<int, int, int> padding; std::tuple<int, int, int> padding;
std::tuple<int, int, int> dilation; std::tuple<int, int, int> dilation;
bool bias; bool bias;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map, const std::string prefix = "") override {
this->prefix = prefix;
enum ggml_type wtype = GGML_TYPE_F16; enum ggml_type wtype = GGML_TYPE_F16;
params["weight"] = ggml_new_tensor_4d(ctx, params["weight"] = ggml_new_tensor_4d(ctx,
wtype, wtype,
@ -2242,8 +2329,17 @@ public:
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"]; struct ggml_tensor* w = params["weight"];
struct ggml_tensor* b = nullptr; struct ggml_tensor* b = nullptr;
if (ctx->weight_adapter) {
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
if (w->type != GGML_TYPE_F16) {
w = ggml_cast(ctx->ggml_ctx, w, GGML_TYPE_F16);
}
}
if (bias) { if (bias) {
b = params["bias"]; b = params["bias"];
if (ctx->weight_adapter) {
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
}
} }
return ggml_ext_conv_3d(ctx->ggml_ctx, x, w, b, in_channels, return ggml_ext_conv_3d(ctx->ggml_ctx, x, w, b, in_channels,
std::get<2>(stride), std::get<1>(stride), std::get<0>(stride), std::get<2>(stride), std::get<1>(stride), std::get<0>(stride),
@ -2258,8 +2354,10 @@ protected:
float eps; float eps;
bool elementwise_affine; bool elementwise_affine;
bool bias; bool bias;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
this->prefix = prefix;
if (elementwise_affine) { if (elementwise_affine) {
enum ggml_type wtype = GGML_TYPE_F32; enum ggml_type wtype = GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape); params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
@ -2286,8 +2384,14 @@ public:
if (elementwise_affine) { if (elementwise_affine) {
w = params["weight"]; w = params["weight"];
if (ctx->weight_adapter) {
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
}
if (bias) { if (bias) {
b = params["bias"]; b = params["bias"];
if (ctx->weight_adapter) {
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
}
} }
} }
return ggml_ext_layer_norm(ctx->ggml_ctx, x, w, b, eps); return ggml_ext_layer_norm(ctx->ggml_ctx, x, w, b, eps);
@ -2300,8 +2404,10 @@ protected:
int64_t num_channels; int64_t num_channels;
float eps; float eps;
bool affine; bool affine;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
this->prefix = prefix;
if (affine) { if (affine) {
enum ggml_type wtype = GGML_TYPE_F32; enum ggml_type wtype = GGML_TYPE_F32;
enum ggml_type bias_wtype = GGML_TYPE_F32; enum ggml_type bias_wtype = GGML_TYPE_F32;
@ -2326,6 +2432,10 @@ public:
if (affine) { if (affine) {
w = params["weight"]; w = params["weight"];
b = params["bias"]; b = params["bias"];
if (ctx->weight_adapter) {
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
b = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, b, prefix + "bias");
}
} }
return ggml_ext_group_norm(ctx->ggml_ctx, x, w, b, num_groups); return ggml_ext_group_norm(ctx->ggml_ctx, x, w, b, num_groups);
} }
@ -2341,8 +2451,10 @@ class RMSNorm : public UnaryBlock {
protected: protected:
int64_t hidden_size; int64_t hidden_size;
float eps; float eps;
std::string prefix;
void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override { void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, std::string prefix = "") override {
this->prefix = prefix;
enum ggml_type wtype = GGML_TYPE_F32; enum ggml_type wtype = GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size); params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
} }
@ -2355,6 +2467,9 @@ public:
struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) { struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"]; struct ggml_tensor* w = params["weight"];
if (ctx->weight_adapter) {
w = ctx->weight_adapter->patch_weight(ctx->ggml_ctx, w, prefix + "weight");
}
x = ggml_rms_norm(ctx->ggml_ctx, x, eps); x = ggml_rms_norm(ctx->ggml_ctx, x, eps);
x = ggml_mul_inplace(ctx->ggml_ctx, x, w); x = ggml_mul_inplace(ctx->ggml_ctx, x, w);
return x; return x;

483
lora.hpp
View File

@ -7,22 +7,25 @@
#define LORA_GRAPH_BASE_SIZE 10240 #define LORA_GRAPH_BASE_SIZE 10240
struct LoraModel : public GGMLRunner { struct LoraModel : public GGMLRunner {
std::string lora_id;
float multiplier = 1.0f; float multiplier = 1.0f;
std::map<std::string, struct ggml_tensor*> lora_tensors; std::unordered_map<std::string, struct ggml_tensor*> lora_tensors;
std::map<ggml_tensor*, ggml_tensor*> original_tensor_to_final_tensor; std::map<ggml_tensor*, ggml_tensor*> original_tensor_to_final_tensor;
std::set<std::string> applied_lora_tensors;
std::string file_path; std::string file_path;
ModelLoader model_loader; ModelLoader model_loader;
bool load_failed = false; bool load_failed = false;
bool applied = false; bool applied = false;
bool tensor_preprocessed = false; bool tensor_preprocessed = false;
std::vector<int> zero_index_vec = {0};
ggml_tensor* zero_index = nullptr;
LoraModel(ggml_backend_t backend, typedef std::function<bool(const std::string&)> filter_t;
LoraModel(const std::string& lora_id,
ggml_backend_t backend,
const std::string& file_path = "", const std::string& file_path = "",
std::string prefix = "", std::string prefix = "",
SDVersion version = VERSION_COUNT) SDVersion version = VERSION_COUNT)
: file_path(file_path), GGMLRunner(backend, false) { : lora_id(lora_id), file_path(file_path), GGMLRunner(backend, false) {
prefix = "lora." + prefix; prefix = "lora." + prefix;
if (!model_loader.init_from_file_and_convert_name(file_path, prefix, version)) { if (!model_loader.init_from_file_and_convert_name(file_path, prefix, version)) {
load_failed = true; load_failed = true;
@ -33,7 +36,7 @@ struct LoraModel : public GGMLRunner {
return "lora"; return "lora";
} }
bool load_from_file(bool filter_tensor, int n_threads) { bool load_from_file(int n_threads, filter_t filter = nullptr) {
LOG_INFO("loading LoRA from '%s'", file_path.c_str()); LOG_INFO("loading LoRA from '%s'", file_path.c_str());
if (load_failed) { if (load_failed) {
@ -48,7 +51,7 @@ struct LoraModel : public GGMLRunner {
if (dry_run) { if (dry_run) {
const std::string& name = tensor_storage.name; const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "lora.model")) { if (filter && !filter(name)) {
return true; return true;
} }
@ -68,6 +71,10 @@ struct LoraModel : public GGMLRunner {
model_loader.load_tensors(on_new_tensor_cb, n_threads); model_loader.load_tensors(on_new_tensor_cb, n_threads);
if (tensors_to_create.empty()) {
return true;
}
for (const auto& pair : tensors_to_create) { for (const auto& pair : tensors_to_create) {
const auto& name = pair.first; const auto& name = pair.first;
const auto& ts = pair.second; const auto& ts = pair.second;
@ -87,14 +94,6 @@ struct LoraModel : public GGMLRunner {
return true; return true;
} }
ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) {
auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a));
out = ggml_get_rows(ctx, out, zero_index);
out = ggml_reshape(ctx, out, a);
// auto out = ggml_cast(ctx, a, GGML_TYPE_F32);
return out;
}
void preprocess_lora_tensors(const std::map<std::string, ggml_tensor*>& model_tensors) { void preprocess_lora_tensors(const std::map<std::string, ggml_tensor*>& model_tensors) {
if (tensor_preprocessed) { if (tensor_preprocessed) {
return; return;
@ -102,7 +101,7 @@ struct LoraModel : public GGMLRunner {
tensor_preprocessed = true; tensor_preprocessed = true;
// I really hate these hardcoded processes. // I really hate these hardcoded processes.
if (model_tensors.find("cond_stage_model.1.transformer.text_model.encoder.layers.0.self_attn.in_proj.weight") != model_tensors.end()) { if (model_tensors.find("cond_stage_model.1.transformer.text_model.encoder.layers.0.self_attn.in_proj.weight") != model_tensors.end()) {
std::map<std::string, ggml_tensor*> new_lora_tensors; std::unordered_map<std::string, ggml_tensor*> new_lora_tensors;
for (auto& [old_name, tensor] : lora_tensors) { for (auto& [old_name, tensor] : lora_tensors) {
std::string new_name = old_name; std::string new_name = old_name;
@ -130,7 +129,7 @@ struct LoraModel : public GGMLRunner {
} }
} }
ggml_tensor* get_lora_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) { ggml_tensor* get_lora_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
ggml_tensor* updown = nullptr; ggml_tensor* updown = nullptr;
int index = 0; int index = 0;
while (true) { while (true) {
@ -153,17 +152,17 @@ struct LoraModel : public GGMLRunner {
auto iter = lora_tensors.find(lora_up_name); auto iter = lora_tensors.find(lora_up_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lora_up = to_f32(compute_ctx, iter->second); lora_up = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(lora_mid_name); iter = lora_tensors.find(lora_mid_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lora_mid = to_f32(compute_ctx, iter->second); lora_mid = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(lora_down_name); iter = lora_tensors.find(lora_down_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lora_down = to_f32(compute_ctx, iter->second); lora_down = ggml_ext_cast_f32(ctx, iter->second);
} }
if (lora_up == nullptr || lora_down == nullptr) { if (lora_up == nullptr || lora_down == nullptr) {
@ -195,32 +194,61 @@ struct LoraModel : public GGMLRunner {
} }
scale_value *= multiplier; scale_value *= multiplier;
auto curr_updown = ggml_ext_merge_lora(compute_ctx, lora_down, lora_up, lora_mid); auto curr_updown = ggml_ext_merge_lora(ctx, lora_down, lora_up, lora_mid);
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
if (updown == nullptr) { if (updown == nullptr) {
updown = curr_updown; updown = curr_updown;
} else { } else {
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
} }
index++; index++;
} }
// diff
if (updown == nullptr) {
std::string lora_diff_name = "lora." + model_tensor_name + ".diff";
if (lora_tensors.find(lora_diff_name) != lora_tensors.end()) {
updown = to_f32(compute_ctx, lora_tensors[lora_diff_name]);
applied_lora_tensors.insert(lora_diff_name);
}
}
return updown; return updown;
} }
ggml_tensor* get_loha_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) { ggml_tensor* get_raw_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
ggml_tensor* updown = nullptr;
int index = 0;
while (true) {
std::string key;
if (index == 0) {
key = model_tensor_name;
} else {
key = model_tensor_name + "." + std::to_string(index);
}
std::string diff_name = "lora." + key + ".diff";
ggml_tensor* curr_updown = nullptr;
auto iter = lora_tensors.find(diff_name);
if (iter != lora_tensors.end()) {
curr_updown = ggml_ext_cast_f32(ctx, iter->second);
} else {
break;
}
applied_lora_tensors.insert(diff_name);
float scale_value = 1.0f;
scale_value *= multiplier;
curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
if (updown == nullptr) {
updown = curr_updown;
} else {
updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
}
index++;
}
return updown;
}
ggml_tensor* get_loha_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
ggml_tensor* updown = nullptr; ggml_tensor* updown = nullptr;
int index = 0; int index = 0;
while (true) { while (true) {
@ -248,34 +276,34 @@ struct LoraModel : public GGMLRunner {
auto iter = lora_tensors.find(hada_1_down_name); auto iter = lora_tensors.find(hada_1_down_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_1_down = to_f32(compute_ctx, iter->second); hada_1_down = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(hada_1_up_name); iter = lora_tensors.find(hada_1_up_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_1_up = to_f32(compute_ctx, iter->second); hada_1_up = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(hada_1_mid_name); iter = lora_tensors.find(hada_1_mid_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_1_mid = to_f32(compute_ctx, iter->second); hada_1_mid = ggml_ext_cast_f32(ctx, iter->second);
hada_1_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_1_up)); hada_1_up = ggml_cont(ctx, ggml_transpose(ctx, hada_1_up));
} }
iter = lora_tensors.find(hada_2_down_name); iter = lora_tensors.find(hada_2_down_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_2_down = to_f32(compute_ctx, iter->second); hada_2_down = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(hada_2_up_name); iter = lora_tensors.find(hada_2_up_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_2_up = to_f32(compute_ctx, iter->second); hada_2_up = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(hada_2_mid_name); iter = lora_tensors.find(hada_2_mid_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
hada_2_mid = to_f32(compute_ctx, iter->second); hada_2_mid = ggml_ext_cast_f32(ctx, iter->second);
hada_2_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_2_up)); hada_2_up = ggml_cont(ctx, ggml_transpose(ctx, hada_2_up));
} }
if (hada_1_up == nullptr || hada_1_down == nullptr || hada_2_up == nullptr || hada_2_down == nullptr) { if (hada_1_up == nullptr || hada_1_down == nullptr || hada_2_up == nullptr || hada_2_down == nullptr) {
@ -309,21 +337,21 @@ struct LoraModel : public GGMLRunner {
} }
scale_value *= multiplier; scale_value *= multiplier;
struct ggml_tensor* updown_1 = ggml_ext_merge_lora(compute_ctx, hada_1_down, hada_1_up, hada_1_mid); struct ggml_tensor* updown_1 = ggml_ext_merge_lora(ctx, hada_1_down, hada_1_up, hada_1_mid);
struct ggml_tensor* updown_2 = ggml_ext_merge_lora(compute_ctx, hada_2_down, hada_2_up, hada_2_mid); struct ggml_tensor* updown_2 = ggml_ext_merge_lora(ctx, hada_2_down, hada_2_up, hada_2_mid);
auto curr_updown = ggml_mul_inplace(compute_ctx, updown_1, updown_2); auto curr_updown = ggml_mul_inplace(ctx, updown_1, updown_2);
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
if (updown == nullptr) { if (updown == nullptr) {
updown = curr_updown; updown = curr_updown;
} else { } else {
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
} }
index++; index++;
} }
return updown; return updown;
} }
ggml_tensor* get_lokr_diff(const std::string& model_tensor_name, std::set<std::string>& applied_lora_tensors) { ggml_tensor* get_lokr_weight_diff(const std::string& model_tensor_name, ggml_context* ctx) {
ggml_tensor* updown = nullptr; ggml_tensor* updown = nullptr;
int index = 0; int index = 0;
while (true) { while (true) {
@ -350,24 +378,24 @@ struct LoraModel : public GGMLRunner {
auto iter = lora_tensors.find(lokr_w1_name); auto iter = lora_tensors.find(lokr_w1_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w1 = to_f32(compute_ctx, iter->second); lokr_w1 = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(lokr_w2_name); iter = lora_tensors.find(lokr_w2_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w2 = to_f32(compute_ctx, iter->second); lokr_w2 = ggml_ext_cast_f32(ctx, iter->second);
} }
int64_t rank = 1; int64_t rank = 1;
if (lokr_w1 == nullptr) { if (lokr_w1 == nullptr) {
iter = lora_tensors.find(lokr_w1_a_name); iter = lora_tensors.find(lokr_w1_a_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w1_a = to_f32(compute_ctx, iter->second); lokr_w1_a = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(lokr_w1_b_name); iter = lora_tensors.find(lokr_w1_b_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w1_b = to_f32(compute_ctx, iter->second); lokr_w1_b = ggml_ext_cast_f32(ctx, iter->second);
} }
if (lokr_w1_a == nullptr || lokr_w1_b == nullptr) { if (lokr_w1_a == nullptr || lokr_w1_b == nullptr) {
@ -376,18 +404,18 @@ struct LoraModel : public GGMLRunner {
rank = lokr_w1_b->ne[ggml_n_dims(lokr_w1_b) - 1]; rank = lokr_w1_b->ne[ggml_n_dims(lokr_w1_b) - 1];
lokr_w1 = ggml_ext_merge_lora(compute_ctx, lokr_w1_b, lokr_w1_a); lokr_w1 = ggml_ext_merge_lora(ctx, lokr_w1_b, lokr_w1_a);
} }
if (lokr_w2 == nullptr) { if (lokr_w2 == nullptr) {
iter = lora_tensors.find(lokr_w2_a_name); iter = lora_tensors.find(lokr_w2_a_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w2_a = to_f32(compute_ctx, iter->second); lokr_w2_a = ggml_ext_cast_f32(ctx, iter->second);
} }
iter = lora_tensors.find(lokr_w2_b_name); iter = lora_tensors.find(lokr_w2_b_name);
if (iter != lora_tensors.end()) { if (iter != lora_tensors.end()) {
lokr_w2_b = to_f32(compute_ctx, iter->second); lokr_w2_b = ggml_ext_cast_f32(ctx, iter->second);
} }
if (lokr_w2_a == nullptr || lokr_w2_b == nullptr) { if (lokr_w2_a == nullptr || lokr_w2_b == nullptr) {
@ -396,7 +424,7 @@ struct LoraModel : public GGMLRunner {
rank = lokr_w2_b->ne[ggml_n_dims(lokr_w2_b) - 1]; rank = lokr_w2_b->ne[ggml_n_dims(lokr_w2_b) - 1];
lokr_w2 = ggml_ext_merge_lora(compute_ctx, lokr_w2_b, lokr_w2_a); lokr_w2 = ggml_ext_merge_lora(ctx, lokr_w2_b, lokr_w2_a);
} }
if (!lokr_w1_a) { if (!lokr_w1_a) {
@ -427,49 +455,208 @@ struct LoraModel : public GGMLRunner {
scale_value *= multiplier; scale_value *= multiplier;
auto curr_updown = ggml_ext_kronecker(compute_ctx, lokr_w1, lokr_w2); auto curr_updown = ggml_ext_kronecker(ctx, lokr_w1, lokr_w2);
curr_updown = ggml_scale_inplace(compute_ctx, curr_updown, scale_value); curr_updown = ggml_scale_inplace(ctx, curr_updown, scale_value);
if (updown == nullptr) { if (updown == nullptr) {
updown = curr_updown; updown = curr_updown;
} else { } else {
updown = ggml_concat(compute_ctx, updown, curr_updown, ggml_n_dims(updown) - 1); updown = ggml_concat(ctx, updown, curr_updown, ggml_n_dims(updown) - 1);
} }
index++; index++;
} }
return updown; return updown;
} }
ggml_tensor* get_weight_diff(const std::string& model_tensor_name, ggml_context* ctx, ggml_tensor* model_tensor, bool with_lora = true) {
// lora
ggml_tensor* diff = nullptr;
if (with_lora) {
diff = get_lora_weight_diff(model_tensor_name, ctx);
}
// diff
if (diff == nullptr) {
diff = get_raw_weight_diff(model_tensor_name, ctx);
}
// loha
if (diff == nullptr) {
diff = get_loha_weight_diff(model_tensor_name, ctx);
}
// lokr
if (diff == nullptr) {
diff = get_lokr_weight_diff(model_tensor_name, ctx);
}
if (diff != nullptr) {
if (ggml_nelements(diff) < ggml_nelements(model_tensor)) {
if (ggml_n_dims(diff) == 2 && ggml_n_dims(model_tensor) == 2 && diff->ne[0] == model_tensor->ne[0]) {
LOG_WARN("pad for %s", model_tensor_name.c_str());
auto pad_tensor = ggml_ext_zeros(ctx, diff->ne[0], model_tensor->ne[1] - diff->ne[1], 1, 1);
diff = ggml_concat(ctx, diff, pad_tensor, 1);
}
}
GGML_ASSERT(ggml_nelements(diff) == ggml_nelements(model_tensor));
diff = ggml_reshape(ctx, diff, model_tensor);
}
return diff;
}
ggml_tensor* get_out_diff(ggml_context* ctx,
ggml_tensor* x,
WeightAdapter::ForwardParams forward_params,
const std::string& model_tensor_name) {
ggml_tensor* out_diff = nullptr;
int index = 0;
while (true) {
std::string key;
if (index == 0) {
key = model_tensor_name;
} else {
key = model_tensor_name + "." + std::to_string(index);
}
std::string lora_down_name = "lora." + key + ".lora_down";
std::string lora_up_name = "lora." + key + ".lora_up";
std::string lora_mid_name = "lora." + key + ".lora_mid";
std::string scale_name = "lora." + key + ".scale";
std::string alpha_name = "lora." + key + ".alpha";
ggml_tensor* lora_up = nullptr;
ggml_tensor* lora_mid = nullptr;
ggml_tensor* lora_down = nullptr;
bool is_conv2d = forward_params.op_type == WeightAdapter::ForwardParams::op_type_t::OP_CONV2D;
auto iter = lora_tensors.find(lora_up_name);
if (iter != lora_tensors.end()) {
lora_up = iter->second;
if (is_conv2d && lora_up->type != GGML_TYPE_F16) {
lora_up = ggml_cast(ctx, lora_up, GGML_TYPE_F16);
}
}
iter = lora_tensors.find(lora_mid_name);
if (iter != lora_tensors.end()) {
lora_mid = iter->second;
if (is_conv2d && lora_mid->type != GGML_TYPE_F16) {
lora_mid = ggml_cast(ctx, lora_mid, GGML_TYPE_F16);
}
}
iter = lora_tensors.find(lora_down_name);
if (iter != lora_tensors.end()) {
lora_down = iter->second;
if (is_conv2d && lora_down->type != GGML_TYPE_F16) {
lora_down = ggml_cast(ctx, lora_down, GGML_TYPE_F16);
}
}
if (lora_up == nullptr || lora_down == nullptr) {
break;
}
applied_lora_tensors.insert(lora_up_name);
applied_lora_tensors.insert(lora_down_name);
if (lora_mid) {
applied_lora_tensors.insert(lora_mid_name);
}
float scale_value = 1.0f;
int64_t rank = lora_down->ne[ggml_n_dims(lora_down) - 1];
iter = lora_tensors.find(scale_name);
if (iter != lora_tensors.end()) {
scale_value = ggml_ext_backend_tensor_get_f32(iter->second);
applied_lora_tensors.insert(scale_name);
} else {
iter = lora_tensors.find(alpha_name);
if (iter != lora_tensors.end()) {
float alpha = ggml_ext_backend_tensor_get_f32(iter->second);
scale_value = alpha / rank;
// LOG_DEBUG("rank %s %ld %.2f %.2f", alpha_name.c_str(), rank, alpha, scale_value);
applied_lora_tensors.insert(alpha_name);
}
}
scale_value *= multiplier;
ggml_tensor* lx;
if (!is_conv2d) {
lx = ggml_ext_linear(ctx, x, lora_down, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
if (lora_mid) {
lx = ggml_ext_linear(ctx, lx, lora_mid, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
}
lx = ggml_ext_linear(ctx, lx, lora_up, nullptr, forward_params.linear.force_prec_f32, forward_params.linear.scale);
} else { // OP_CONV2D
lx = ggml_ext_conv_2d(ctx,
x,
lora_down,
nullptr,
forward_params.conv2d.s0,
forward_params.conv2d.s1,
forward_params.conv2d.p0,
forward_params.conv2d.p1,
forward_params.conv2d.d0,
forward_params.conv2d.d1,
forward_params.conv2d.direct,
forward_params.conv2d.scale);
if (lora_mid) {
lx = ggml_ext_conv_2d(ctx,
lx,
lora_mid,
nullptr,
1,
1,
0,
0,
1,
1,
forward_params.conv2d.direct,
forward_params.conv2d.scale);
}
lx = ggml_ext_conv_2d(ctx,
lx,
lora_up,
nullptr,
1,
1,
0,
0,
1,
1,
forward_params.conv2d.direct,
forward_params.conv2d.scale);
}
auto curr_out_diff = ggml_scale_inplace(ctx, lx, scale_value);
if (out_diff == nullptr) {
out_diff = curr_out_diff;
} else {
out_diff = ggml_concat(ctx, out_diff, curr_out_diff, ggml_n_dims(out_diff) - 1);
}
index++;
}
return out_diff;
}
struct ggml_cgraph* build_lora_graph(const std::map<std::string, ggml_tensor*>& model_tensors, SDVersion version) { struct ggml_cgraph* build_lora_graph(const std::map<std::string, ggml_tensor*>& model_tensors, SDVersion version) {
size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10; size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10;
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false); struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false);
zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1);
set_backend_tensor_data(zero_index, zero_index_vec.data());
ggml_build_forward_expand(gf, zero_index);
preprocess_lora_tensors(model_tensors); preprocess_lora_tensors(model_tensors);
original_tensor_to_final_tensor.clear(); original_tensor_to_final_tensor.clear();
applied_lora_tensors.clear();
std::set<std::string> applied_lora_tensors;
for (auto it : model_tensors) { for (auto it : model_tensors) {
std::string model_tensor_name = it.first; std::string model_tensor_name = it.first;
ggml_tensor* model_tensor = it.second; ggml_tensor* model_tensor = it.second;
// lora // lora
ggml_tensor* updown = get_lora_diff(model_tensor_name, applied_lora_tensors); ggml_tensor* diff = get_weight_diff(model_tensor_name, compute_ctx, model_tensor);
// loha if (diff == nullptr) {
if (updown == nullptr) {
updown = get_loha_diff(model_tensor_name, applied_lora_tensors);
}
// lokr
if (updown == nullptr) {
updown = get_lokr_diff(model_tensor_name, applied_lora_tensors);
}
if (updown == nullptr) {
continue; continue;
} }
@ -479,53 +666,19 @@ struct LoraModel : public GGMLRunner {
set_backend_tensor_data(model_tensor, original_tensor->data); set_backend_tensor_data(model_tensor, original_tensor->data);
} }
if (ggml_nelements(updown) < ggml_nelements(model_tensor)) {
if (ggml_n_dims(updown) == 2 && ggml_n_dims(model_tensor) == 2 && updown->ne[0] == model_tensor->ne[0]) {
LOG_WARN("pad for %s", model_tensor_name.c_str());
auto pad_tensor = ggml_ext_zeros(compute_ctx, updown->ne[0], model_tensor->ne[1] - updown->ne[1], 1, 1);
updown = ggml_concat(compute_ctx, updown, pad_tensor, 1);
}
}
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(model_tensor));
updown = ggml_reshape(compute_ctx, updown, model_tensor);
ggml_tensor* final_tensor; ggml_tensor* final_tensor;
if (model_tensor->type != GGML_TYPE_F32 && model_tensor->type != GGML_TYPE_F16) { if (model_tensor->type != GGML_TYPE_F32 && model_tensor->type != GGML_TYPE_F16) {
final_tensor = to_f32(compute_ctx, model_tensor); final_tensor = ggml_ext_cast_f32(compute_ctx, model_tensor);
final_tensor = ggml_add_inplace(compute_ctx, final_tensor, updown); final_tensor = ggml_add_inplace(compute_ctx, final_tensor, diff);
final_tensor = ggml_cpy(compute_ctx, final_tensor, model_tensor); final_tensor = ggml_cpy(compute_ctx, final_tensor, model_tensor);
} else { } else {
final_tensor = ggml_add_inplace(compute_ctx, model_tensor, updown); final_tensor = ggml_add_inplace(compute_ctx, model_tensor, diff);
} }
ggml_build_forward_expand(gf, final_tensor); ggml_build_forward_expand(gf, final_tensor);
if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) { if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) {
original_tensor_to_final_tensor[original_tensor] = final_tensor; original_tensor_to_final_tensor[original_tensor] = final_tensor;
} }
} }
size_t total_lora_tensors_count = 0;
size_t applied_lora_tensors_count = 0;
for (auto& kv : lora_tensors) {
total_lora_tensors_count++;
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
print_ggml_tensor(kv.second, true);
// exit(0);
} else {
applied_lora_tensors_count++;
}
}
/* Don't worry if this message shows up twice in the logs per LoRA,
* this function is called once to calculate the required buffer size
* and then again to actually generate a graph to be used */
if (applied_lora_tensors_count != total_lora_tensors_count) {
LOG_WARN("Only (%lu / %lu) LoRA tensors will be applied",
applied_lora_tensors_count, total_lora_tensors_count);
} else {
LOG_DEBUG("(%lu / %lu) LoRA tensors will be applied",
applied_lora_tensors_count, total_lora_tensors_count);
}
return gf; return gf;
} }
@ -534,6 +687,7 @@ struct LoraModel : public GGMLRunner {
return build_lora_graph(model_tensors, version); return build_lora_graph(model_tensors, version);
}; };
GGMLRunner::compute(get_graph, n_threads, false); GGMLRunner::compute(get_graph, n_threads, false);
stat();
for (auto item : original_tensor_to_final_tensor) { for (auto item : original_tensor_to_final_tensor) {
ggml_tensor* original_tensor = item.first; ggml_tensor* original_tensor = item.first;
ggml_tensor* final_tensor = item.second; ggml_tensor* final_tensor = item.second;
@ -543,6 +697,107 @@ struct LoraModel : public GGMLRunner {
original_tensor_to_final_tensor.clear(); original_tensor_to_final_tensor.clear();
GGMLRunner::free_compute_buffer(); GGMLRunner::free_compute_buffer();
} }
void stat(bool at_runntime = false) {
size_t total_lora_tensors_count = 0;
size_t applied_lora_tensors_count = 0;
for (auto& kv : lora_tensors) {
total_lora_tensors_count++;
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
if (!at_runntime) {
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
print_ggml_tensor(kv.second, true);
}
} else {
applied_lora_tensors_count++;
}
}
/* Don't worry if this message shows up twice in the logs per LoRA,
* this function is called once to calculate the required buffer size
* and then again to actually generate a graph to be used */
if (!at_runntime && applied_lora_tensors_count != total_lora_tensors_count) {
LOG_WARN("Only (%lu / %lu) LoRA tensors have been applied, lora_file_path = %s",
applied_lora_tensors_count, total_lora_tensors_count, file_path.c_str());
} else {
LOG_INFO("(%lu / %lu) LoRA tensors have been applied, lora_file_path = %s",
applied_lora_tensors_count, total_lora_tensors_count, file_path.c_str());
}
}
};
struct MultiLoraAdapter : public WeightAdapter {
protected:
std::vector<std::shared_ptr<LoraModel>> lora_models;
public:
explicit MultiLoraAdapter(const std::vector<std::shared_ptr<LoraModel>>& lora_models)
: lora_models(lora_models) {
}
ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name, bool with_lora) {
for (auto& lora_model : lora_models) {
ggml_tensor* diff = lora_model->get_weight_diff(weight_name, ctx, weight, with_lora);
if (diff == nullptr) {
continue;
}
if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
weight = ggml_ext_cast_f32(ctx, weight);
}
weight = ggml_add(ctx, weight, diff);
}
return weight;
}
ggml_tensor* patch_weight(ggml_context* ctx, ggml_tensor* weight, const std::string& weight_name) override {
return patch_weight(ctx, weight, weight_name, true);
}
ggml_tensor* forward_with_lora(ggml_context* ctx,
ggml_tensor* x,
ggml_tensor* w,
ggml_tensor* b,
const std::string& prefix,
WeightAdapter::ForwardParams forward_params) override {
w = patch_weight(ctx, w, prefix + "weight", false);
if (b) {
b = patch_weight(ctx, b, prefix + "bias", false);
}
ggml_tensor* out;
if (forward_params.op_type == ForwardParams::op_type_t::OP_LINEAR) {
out = ggml_ext_linear(ctx, x, w, b, forward_params.linear.force_prec_f32, forward_params.linear.scale);
} else { // OP_CONV2D
out = ggml_ext_conv_2d(ctx,
x,
w,
b,
forward_params.conv2d.s0,
forward_params.conv2d.s1,
forward_params.conv2d.p0,
forward_params.conv2d.p1,
forward_params.conv2d.d0,
forward_params.conv2d.d1,
forward_params.conv2d.direct,
forward_params.conv2d.scale);
}
for (auto& lora_model : lora_models) {
ggml_tensor* out_diff = lora_model->get_out_diff(ctx, x, forward_params, prefix + "weight");
if (out_diff == nullptr) {
continue;
}
out = ggml_add_inplace(ctx, out, out_diff);
}
return out;
}
size_t get_extra_graph_size() override {
size_t lora_tensor_num = 0;
for (auto& lora_model : lora_models) {
lora_tensor_num += lora_model->lora_tensors.size();
}
return LORA_GRAPH_BASE_SIZE + lora_tensor_num * 10;
}
}; };
#endif // __LORA_HPP__ #endif // __LORA_HPP__

View File

@ -870,7 +870,7 @@ struct MMDiTRunner : public GGMLRunner {
struct ggml_tensor* context, struct ggml_tensor* context,
struct ggml_tensor* y, struct ggml_tensor* y,
std::vector<int> skip_layers = std::vector<int>()) { std::vector<int> skip_layers = std::vector<int>()) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, MMDIT_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(MMDIT_GRAPH_SIZE);
x = to_backend(x); x = to_backend(x);
context = to_backend(context); context = to_backend(context);

View File

@ -855,6 +855,49 @@ std::string convert_sep_to_dot(std::string name) {
return name; return name;
} }
std::vector<std::string> cond_stage_model_prefix_vec = {
"cond_stage_model.1.",
"cond_stage_model.",
"conditioner.embedders.",
"text_encoders.",
};
std::vector<std::string> diffuison_model_prefix_vec = {
"model.diffusion_model.",
};
std::vector<std::string> first_stage_model_prefix_vec = {
"first_stage_model.",
"vae.",
};
bool is_cond_stage_model_name(const std::string& name) {
for (const auto& prefix : cond_stage_model_prefix_vec) {
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
return true;
}
}
return false;
}
bool is_diffusion_model_name(const std::string& name) {
for (const auto& prefix : diffuison_model_prefix_vec) {
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
return true;
}
}
return false;
}
bool is_first_stage_model_name(const std::string& name) {
for (const auto& prefix : first_stage_model_prefix_vec) {
if (starts_with(name, prefix) || starts_with(name, "lora." + prefix)) {
return true;
}
}
return false;
}
std::string convert_tensor_name(std::string name, SDVersion version) { std::string convert_tensor_name(std::string name, SDVersion version) {
bool is_lora = false; bool is_lora = false;
bool is_lycoris_underline = false; bool is_lycoris_underline = false;
@ -956,9 +999,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
// diffusion model // diffusion model
{ {
std::vector<std::string> diffuison_model_prefix_vec = {
"model.diffusion_model.",
};
for (const auto& prefix : diffuison_model_prefix_vec) { for (const auto& prefix : diffuison_model_prefix_vec) {
if (starts_with(name, prefix)) { if (starts_with(name, prefix)) {
name = convert_diffusion_model_name(name.substr(prefix.size()), prefix, version); name = convert_diffusion_model_name(name.substr(prefix.size()), prefix, version);
@ -970,12 +1010,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
// cond_stage_model // cond_stage_model
{ {
std::vector<std::string> cond_stage_model_prefix_vec = {
"cond_stage_model.1.",
"cond_stage_model.",
"conditioner.embedders.",
"text_encoders.",
};
for (const auto& prefix : cond_stage_model_prefix_vec) { for (const auto& prefix : cond_stage_model_prefix_vec) {
if (starts_with(name, prefix)) { if (starts_with(name, prefix)) {
name = convert_cond_stage_model_name(name.substr(prefix.size()), prefix); name = convert_cond_stage_model_name(name.substr(prefix.size()), prefix);
@ -987,10 +1021,6 @@ std::string convert_tensor_name(std::string name, SDVersion version) {
// first_stage_model // first_stage_model
{ {
std::vector<std::string> first_stage_model_prefix_vec = {
"first_stage_model.",
"vae.",
};
for (const auto& prefix : first_stage_model_prefix_vec) { for (const auto& prefix : first_stage_model_prefix_vec) {
if (starts_with(name, prefix)) { if (starts_with(name, prefix)) {
name = convert_first_stage_model_name(name.substr(prefix.size()), prefix); name = convert_first_stage_model_name(name.substr(prefix.size()), prefix);

View File

@ -5,6 +5,10 @@
#include "model.h" #include "model.h"
bool is_cond_stage_model_name(const std::string& name);
bool is_diffusion_model_name(const std::string& name);
bool is_first_stage_model_name(const std::string& name);
std::string convert_tensor_name(std::string name, SDVersion version); std::string convert_tensor_name(std::string name, SDVersion version);
#endif // __NAME_CONVERSTION_H__ #endif // __NAME_CONVERSTION_H__

View File

@ -543,7 +543,7 @@ namespace Qwen {
std::vector<ggml_tensor*> ref_latents = {}, std::vector<ggml_tensor*> ref_latents = {},
bool increase_ref_index = false) { bool increase_ref_index = false) {
GGML_ASSERT(x->ne[3] == 1); GGML_ASSERT(x->ne[3] == 1);
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWEN_IMAGE_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(QWEN_IMAGE_GRAPH_SIZE);
x = to_backend(x); x = to_backend(x);
context = to_backend(context); context = to_backend(context);

View File

@ -1049,7 +1049,7 @@ namespace Qwen {
} }
struct ggml_cgraph* build_encode_image_graph(struct ggml_tensor* image) { struct ggml_cgraph* build_encode_image_graph(struct ggml_tensor* image) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, QWENVL_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(QWENVL_GRAPH_SIZE);
GGML_ASSERT(image->ne[1] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0); GGML_ASSERT(image->ne[1] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);
GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0); GGML_ASSERT(image->ne[0] % (params.vision.patch_size * params.vision.spatial_merge_size) == 0);

View File

@ -17,6 +17,7 @@
#include "vae.hpp" #include "vae.hpp"
#include "latent-preview.h" #include "latent-preview.h"
#include "name_conversion.h"
const char* model_version_to_str[] = { const char* model_version_to_str[] = {
"SD 1.x", "SD 1.x",
@ -108,10 +109,14 @@ public:
std::shared_ptr<DiffusionModel> high_noise_diffusion_model; std::shared_ptr<DiffusionModel> high_noise_diffusion_model;
std::shared_ptr<VAE> first_stage_model; std::shared_ptr<VAE> first_stage_model;
std::shared_ptr<TinyAutoEncoder> tae_first_stage; std::shared_ptr<TinyAutoEncoder> tae_first_stage;
std::shared_ptr<ControlNet> control_net = nullptr; std::shared_ptr<ControlNet> control_net;
std::shared_ptr<PhotoMakerIDEncoder> pmid_model; std::shared_ptr<PhotoMakerIDEncoder> pmid_model;
std::shared_ptr<LoraModel> pmid_lora; std::shared_ptr<LoraModel> pmid_lora;
std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds; std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds;
std::vector<std::shared_ptr<LoraModel>> cond_stage_lora_models;
std::vector<std::shared_ptr<LoraModel>> diffusion_lora_models;
std::vector<std::shared_ptr<LoraModel>> first_stage_lora_models;
bool apply_lora_immediately = false;
std::string taesd_path; std::string taesd_path;
bool use_tiny_autoencoder = false; bool use_tiny_autoencoder = false;
@ -329,6 +334,25 @@ public:
LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor)); LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor));
if (sd_ctx_params->lora_apply_mode == LORA_APPLY_AUTO) {
bool have_quantized_weight = false;
for (const auto& [type, _] : wtype_stat) {
if (ggml_is_quantized(type)) {
have_quantized_weight = true;
break;
}
}
if (have_quantized_weight) {
apply_lora_immediately = false;
} else {
apply_lora_immediately = true;
}
} else if (sd_ctx_params->lora_apply_mode == LORA_APPLY_IMMEDIATELY) {
apply_lora_immediately = true;
} else {
apply_lora_immediately = false;
}
if (sd_version_is_sdxl(version)) { if (sd_version_is_sdxl(version)) {
scale_factor = 0.13025f; scale_factor = 0.13025f;
} else if (sd_version_is_sd3(version)) { } else if (sd_version_is_sd3(version)) {
@ -571,8 +595,14 @@ public:
version); version);
} }
if (strlen(SAFE_STR(sd_ctx_params->photo_maker_path)) > 0) { if (strlen(SAFE_STR(sd_ctx_params->photo_maker_path)) > 0) {
pmid_lora = std::make_shared<LoraModel>(backend, sd_ctx_params->photo_maker_path, "", version); pmid_lora = std::make_shared<LoraModel>("pmid", backend, sd_ctx_params->photo_maker_path, "", version);
if (!pmid_lora->load_from_file(true, n_threads)) { auto lora_tensor_filter = [&](const std::string& tensor_name) {
if (starts_with(tensor_name, "lora.model")) {
return true;
}
return false;
};
if (!pmid_lora->load_from_file(n_threads, lora_tensor_filter)) {
LOG_WARN("load photomaker lora tensors from %s failed", sd_ctx_params->photo_maker_path); LOG_WARN("load photomaker lora tensors from %s failed", sd_ctx_params->photo_maker_path);
return false; return false;
} }
@ -907,8 +937,11 @@ public:
return result < -1; return result < -1;
} }
void apply_lora(std::string lora_name, float multiplier) { std::shared_ptr<LoraModel> load_lora_model_from_file(const std::string& lora_id,
int64_t t0 = ggml_time_ms(); float multiplier,
ggml_backend_t backend,
LoraModel::filter_t lora_tensor_filter = nullptr) {
std::string lora_name = lora_id;
std::string high_noise_tag = "|high_noise|"; std::string high_noise_tag = "|high_noise|";
bool is_high_noise = false; bool is_high_noise = false;
if (starts_with(lora_name, high_noise_tag)) { if (starts_with(lora_name, high_noise_tag)) {
@ -925,25 +958,19 @@ public:
file_path = ckpt_file_path; file_path = ckpt_file_path;
} else { } else {
LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str()); LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str());
return; return nullptr;
} }
LoraModel lora(backend, file_path, is_high_noise ? "model.high_noise_" : "", version); auto lora = std::make_shared<LoraModel>(lora_id, backend, file_path, is_high_noise ? "model.high_noise_" : "", version);
if (!lora.load_from_file(false, n_threads)) { if (!lora->load_from_file(n_threads, lora_tensor_filter)) {
LOG_WARN("load lora tensors from %s failed", file_path.c_str()); LOG_WARN("load lora tensors from %s failed", file_path.c_str());
return; return nullptr;
} }
lora.multiplier = multiplier; lora->multiplier = multiplier;
// TODO: send version? return lora;
lora.apply(tensors, version, n_threads);
lora.free_params_buffer();
int64_t t1 = ggml_time_ms();
LOG_INFO("lora '%s' applied, taking %.2fs", lora_name.c_str(), (t1 - t0) * 1.0f / 1000);
} }
void apply_loras(const std::unordered_map<std::string, float>& lora_state) { void apply_loras_immediately(const std::unordered_map<std::string, float>& lora_state) {
std::unordered_map<std::string, float> lora_state_diff; std::unordered_map<std::string, float> lora_state_diff;
for (auto& kv : lora_state) { for (auto& kv : lora_state) {
const std::string& lora_name = kv.first; const std::string& lora_name = kv.first;
@ -964,12 +991,149 @@ public:
} }
for (auto& kv : lora_state_diff) { for (auto& kv : lora_state_diff) {
apply_lora(kv.first, kv.second); int64_t t0 = ggml_time_ms();
auto lora = load_lora_model_from_file(kv.first, kv.second, backend);
lora->apply(tensors, version, n_threads);
lora->free_params_buffer();
int64_t t1 = ggml_time_ms();
LOG_INFO("lora '%s' applied, taking %.2fs", kv.first.c_str(), (t1 - t0) * 1.0f / 1000);
} }
curr_lora_state = lora_state; curr_lora_state = lora_state;
} }
void apply_loras_at_runtime(const std::unordered_map<std::string, float>& lora_state) {
cond_stage_lora_models.clear();
diffusion_lora_models.clear();
first_stage_lora_models.clear();
if (cond_stage_model) {
std::vector<std::shared_ptr<LoraModel>> lora_models;
auto lora_state_diff = lora_state;
for (auto& lora_model : cond_stage_lora_models) {
auto iter = lora_state_diff.find(lora_model->lora_id);
if (iter != lora_state_diff.end()) {
lora_model->multiplier = iter->second;
lora_models.push_back(lora_model);
lora_state_diff.erase(iter);
}
}
cond_stage_lora_models = lora_models;
auto lora_tensor_filter = [&](const std::string& tensor_name) {
if (is_cond_stage_model_name(tensor_name)) {
return true;
}
return false;
};
for (auto& kv : lora_state_diff) {
const std::string& lora_id = kv.first;
float multiplier = kv.second;
auto lora = load_lora_model_from_file(lora_id, multiplier, clip_backend, lora_tensor_filter);
if (lora && !lora->lora_tensors.empty()) {
lora->preprocess_lora_tensors(tensors);
cond_stage_lora_models.push_back(lora);
}
}
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(cond_stage_lora_models);
cond_stage_model->set_weight_adapter(multi_lora_adapter);
}
if (diffusion_model) {
std::vector<std::shared_ptr<LoraModel>> lora_models;
auto lora_state_diff = lora_state;
for (auto& lora_model : diffusion_lora_models) {
auto iter = lora_state_diff.find(lora_model->lora_id);
if (iter != lora_state_diff.end()) {
lora_model->multiplier = iter->second;
lora_models.push_back(lora_model);
lora_state_diff.erase(iter);
}
}
diffusion_lora_models = lora_models;
auto lora_tensor_filter = [&](const std::string& tensor_name) {
if (is_diffusion_model_name(tensor_name)) {
return true;
}
return false;
};
for (auto& kv : lora_state_diff) {
const std::string& lora_name = kv.first;
float multiplier = kv.second;
auto lora = load_lora_model_from_file(lora_name, multiplier, backend, lora_tensor_filter);
if (lora && !lora->lora_tensors.empty()) {
lora->preprocess_lora_tensors(tensors);
diffusion_lora_models.push_back(lora);
}
}
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(diffusion_lora_models);
diffusion_model->set_weight_adapter(multi_lora_adapter);
if (high_noise_diffusion_model) {
high_noise_diffusion_model->set_weight_adapter(multi_lora_adapter);
}
}
if (first_stage_model) {
std::vector<std::shared_ptr<LoraModel>> lora_models;
auto lora_state_diff = lora_state;
for (auto& lora_model : first_stage_lora_models) {
auto iter = lora_state_diff.find(lora_model->lora_id);
if (iter != lora_state_diff.end()) {
lora_model->multiplier = iter->second;
lora_models.push_back(lora_model);
lora_state_diff.erase(iter);
}
}
first_stage_lora_models = lora_models;
auto lora_tensor_filter = [&](const std::string& tensor_name) {
if (is_first_stage_model_name(tensor_name)) {
return true;
}
return false;
};
for (auto& kv : lora_state_diff) {
const std::string& lora_name = kv.first;
float multiplier = kv.second;
auto lora = load_lora_model_from_file(lora_name, multiplier, vae_backend, lora_tensor_filter);
if (lora && !lora->lora_tensors.empty()) {
lora->preprocess_lora_tensors(tensors);
first_stage_lora_models.push_back(lora);
}
}
auto multi_lora_adapter = std::make_shared<MultiLoraAdapter>(first_stage_lora_models);
first_stage_model->set_weight_adapter(multi_lora_adapter);
}
}
void lora_stat() {
if (!cond_stage_lora_models.empty()) {
LOG_INFO("cond_stage_lora_models:");
for (auto& lora_model : cond_stage_lora_models) {
lora_model->stat();
}
}
if (!diffusion_lora_models.empty()) {
LOG_INFO("diffusion_lora_models:");
for (auto& lora_model : diffusion_lora_models) {
lora_model->stat();
}
}
if (!first_stage_lora_models.empty()) {
LOG_INFO("first_stage_lora_models:");
for (auto& lora_model : first_stage_lora_models) {
lora_model->stat();
}
}
}
std::string apply_loras_from_prompt(const std::string& prompt) { std::string apply_loras_from_prompt(const std::string& prompt) {
auto result_pair = extract_and_remove_lora(prompt); auto result_pair = extract_and_remove_lora(prompt);
std::unordered_map<std::string, float> lora_f2m = result_pair.first; // lora_name -> multiplier std::unordered_map<std::string, float> lora_f2m = result_pair.first; // lora_name -> multiplier
@ -978,10 +1142,18 @@ public:
LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second); LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second);
} }
int64_t t0 = ggml_time_ms(); int64_t t0 = ggml_time_ms();
apply_loras(lora_f2m); if (apply_lora_immediately) {
LOG_INFO("apply lora immediately");
apply_loras_immediately(lora_f2m);
} else {
LOG_INFO("apply at runtime");
apply_loras_at_runtime(lora_f2m);
}
int64_t t1 = ggml_time_ms(); int64_t t1 = ggml_time_ms();
if (!lora_f2m.empty()) {
LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
LOG_DEBUG("prompt after extract and remove lora: \"%s\"", result_pair.second.c_str()); LOG_DEBUG("prompt after extract and remove lora: \"%s\"", result_pair.second.c_str());
}
return result_pair.second; return result_pair.second;
} }
@ -2081,6 +2253,28 @@ enum preview_t str_to_preview(const char* str) {
return PREVIEW_COUNT; return PREVIEW_COUNT;
} }
const char* lora_apply_mode_to_str[] = {
"auto",
"immediately",
"at_runtime",
};
const char* sd_lora_apply_mode_name(enum lora_apply_mode_t mode) {
if (mode < LORA_APPLY_MODE_COUNT) {
return lora_apply_mode_to_str[mode];
}
return NONE_STR;
}
enum lora_apply_mode_t str_to_lora_apply_mode(const char* str) {
for (int i = 0; i < LORA_APPLY_MODE_COUNT; i++) {
if (!strcmp(str, lora_apply_mode_to_str[i])) {
return (enum lora_apply_mode_t)i;
}
}
return LORA_APPLY_MODE_COUNT;
}
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) { void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
*sd_ctx_params = {}; *sd_ctx_params = {};
sd_ctx_params->vae_decode_only = true; sd_ctx_params->vae_decode_only = true;
@ -2089,6 +2283,7 @@ void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
sd_ctx_params->wtype = SD_TYPE_COUNT; sd_ctx_params->wtype = SD_TYPE_COUNT;
sd_ctx_params->rng_type = CUDA_RNG; sd_ctx_params->rng_type = CUDA_RNG;
sd_ctx_params->prediction = DEFAULT_PRED; sd_ctx_params->prediction = DEFAULT_PRED;
sd_ctx_params->lora_apply_mode = LORA_APPLY_AUTO;
sd_ctx_params->offload_params_to_cpu = false; sd_ctx_params->offload_params_to_cpu = false;
sd_ctx_params->keep_clip_on_cpu = false; sd_ctx_params->keep_clip_on_cpu = false;
sd_ctx_params->keep_control_net_on_cpu = false; sd_ctx_params->keep_control_net_on_cpu = false;
@ -2674,6 +2869,9 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
if (sd_ctx->sd->free_params_immediately && !sd_ctx->sd->use_tiny_autoencoder) { if (sd_ctx->sd->free_params_immediately && !sd_ctx->sd->use_tiny_autoencoder) {
sd_ctx->sd->first_stage_model->free_params_buffer(); sd_ctx->sd->first_stage_model->free_params_buffer();
} }
sd_ctx->sd->lora_stat();
sd_image_t* result_images = (sd_image_t*)calloc(batch_count, sizeof(sd_image_t)); sd_image_t* result_images = (sd_image_t*)calloc(batch_count, sizeof(sd_image_t));
if (result_images == nullptr) { if (result_images == nullptr) {
ggml_free(work_ctx); ggml_free(work_ctx);
@ -3343,6 +3541,8 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
sd_ctx->sd->first_stage_model->free_params_buffer(); sd_ctx->sd->first_stage_model->free_params_buffer();
} }
sd_ctx->sd->lora_stat();
sd_image_t* result_images = (sd_image_t*)calloc(vid->ne[2], sizeof(sd_image_t)); sd_image_t* result_images = (sd_image_t*)calloc(vid->ne[2], sizeof(sd_image_t));
if (result_images == nullptr) { if (result_images == nullptr) {
ggml_free(work_ctx); ggml_free(work_ctx);

View File

@ -134,6 +134,13 @@ enum preview_t {
PREVIEW_COUNT PREVIEW_COUNT
}; };
enum lora_apply_mode_t {
LORA_APPLY_AUTO,
LORA_APPLY_IMMEDIATELY,
LORA_APPLY_AT_RUNTIME,
LORA_APPLY_MODE_COUNT,
};
typedef struct { typedef struct {
bool enabled; bool enabled;
int tile_size_x; int tile_size_x;
@ -165,6 +172,7 @@ typedef struct {
enum sd_type_t wtype; enum sd_type_t wtype;
enum rng_type_t rng_type; enum rng_type_t rng_type;
enum prediction_t prediction; enum prediction_t prediction;
enum lora_apply_mode_t lora_apply_mode;
bool offload_params_to_cpu; bool offload_params_to_cpu;
bool keep_clip_on_cpu; bool keep_clip_on_cpu;
bool keep_control_net_on_cpu; bool keep_control_net_on_cpu;
@ -283,6 +291,8 @@ SD_API const char* sd_prediction_name(enum prediction_t prediction);
SD_API enum prediction_t str_to_prediction(const char* str); SD_API enum prediction_t str_to_prediction(const char* str);
SD_API const char* sd_preview_name(enum preview_t preview); SD_API const char* sd_preview_name(enum preview_t preview);
SD_API enum preview_t str_to_preview(const char* str); SD_API enum preview_t str_to_preview(const char* str);
SD_API const char* sd_lora_apply_mode_name(enum lora_apply_mode_t mode);
SD_API enum lora_apply_mode_t str_to_lora_apply_mode(const char* str);
SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params); SD_API void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params);
SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params); SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);

View File

@ -7,7 +7,7 @@
/*==================================================== UnetModel =====================================================*/ /*==================================================== UnetModel =====================================================*/
#define UNET_GRAPH_SIZE 10240 #define UNET_GRAPH_SIZE 102400
class SpatialVideoTransformer : public SpatialTransformer { class SpatialVideoTransformer : public SpatialTransformer {
protected: protected:
@ -612,7 +612,7 @@ struct UNetModelRunner : public GGMLRunner {
int num_video_frames = -1, int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {}, std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f) { float control_strength = 0.f) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, UNET_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(UNET_GRAPH_SIZE);
if (num_video_frames == -1) { if (num_video_frames == -1) {
num_video_frames = x->ne[3]; num_video_frames = x->ne[3];

View File

@ -1133,7 +1133,7 @@ namespace WAN {
} }
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) { struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, 10240 * z->ne[2], false); struct ggml_cgraph* gf = new_graph_custom(10240 * z->ne[2]);
z = to_backend(z); z = to_backend(z);
@ -1147,7 +1147,7 @@ namespace WAN {
} }
struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int64_t i) { struct ggml_cgraph* build_graph_partial(struct ggml_tensor* z, bool decode_graph, int64_t i) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, 20480, false); struct ggml_cgraph* gf = new_graph_custom(20480);
ae.clear_cache(); ae.clear_cache();
@ -2142,7 +2142,7 @@ namespace WAN {
struct ggml_tensor* time_dim_concat = nullptr, struct ggml_tensor* time_dim_concat = nullptr,
struct ggml_tensor* vace_context = nullptr, struct ggml_tensor* vace_context = nullptr,
float vace_strength = 1.f) { float vace_strength = 1.f) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, WAN_GRAPH_SIZE, false); struct ggml_cgraph* gf = new_graph_custom(WAN_GRAPH_SIZE);
x = to_backend(x); x = to_backend(x);
timesteps = to_backend(timesteps); timesteps = to_backend(timesteps);