mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
Merge branch 'qwen_image' into qwen_image_edit
This commit is contained in:
commit
0741f1405f
12
common.hpp
12
common.hpp
@ -243,9 +243,8 @@ public:
|
||||
int64_t dim_out,
|
||||
int64_t mult = 4,
|
||||
Activation activation = Activation::GEGLU,
|
||||
bool force_prec_f32 = false) {
|
||||
bool precision_fix = false) {
|
||||
int64_t inner_dim = dim * mult;
|
||||
|
||||
if (activation == Activation::GELU) {
|
||||
blocks["net.0"] = std::shared_ptr<GGMLBlock>(new GELU(dim, inner_dim));
|
||||
} else {
|
||||
@ -253,7 +252,14 @@ public:
|
||||
}
|
||||
|
||||
// net_1 is nn.Dropout(), skip for inference
|
||||
blocks["net.2"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim_out, true, false, force_prec_f32));
|
||||
float scale = 1.f;
|
||||
if (precision_fix) {
|
||||
scale = 1.f / 128.f;
|
||||
}
|
||||
// The purpose of the scale here is to prevent NaN issues in certain situations.
|
||||
// For example, when using Vulkan without enabling force_prec_f32,
|
||||
// or when using CUDA but the weights are k-quants.
|
||||
blocks["net.2"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim_out, true, false, false, scale));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
|
||||
@ -56,6 +56,10 @@
|
||||
#define __STATIC_INLINE__ static inline
|
||||
#endif
|
||||
|
||||
#ifndef SD_UNUSED
|
||||
#define SD_UNUSED(x) (void)(x)
|
||||
#endif
|
||||
|
||||
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void*) {
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_DEBUG:
|
||||
@ -937,11 +941,18 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* w,
|
||||
struct ggml_tensor* b,
|
||||
bool force_prec_f32 = false) {
|
||||
bool force_prec_f32 = false,
|
||||
float scale = 1.f) {
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, scale);
|
||||
}
|
||||
x = ggml_mul_mat(ctx, w, x);
|
||||
if (force_prec_f32) {
|
||||
ggml_mul_mat_set_prec(x, GGML_PREC_F32);
|
||||
}
|
||||
if (scale != 1.f) {
|
||||
x = ggml_scale(ctx, x, 1.f / scale);
|
||||
}
|
||||
if (b != NULL) {
|
||||
x = ggml_add_inplace(ctx, x, b);
|
||||
}
|
||||
@ -1955,6 +1966,7 @@ protected:
|
||||
bool bias;
|
||||
bool force_f32;
|
||||
bool force_prec_f32;
|
||||
float scale;
|
||||
|
||||
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") {
|
||||
enum ggml_type wtype = get_type(prefix + "weight", tensor_types, GGML_TYPE_F32);
|
||||
@ -1973,12 +1985,14 @@ public:
|
||||
int64_t out_features,
|
||||
bool bias = true,
|
||||
bool force_f32 = false,
|
||||
bool force_prec_f32 = false)
|
||||
bool force_prec_f32 = false,
|
||||
float scale = 1.f)
|
||||
: in_features(in_features),
|
||||
out_features(out_features),
|
||||
bias(bias),
|
||||
force_f32(force_f32),
|
||||
force_prec_f32(force_prec_f32) {}
|
||||
force_prec_f32(force_prec_f32),
|
||||
scale(scale) {}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["weight"];
|
||||
@ -1986,7 +2000,7 @@ public:
|
||||
if (bias) {
|
||||
b = params["bias"];
|
||||
}
|
||||
return ggml_nn_linear(ctx, x, w, b, force_prec_f32);
|
||||
return ggml_nn_linear(ctx, x, w, b, force_prec_f32, scale);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user