mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
Merge branch 'master' into qwen_image
This commit is contained in:
commit
2ae762356f
@ -286,7 +286,7 @@ usage: ./bin/sd [arguments]
|
||||
|
||||
arguments:
|
||||
-h, --help show this help message and exit
|
||||
-M, --mode [MODE] run mode, one of: [img_gen, vid_gen, convert], default: img_gen
|
||||
-M, --mode [MODE] run mode, one of: [img_gen, vid_gen, upscale, convert], default: img_gen
|
||||
-t, --threads N number of threads to use during computation (default: -1)
|
||||
If threads <= 0, then threads will be set to the number of CPU physical cores
|
||||
--offload-to-cpu place the weights in RAM to save VRAM, and automatically load them into VRAM when needed
|
||||
@ -302,7 +302,7 @@ arguments:
|
||||
--taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)
|
||||
--control-net [CONTROL_PATH] path to control net model
|
||||
--embd-dir [EMBEDDING_PATH] path to embeddings
|
||||
--upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now
|
||||
--upscale-model [ESRGAN_PATH] path to esrgan model. For img_gen mode, upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now
|
||||
--upscale-repeats Run the ESRGAN upscaler this many times (default 1)
|
||||
--type [TYPE] weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K)
|
||||
If not specified, the default is the type of the weight file
|
||||
|
||||
218
esrgan.hpp
218
esrgan.hpp
@ -83,39 +83,44 @@ public:
|
||||
|
||||
class RRDBNet : public GGMLBlock {
|
||||
protected:
|
||||
int scale = 4; // default RealESRGAN_x4plus_anime_6B
|
||||
int num_block = 6; // default RealESRGAN_x4plus_anime_6B
|
||||
int scale = 4;
|
||||
int num_block = 23;
|
||||
int num_in_ch = 3;
|
||||
int num_out_ch = 3;
|
||||
int num_feat = 64; // default RealESRGAN_x4plus_anime_6B
|
||||
int num_grow_ch = 32; // default RealESRGAN_x4plus_anime_6B
|
||||
int num_feat = 64;
|
||||
int num_grow_ch = 32;
|
||||
|
||||
public:
|
||||
RRDBNet() {
|
||||
RRDBNet(int scale, int num_block, int num_in_ch, int num_out_ch, int num_feat, int num_grow_ch)
|
||||
: scale(scale), num_block(num_block), num_in_ch(num_in_ch), num_out_ch(num_out_ch), num_feat(num_feat), num_grow_ch(num_grow_ch) {
|
||||
blocks["conv_first"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_in_ch, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
for (int i = 0; i < num_block; i++) {
|
||||
std::string name = "body." + std::to_string(i);
|
||||
blocks[name] = std::shared_ptr<GGMLBlock>(new RRDB(num_feat, num_grow_ch));
|
||||
}
|
||||
blocks["conv_body"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
// upsample
|
||||
blocks["conv_up1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv_up2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
if (scale >= 2) {
|
||||
blocks["conv_up1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
}
|
||||
if (scale == 4) {
|
||||
blocks["conv_up2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
}
|
||||
blocks["conv_hr"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
|
||||
blocks["conv_last"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_out_ch, {3, 3}, {1, 1}, {1, 1}));
|
||||
}
|
||||
|
||||
int get_scale() { return scale; }
|
||||
int get_num_block() { return num_block; }
|
||||
|
||||
struct ggml_tensor* lrelu(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
return ggml_leaky_relu(ctx, x, 0.2f, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
// x: [n, num_in_ch, h, w]
|
||||
// return: [n, num_out_ch, h*4, w*4]
|
||||
// return: [n, num_out_ch, h*scale, w*scale]
|
||||
auto conv_first = std::dynamic_pointer_cast<Conv2d>(blocks["conv_first"]);
|
||||
auto conv_body = std::dynamic_pointer_cast<Conv2d>(blocks["conv_body"]);
|
||||
auto conv_up1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up1"]);
|
||||
auto conv_up2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up2"]);
|
||||
auto conv_hr = std::dynamic_pointer_cast<Conv2d>(blocks["conv_hr"]);
|
||||
auto conv_last = std::dynamic_pointer_cast<Conv2d>(blocks["conv_last"]);
|
||||
|
||||
@ -130,15 +135,22 @@ public:
|
||||
body_feat = conv_body->forward(ctx, body_feat);
|
||||
feat = ggml_add(ctx, feat, body_feat);
|
||||
// upsample
|
||||
feat = lrelu(ctx, conv_up1->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
|
||||
feat = lrelu(ctx, conv_up2->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
|
||||
if (scale >= 2) {
|
||||
auto conv_up1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up1"]);
|
||||
feat = lrelu(ctx, conv_up1->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
|
||||
if (scale == 4) {
|
||||
auto conv_up2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up2"]);
|
||||
feat = lrelu(ctx, conv_up2->forward(ctx, ggml_upscale(ctx, feat, 2, GGML_SCALE_MODE_NEAREST)));
|
||||
}
|
||||
}
|
||||
// for all scales
|
||||
auto out = conv_last->forward(ctx, lrelu(ctx, conv_hr->forward(ctx, feat)));
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
struct ESRGAN : public GGMLRunner {
|
||||
RRDBNet rrdb_net;
|
||||
std::unique_ptr<RRDBNet> rrdb_net;
|
||||
int scale = 4;
|
||||
int tile_size = 128; // avoid cuda OOM for 4gb VRAM
|
||||
|
||||
@ -146,12 +158,14 @@ struct ESRGAN : public GGMLRunner {
|
||||
bool offload_params_to_cpu,
|
||||
const String2GGMLType& tensor_types = {})
|
||||
: GGMLRunner(backend, offload_params_to_cpu) {
|
||||
rrdb_net.init(params_ctx, tensor_types, "");
|
||||
// rrdb_net will be created in load_from_file
|
||||
}
|
||||
|
||||
void enable_conv2d_direct() {
|
||||
if (!rrdb_net)
|
||||
return;
|
||||
std::vector<GGMLBlock*> blocks;
|
||||
rrdb_net.get_all_blocks(blocks);
|
||||
rrdb_net->get_all_blocks(blocks);
|
||||
for (auto block : blocks) {
|
||||
if (block->get_desc() == "Conv2d") {
|
||||
auto conv_block = (Conv2d*)block;
|
||||
@ -167,31 +181,185 @@ struct ESRGAN : public GGMLRunner {
|
||||
bool load_from_file(const std::string& file_path, int n_threads) {
|
||||
LOG_INFO("loading esrgan from '%s'", file_path.c_str());
|
||||
|
||||
alloc_params_buffer();
|
||||
std::map<std::string, ggml_tensor*> esrgan_tensors;
|
||||
rrdb_net.get_param_tensors(esrgan_tensors);
|
||||
|
||||
ModelLoader model_loader;
|
||||
if (!model_loader.init_from_file(file_path)) {
|
||||
LOG_ERROR("init esrgan model loader from file failed: '%s'", file_path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
bool success = model_loader.load_tensors(esrgan_tensors, {}, n_threads);
|
||||
// Get tensor names
|
||||
auto tensor_names = model_loader.get_tensor_names();
|
||||
|
||||
// Detect if it's ESRGAN format
|
||||
bool is_ESRGAN = std::find(tensor_names.begin(), tensor_names.end(), "model.0.weight") != tensor_names.end();
|
||||
|
||||
// Detect parameters from tensor names
|
||||
int detected_num_block = 0;
|
||||
if (is_ESRGAN) {
|
||||
for (const auto& name : tensor_names) {
|
||||
if (name.find("model.1.sub.") == 0) {
|
||||
size_t first_dot = name.find('.', 12);
|
||||
if (first_dot != std::string::npos) {
|
||||
size_t second_dot = name.find('.', first_dot + 1);
|
||||
if (second_dot != std::string::npos && name.substr(first_dot + 1, 3) == "RDB") {
|
||||
try {
|
||||
int idx = std::stoi(name.substr(12, first_dot - 12));
|
||||
detected_num_block = std::max(detected_num_block, idx + 1);
|
||||
} catch (...) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Original format
|
||||
for (const auto& name : tensor_names) {
|
||||
if (name.find("body.") == 0) {
|
||||
size_t pos = name.find('.', 5);
|
||||
if (pos != std::string::npos) {
|
||||
try {
|
||||
int idx = std::stoi(name.substr(5, pos - 5));
|
||||
detected_num_block = std::max(detected_num_block, idx + 1);
|
||||
} catch (...) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int detected_scale = 4; // default
|
||||
if (is_ESRGAN) {
|
||||
// For ESRGAN format, detect scale by highest model number
|
||||
int max_model_num = 0;
|
||||
for (const auto& name : tensor_names) {
|
||||
if (name.find("model.") == 0) {
|
||||
size_t dot_pos = name.find('.', 6);
|
||||
if (dot_pos != std::string::npos) {
|
||||
try {
|
||||
int num = std::stoi(name.substr(6, dot_pos - 6));
|
||||
max_model_num = std::max(max_model_num, num);
|
||||
} catch (...) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (max_model_num <= 4) {
|
||||
detected_scale = 1;
|
||||
} else if (max_model_num <= 7) {
|
||||
detected_scale = 2;
|
||||
} else {
|
||||
detected_scale = 4;
|
||||
}
|
||||
} else {
|
||||
// Original format
|
||||
bool has_conv_up2 = std::any_of(tensor_names.begin(), tensor_names.end(), [](const std::string& name) {
|
||||
return name == "conv_up2.weight";
|
||||
});
|
||||
bool has_conv_up1 = std::any_of(tensor_names.begin(), tensor_names.end(), [](const std::string& name) {
|
||||
return name == "conv_up1.weight";
|
||||
});
|
||||
if (has_conv_up2) {
|
||||
detected_scale = 4;
|
||||
} else if (has_conv_up1) {
|
||||
detected_scale = 2;
|
||||
} else {
|
||||
detected_scale = 1;
|
||||
}
|
||||
}
|
||||
|
||||
int detected_num_in_ch = 3;
|
||||
int detected_num_out_ch = 3;
|
||||
int detected_num_feat = 64;
|
||||
int detected_num_grow_ch = 32;
|
||||
|
||||
// Create RRDBNet with detected parameters
|
||||
rrdb_net = std::make_unique<RRDBNet>(detected_scale, detected_num_block, detected_num_in_ch, detected_num_out_ch, detected_num_feat, detected_num_grow_ch);
|
||||
rrdb_net->init(params_ctx, {}, "");
|
||||
|
||||
alloc_params_buffer();
|
||||
std::map<std::string, ggml_tensor*> esrgan_tensors;
|
||||
rrdb_net->get_param_tensors(esrgan_tensors);
|
||||
|
||||
bool success;
|
||||
if (is_ESRGAN) {
|
||||
// Build name mapping for ESRGAN format
|
||||
std::map<std::string, std::string> expected_to_model;
|
||||
expected_to_model["conv_first.weight"] = "model.0.weight";
|
||||
expected_to_model["conv_first.bias"] = "model.0.bias";
|
||||
|
||||
for (int i = 0; i < detected_num_block; i++) {
|
||||
for (int j = 1; j <= 3; j++) {
|
||||
for (int k = 1; k <= 5; k++) {
|
||||
std::string expected_weight = "body." + std::to_string(i) + ".rdb" + std::to_string(j) + ".conv" + std::to_string(k) + ".weight";
|
||||
std::string model_weight = "model.1.sub." + std::to_string(i) + ".RDB" + std::to_string(j) + ".conv" + std::to_string(k) + ".0.weight";
|
||||
expected_to_model[expected_weight] = model_weight;
|
||||
|
||||
std::string expected_bias = "body." + std::to_string(i) + ".rdb" + std::to_string(j) + ".conv" + std::to_string(k) + ".bias";
|
||||
std::string model_bias = "model.1.sub." + std::to_string(i) + ".RDB" + std::to_string(j) + ".conv" + std::to_string(k) + ".0.bias";
|
||||
expected_to_model[expected_bias] = model_bias;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (detected_scale == 1) {
|
||||
expected_to_model["conv_body.weight"] = "model.1.sub." + std::to_string(detected_num_block) + ".weight";
|
||||
expected_to_model["conv_body.bias"] = "model.1.sub." + std::to_string(detected_num_block) + ".bias";
|
||||
expected_to_model["conv_hr.weight"] = "model.2.weight";
|
||||
expected_to_model["conv_hr.bias"] = "model.2.bias";
|
||||
expected_to_model["conv_last.weight"] = "model.4.weight";
|
||||
expected_to_model["conv_last.bias"] = "model.4.bias";
|
||||
} else {
|
||||
expected_to_model["conv_body.weight"] = "model.1.sub." + std::to_string(detected_num_block) + ".weight";
|
||||
expected_to_model["conv_body.bias"] = "model.1.sub." + std::to_string(detected_num_block) + ".bias";
|
||||
if (detected_scale >= 2) {
|
||||
expected_to_model["conv_up1.weight"] = "model.3.weight";
|
||||
expected_to_model["conv_up1.bias"] = "model.3.bias";
|
||||
}
|
||||
if (detected_scale == 4) {
|
||||
expected_to_model["conv_up2.weight"] = "model.6.weight";
|
||||
expected_to_model["conv_up2.bias"] = "model.6.bias";
|
||||
expected_to_model["conv_hr.weight"] = "model.8.weight";
|
||||
expected_to_model["conv_hr.bias"] = "model.8.bias";
|
||||
expected_to_model["conv_last.weight"] = "model.10.weight";
|
||||
expected_to_model["conv_last.bias"] = "model.10.bias";
|
||||
} else if (detected_scale == 2) {
|
||||
expected_to_model["conv_hr.weight"] = "model.5.weight";
|
||||
expected_to_model["conv_hr.bias"] = "model.5.bias";
|
||||
expected_to_model["conv_last.weight"] = "model.7.weight";
|
||||
expected_to_model["conv_last.bias"] = "model.7.bias";
|
||||
}
|
||||
}
|
||||
|
||||
std::map<std::string, ggml_tensor*> model_tensors;
|
||||
for (auto& p : esrgan_tensors) {
|
||||
auto it = expected_to_model.find(p.first);
|
||||
if (it != expected_to_model.end()) {
|
||||
model_tensors[it->second] = p.second;
|
||||
}
|
||||
}
|
||||
|
||||
success = model_loader.load_tensors(model_tensors, {}, n_threads);
|
||||
} else {
|
||||
success = model_loader.load_tensors(esrgan_tensors, {}, n_threads);
|
||||
}
|
||||
|
||||
if (!success) {
|
||||
LOG_ERROR("load esrgan tensors from model loader failed");
|
||||
return false;
|
||||
}
|
||||
|
||||
LOG_INFO("esrgan model loaded");
|
||||
scale = rrdb_net->get_scale();
|
||||
LOG_INFO("esrgan model loaded with scale=%d, num_block=%d", scale, detected_num_block);
|
||||
return success;
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* x) {
|
||||
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
|
||||
x = to_backend(x);
|
||||
struct ggml_tensor* out = rrdb_net.forward(compute_ctx, x);
|
||||
if (!rrdb_net)
|
||||
return nullptr;
|
||||
constexpr int kGraphNodes = 1 << 16; // 65k
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, kGraphNodes, /*grads*/ false);
|
||||
x = to_backend(x);
|
||||
struct ggml_tensor* out = rrdb_net->forward(compute_ctx, x);
|
||||
ggml_build_forward_expand(gf, out);
|
||||
return gf;
|
||||
}
|
||||
|
||||
@ -41,13 +41,15 @@ const char* modes_str[] = {
|
||||
"img_gen",
|
||||
"vid_gen",
|
||||
"convert",
|
||||
"upscale",
|
||||
};
|
||||
#define SD_ALL_MODES_STR "img_gen, vid_gen, convert"
|
||||
#define SD_ALL_MODES_STR "img_gen, vid_gen, convert, upscale"
|
||||
|
||||
enum SDMode {
|
||||
IMG_GEN,
|
||||
VID_GEN,
|
||||
CONVERT,
|
||||
UPSCALE,
|
||||
MODE_COUNT
|
||||
};
|
||||
|
||||
@ -206,7 +208,7 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf("\n");
|
||||
printf("arguments:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" -M, --mode [MODE] run mode, one of: [img_gen, vid_gen, convert], default: img_gen\n");
|
||||
printf(" -M, --mode [MODE] run mode, one of: [img_gen, vid_gen, upscale, convert], default: img_gen\n");
|
||||
printf(" -t, --threads N number of threads to use during computation (default: -1)\n");
|
||||
printf(" If threads <= 0, then threads will be set to the number of CPU physical cores\n");
|
||||
printf(" --offload-to-cpu place the weights in RAM to save VRAM, and automatically load them into VRAM when needed\n");
|
||||
@ -222,7 +224,7 @@ void print_usage(int argc, const char* argv[]) {
|
||||
printf(" --taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)\n");
|
||||
printf(" --control-net [CONTROL_PATH] path to control net model\n");
|
||||
printf(" --embd-dir [EMBEDDING_PATH] path to embeddings\n");
|
||||
printf(" --upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now\n");
|
||||
printf(" --upscale-model [ESRGAN_PATH] path to esrgan model. For img_gen mode, upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now\n");
|
||||
printf(" --upscale-repeats Run the ESRGAN upscaler this many times (default 1)\n");
|
||||
printf(" --type [TYPE] weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K)\n");
|
||||
printf(" If not specified, the default is the type of the weight file\n");
|
||||
@ -821,13 +823,13 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
params.n_threads = get_num_physical_cores();
|
||||
}
|
||||
|
||||
if (params.mode != CONVERT && params.mode != VID_GEN && params.prompt.length() == 0) {
|
||||
if ((params.mode == IMG_GEN || params.mode == VID_GEN) && params.prompt.length() == 0) {
|
||||
fprintf(stderr, "error: the following arguments are required: prompt\n");
|
||||
print_usage(argc, argv);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (params.model_path.length() == 0 && params.diffusion_model_path.length() == 0) {
|
||||
if (params.mode != UPSCALE && params.model_path.length() == 0 && params.diffusion_model_path.length() == 0) {
|
||||
fprintf(stderr, "error: the following arguments are required: model_path/diffusion_model\n");
|
||||
print_usage(argc, argv);
|
||||
exit(1);
|
||||
@ -887,6 +889,17 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (params.mode == UPSCALE) {
|
||||
if (params.esrgan_path.length() == 0) {
|
||||
fprintf(stderr, "error: upscale mode needs an upscaler model (--upscale-model)\n");
|
||||
exit(1);
|
||||
}
|
||||
if (params.init_image_path.length() == 0) {
|
||||
fprintf(stderr, "error: upscale mode needs an init image (--init-img)\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
srand((int)time(NULL));
|
||||
params.seed = rand();
|
||||
@ -897,14 +910,6 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
params.output_path = "output.gguf";
|
||||
}
|
||||
}
|
||||
|
||||
if (!isfinite(params.sample_params.guidance.img_cfg)) {
|
||||
params.sample_params.guidance.img_cfg = params.sample_params.guidance.txt_cfg;
|
||||
}
|
||||
|
||||
if (!isfinite(params.high_noise_sample_params.guidance.img_cfg)) {
|
||||
params.high_noise_sample_params.guidance.img_cfg = params.high_noise_sample_params.guidance.txt_cfg;
|
||||
}
|
||||
}
|
||||
|
||||
static std::string sd_basename(const std::string& path) {
|
||||
@ -1357,76 +1362,92 @@ int main(int argc, const char* argv[]) {
|
||||
params.flow_shift,
|
||||
};
|
||||
|
||||
sd_ctx_t* sd_ctx = new_sd_ctx(&sd_ctx_params);
|
||||
sd_image_t* results = nullptr;
|
||||
int num_results = 0;
|
||||
|
||||
if (sd_ctx == NULL) {
|
||||
printf("new_sd_ctx_t failed\n");
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
if (params.mode == UPSCALE) {
|
||||
num_results = 1;
|
||||
results = (sd_image_t*)calloc(num_results, sizeof(sd_image_t));
|
||||
if (results == NULL) {
|
||||
printf("failed to allocate results array\n");
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.sample_params.sample_method == SAMPLE_METHOD_DEFAULT) {
|
||||
params.sample_params.sample_method = sd_get_default_sample_method(sd_ctx);
|
||||
}
|
||||
results[0] = init_image;
|
||||
init_image.data = NULL;
|
||||
} else {
|
||||
sd_ctx_t* sd_ctx = new_sd_ctx(&sd_ctx_params);
|
||||
|
||||
sd_image_t* results;
|
||||
int num_results = 1;
|
||||
if (params.mode == IMG_GEN) {
|
||||
sd_img_gen_params_t img_gen_params = {
|
||||
params.prompt.c_str(),
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
init_image,
|
||||
ref_images.data(),
|
||||
(int)ref_images.size(),
|
||||
params.increase_ref_index,
|
||||
mask_image,
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_params,
|
||||
params.strength,
|
||||
params.seed,
|
||||
params.batch_count,
|
||||
control_image,
|
||||
params.control_strength,
|
||||
{
|
||||
pmid_images.data(),
|
||||
(int)pmid_images.size(),
|
||||
params.pm_id_embed_path.c_str(),
|
||||
params.pm_style_strength,
|
||||
}, // pm_params
|
||||
params.vae_tiling_params,
|
||||
};
|
||||
if (sd_ctx == NULL) {
|
||||
printf("new_sd_ctx_t failed\n");
|
||||
release_all_resources();
|
||||
return 1;
|
||||
}
|
||||
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
num_results = params.batch_count;
|
||||
} else if (params.mode == VID_GEN) {
|
||||
sd_vid_gen_params_t vid_gen_params = {
|
||||
params.prompt.c_str(),
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
init_image,
|
||||
end_image,
|
||||
control_frames.data(),
|
||||
(int)control_frames.size(),
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_params,
|
||||
params.high_noise_sample_params,
|
||||
params.moe_boundary,
|
||||
params.strength,
|
||||
params.seed,
|
||||
params.video_frames,
|
||||
params.vace_strength,
|
||||
};
|
||||
if (params.sample_params.sample_method == SAMPLE_METHOD_DEFAULT) {
|
||||
params.sample_params.sample_method = sd_get_default_sample_method(sd_ctx);
|
||||
}
|
||||
|
||||
results = generate_video(sd_ctx, &vid_gen_params, &num_results);
|
||||
}
|
||||
if (params.mode == IMG_GEN) {
|
||||
sd_img_gen_params_t img_gen_params = {
|
||||
params.prompt.c_str(),
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
init_image,
|
||||
ref_images.data(),
|
||||
(int)ref_images.size(),
|
||||
params.increase_ref_index,
|
||||
mask_image,
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_params,
|
||||
params.strength,
|
||||
params.seed,
|
||||
params.batch_count,
|
||||
control_image,
|
||||
params.control_strength,
|
||||
{
|
||||
pmid_images.data(),
|
||||
(int)pmid_images.size(),
|
||||
params.pm_id_embed_path.c_str(),
|
||||
params.pm_style_strength,
|
||||
}, // pm_params
|
||||
params.vae_tiling_params,
|
||||
};
|
||||
|
||||
results = generate_image(sd_ctx, &img_gen_params);
|
||||
num_results = params.batch_count;
|
||||
} else if (params.mode == VID_GEN) {
|
||||
sd_vid_gen_params_t vid_gen_params = {
|
||||
params.prompt.c_str(),
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
init_image,
|
||||
end_image,
|
||||
control_frames.data(),
|
||||
(int)control_frames.size(),
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_params,
|
||||
params.high_noise_sample_params,
|
||||
params.moe_boundary,
|
||||
params.strength,
|
||||
params.seed,
|
||||
params.video_frames,
|
||||
params.vace_strength,
|
||||
};
|
||||
|
||||
results = generate_video(sd_ctx, &vid_gen_params, &num_results);
|
||||
}
|
||||
|
||||
if (results == NULL) {
|
||||
printf("generate failed\n");
|
||||
free_sd_ctx(sd_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (results == NULL) {
|
||||
printf("generate failed\n");
|
||||
free_sd_ctx(sd_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int upscale_factor = 4; // unused for RealESRGAN_x4plus_anime_6B.pth
|
||||
@ -1439,7 +1460,7 @@ int main(int argc, const char* argv[]) {
|
||||
if (upscaler_ctx == NULL) {
|
||||
printf("new_upscaler_ctx failed\n");
|
||||
} else {
|
||||
for (int i = 0; i < params.batch_count; i++) {
|
||||
for (int i = 0; i < num_results; i++) {
|
||||
if (results[i].data == NULL) {
|
||||
continue;
|
||||
}
|
||||
@ -1525,7 +1546,6 @@ int main(int argc, const char* argv[]) {
|
||||
results[i].data = NULL;
|
||||
}
|
||||
free(results);
|
||||
free_sd_ctx(sd_ctx);
|
||||
|
||||
release_all_resources();
|
||||
|
||||
|
||||
8
model.h
8
model.h
@ -269,6 +269,14 @@ public:
|
||||
std::set<std::string> ignore_tensors = {},
|
||||
int n_threads = 0);
|
||||
|
||||
std::vector<std::string> get_tensor_names() const {
|
||||
std::vector<std::string> names;
|
||||
for (const auto& ts : tensor_storages) {
|
||||
names.push_back(ts.name);
|
||||
}
|
||||
return names;
|
||||
}
|
||||
|
||||
bool save_to_gguf_file(const std::string& file_path, ggml_type type, const std::string& tensor_type_rules);
|
||||
bool tensor_should_be_converted(const TensorStorage& tensor_storage, ggml_type type);
|
||||
int64_t get_params_mem_size(ggml_backend_t backend, ggml_type type = GGML_TYPE_COUNT);
|
||||
|
||||
@ -1096,7 +1096,7 @@ public:
|
||||
std::vector<int> skip_layers(guidance.slg.layers, guidance.slg.layers + guidance.slg.layer_count);
|
||||
|
||||
float cfg_scale = guidance.txt_cfg;
|
||||
float img_cfg_scale = guidance.img_cfg;
|
||||
float img_cfg_scale = isfinite(guidance.img_cfg) ? guidance.img_cfg : guidance.txt_cfg;
|
||||
float slg_scale = guidance.slg.scale;
|
||||
|
||||
if (img_cfg_scale != cfg_scale && !sd_version_is_inpaint_or_unet_edit(version)) {
|
||||
@ -1835,7 +1835,9 @@ char* sd_sample_params_to_str(const sd_sample_params_t* sample_params) {
|
||||
"eta: %.2f, "
|
||||
"shifted_timestep: %d)",
|
||||
sample_params->guidance.txt_cfg,
|
||||
sample_params->guidance.img_cfg,
|
||||
isfinite(sample_params->guidance.img_cfg)
|
||||
? sample_params->guidance.img_cfg
|
||||
: sample_params->guidance.txt_cfg,
|
||||
sample_params->guidance.distilled_guidance,
|
||||
sample_params->guidance.slg.layer_count,
|
||||
sample_params->guidance.slg.layer_start,
|
||||
@ -1996,7 +1998,9 @@ sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
|
||||
seed = rand();
|
||||
}
|
||||
|
||||
print_ggml_tensor(init_latent, true, "init");
|
||||
if (!isfinite(guidance.img_cfg)) {
|
||||
guidance.img_cfg = guidance.txt_cfg;
|
||||
}
|
||||
|
||||
// for (auto v : sigmas) {
|
||||
// std::cout << v << " ";
|
||||
|
||||
@ -284,6 +284,8 @@ SD_API sd_image_t upscale(upscaler_ctx_t* upscaler_ctx,
|
||||
sd_image_t input_image,
|
||||
uint32_t upscale_factor);
|
||||
|
||||
SD_API int get_upscale_factor(upscaler_ctx_t* upscaler_ctx);
|
||||
|
||||
SD_API bool convert(const char* input_path,
|
||||
const char* vae_path,
|
||||
const char* output_path,
|
||||
|
||||
@ -138,6 +138,13 @@ sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_
|
||||
return upscaler_ctx->upscaler->upscale(input_image, upscale_factor);
|
||||
}
|
||||
|
||||
int get_upscale_factor(upscaler_ctx_t* upscaler_ctx) {
|
||||
if (upscaler_ctx == NULL || upscaler_ctx->upscaler == NULL || upscaler_ctx->upscaler->esrgan_upscaler == NULL) {
|
||||
return 1;
|
||||
}
|
||||
return upscaler_ctx->upscaler->esrgan_upscaler->scale;
|
||||
}
|
||||
|
||||
void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx) {
|
||||
if (upscaler_ctx->upscaler != NULL) {
|
||||
delete upscaler_ctx->upscaler;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user