mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-12 13:28:37 +00:00
add Flux2FlowDenoiser
This commit is contained in:
parent
7a2a7d0767
commit
2ddbfe5dde
44
denoiser.hpp
44
denoiser.hpp
@ -356,7 +356,7 @@ struct Denoiser {
|
||||
virtual ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) = 0;
|
||||
virtual ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) = 0;
|
||||
|
||||
virtual std::vector<float> get_sigmas(uint32_t n, scheduler_t scheduler_type, SDVersion version) {
|
||||
virtual std::vector<float> get_sigmas(uint32_t n, int /*image_seq_len*/, scheduler_t scheduler_type, SDVersion version) {
|
||||
auto bound_t_to_sigma = std::bind(&Denoiser::t_to_sigma, this, std::placeholders::_1);
|
||||
std::shared_ptr<SigmaScheduler> scheduler;
|
||||
switch (scheduler_type) {
|
||||
@ -582,10 +582,14 @@ struct FluxFlowDenoiser : public Denoiser {
|
||||
set_parameters(shift);
|
||||
}
|
||||
|
||||
void set_parameters(float shift = 1.15f) {
|
||||
void set_shift(float shift) {
|
||||
this->shift = shift;
|
||||
for (int i = 1; i < TIMESTEPS + 1; i++) {
|
||||
sigmas[i - 1] = t_to_sigma(i / TIMESTEPS * TIMESTEPS);
|
||||
}
|
||||
|
||||
void set_parameters(float shift) {
|
||||
set_shift(shift);
|
||||
for (int i = 0; i < TIMESTEPS; i++) {
|
||||
sigmas[i] = t_to_sigma(i);
|
||||
}
|
||||
}
|
||||
|
||||
@ -627,6 +631,38 @@ struct FluxFlowDenoiser : public Denoiser {
|
||||
}
|
||||
};
|
||||
|
||||
struct Flux2FlowDenoiser : public FluxFlowDenoiser {
|
||||
Flux2FlowDenoiser() = default;
|
||||
|
||||
float compute_empirical_mu(uint32_t n, int image_seq_len) {
|
||||
const float a1 = 8.73809524e-05f;
|
||||
const float b1 = 1.89833333f;
|
||||
const float a2 = 0.00016927f;
|
||||
const float b2 = 0.45666666f;
|
||||
|
||||
if (image_seq_len > 4300) {
|
||||
float mu = a2 * image_seq_len + b2;
|
||||
return mu;
|
||||
}
|
||||
|
||||
float m_200 = a2 * image_seq_len + b2;
|
||||
float m_10 = a1 * image_seq_len + b1;
|
||||
|
||||
float a = (m_200 - m_10) / 190.0f;
|
||||
float b = m_200 - 200.0f * a;
|
||||
float mu = a * n + b;
|
||||
|
||||
return mu;
|
||||
}
|
||||
|
||||
std::vector<float> get_sigmas(uint32_t n, int image_seq_len, scheduler_t scheduler_type, SDVersion version) override {
|
||||
float mu = compute_empirical_mu(n, image_seq_len);
|
||||
LOG_DEBUG("Flux2FlowDenoiser: set shift to %.3f", mu);
|
||||
set_shift(mu);
|
||||
return Denoiser::get_sigmas(n, image_seq_len, scheduler_type, version);
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::function<ggml_tensor*(ggml_tensor*, float, int)> denoise_cb_t;
|
||||
|
||||
// k diffusion reverse ODE: dx = (x - D(x;\sigma)) / \sigma dt; \sigma(t) = t
|
||||
|
||||
@ -101,7 +101,7 @@ Options:
|
||||
-s, --seed RNG seed (default: 42, use random seed for < 0)
|
||||
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
|
||||
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
|
||||
--prediction prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]
|
||||
--prediction prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow, flux2_flow]
|
||||
--lora-apply-mode the way to apply LoRA, one of [auto, immediately, at_runtime], default is auto. In auto mode, if the model weights
|
||||
contain any quantized parameters, the at_runtime mode will be used; otherwise,
|
||||
immediately will be used.The immediately mode may have precision and
|
||||
|
||||
@ -1193,7 +1193,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
on_sample_method_arg},
|
||||
{"",
|
||||
"--prediction",
|
||||
"prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow]",
|
||||
"prediction type override, one of [eps, v, edm_v, sd3_flow, flux_flow, flux2_flow]",
|
||||
on_prediction_arg},
|
||||
{"",
|
||||
"--lora-apply-mode",
|
||||
|
||||
@ -802,6 +802,11 @@ public:
|
||||
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
||||
break;
|
||||
}
|
||||
case FLUX2_FLOW_PRED: {
|
||||
LOG_INFO("running in Flux2 FLOW mode");
|
||||
denoiser = std::make_shared<Flux2FlowDenoiser>();
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
LOG_ERROR("Unknown parametrization %i", sd_ctx_params->prediction);
|
||||
return false;
|
||||
@ -834,7 +839,7 @@ public:
|
||||
shift = 3.0;
|
||||
}
|
||||
denoiser = std::make_shared<DiscreteFlowDenoiser>(shift);
|
||||
} else if (sd_version_is_flux(version) || sd_version_is_flux2(version)) {
|
||||
} else if (sd_version_is_flux(version)) {
|
||||
LOG_INFO("running in Flux FLOW mode");
|
||||
float shift = sd_ctx_params->flow_shift;
|
||||
if (shift == INFINITY) {
|
||||
@ -844,11 +849,11 @@ public:
|
||||
shift = 1.15f;
|
||||
}
|
||||
}
|
||||
if (sd_version_is_flux2(version)) {
|
||||
shift = 2.05f;
|
||||
}
|
||||
}
|
||||
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
||||
} else if (sd_version_is_flux2(version)) {
|
||||
LOG_INFO("running in Flux2 FLOW mode");
|
||||
denoiser = std::make_shared<Flux2FlowDenoiser>();
|
||||
} else if (sd_version_is_wan(version)) {
|
||||
LOG_INFO("running in FLOW mode");
|
||||
float shift = sd_ctx_params->flow_shift;
|
||||
@ -1869,6 +1874,11 @@ public:
|
||||
return latent_channel;
|
||||
}
|
||||
|
||||
int get_image_seq_len(int h, int w) {
|
||||
int vae_scale_factor = get_vae_scale_factor();
|
||||
return (h / vae_scale_factor) * (w / vae_scale_factor);
|
||||
}
|
||||
|
||||
ggml_tensor* generate_init_latent(ggml_context* work_ctx,
|
||||
int width,
|
||||
int height,
|
||||
@ -2361,6 +2371,7 @@ const char* prediction_to_str[] = {
|
||||
"edm_v",
|
||||
"sd3_flow",
|
||||
"flux_flow",
|
||||
"flux2_flow",
|
||||
};
|
||||
|
||||
const char* sd_prediction_name(enum prediction_t prediction) {
|
||||
@ -3131,7 +3142,10 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
|
||||
LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]);
|
||||
|
||||
int sample_steps = sd_img_gen_params->sample_params.sample_steps;
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps, sd_img_gen_params->sample_params.scheduler, sd_ctx->sd->version);
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps,
|
||||
sd_ctx->sd->get_image_seq_len(height, width),
|
||||
sd_img_gen_params->sample_params.scheduler,
|
||||
sd_ctx->sd->version);
|
||||
|
||||
ggml_tensor* init_latent = nullptr;
|
||||
ggml_tensor* concat_latent = nullptr;
|
||||
@ -3384,7 +3398,7 @@ SD_API sd_image_t* generate_video(sd_ctx_t* sd_ctx, const sd_vid_gen_params_t* s
|
||||
if (high_noise_sample_steps > 0) {
|
||||
total_steps += high_noise_sample_steps;
|
||||
}
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(total_steps, sd_vid_gen_params->sample_params.scheduler, sd_ctx->sd->version);
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(total_steps, 0, sd_vid_gen_params->sample_params.scheduler, sd_ctx->sd->version);
|
||||
|
||||
if (high_noise_sample_steps < 0) {
|
||||
// timesteps ∝ sigmas for Flow models (like wan2.2 a14b)
|
||||
|
||||
@ -71,6 +71,7 @@ enum prediction_t {
|
||||
EDM_V_PRED,
|
||||
SD3_FLOW_PRED,
|
||||
FLUX_FLOW_PRED,
|
||||
FLUX2_FLOW_PRED,
|
||||
PREDICTION_COUNT
|
||||
};
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user