Merge branch 'master' into vace

This commit is contained in:
leejet 2025-09-14 16:42:37 +08:00
commit 012e7a2290
24 changed files with 557 additions and 235 deletions

4
.gitignore vendored
View File

@ -1,10 +1,10 @@
build*/
cmake-build-*/
test/
.vscode/
.idea/
.cache/
*.swp
.vscode/
.idea/
*.bat
*.bin
*.exe

View File

@ -149,3 +149,7 @@ if (SD_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
set(SD_PUBLIC_HEADERS stable-diffusion.h)
set_target_properties(${SD_LIB} PROPERTIES PUBLIC_HEADER "${SD_PUBLIC_HEADERS}")
install(TARGETS ${SD_LIB} LIBRARY PUBLIC_HEADER)

19
Dockerfile.sycl Normal file
View File

@ -0,0 +1,19 @@
ARG SYCL_VERSION=2025.1.0-0
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS build
RUN apt-get update && apt-get install -y cmake
WORKDIR /sd.cpp
COPY . .
RUN mkdir build && cd build && \
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build . --config Release -j$(nproc)
FROM intel/oneapi-basekit:${SYCL_VERSION}-devel-ubuntu24.04 AS runtime
COPY --from=build /sd.cpp/build/bin/sd /sd
ENTRYPOINT [ "/sd" ]

View File

@ -60,14 +60,6 @@ API and command-line option may change frequently.***
- Windows
- Android (via Termux, [Local Diffusion](https://github.com/rmatif/Local-Diffusion))
### TODO
- [ ] More sampling methods
- [ ] Make inference faster
- The current implementation of ggml_conv_2d is slow and has high memory usage
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d)
- [ ] Implement Inpainting support
## Usage
For most users, you can download the built executable program from the latest [release](https://github.com/leejet/stable-diffusion.cpp/releases/latest).
@ -334,9 +326,9 @@ arguments:
--skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])
--skip-layer-start START SLG enabling point: (default: 0.01)
--skip-layer-end END SLG disabling point: (default: 0.2)
--scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)
--scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)
--sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}
sampling method (default: "euler_a")
sampling method (default: "euler" for Flux/SD3/Wan, "euler_a" otherwise)
--steps STEPS number of sample steps (default: 20)
--high-noise-cfg-scale SCALE (high noise) unconditional guidance scale: (default: 7.0)
--high-noise-img-cfg-scale SCALE (high noise) image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)
@ -347,7 +339,7 @@ arguments:
--high-noise-skip-layers LAYERS (high noise) Layers to skip for SLG steps: (default: [7,8,9])
--high-noise-skip-layer-start (high noise) SLG enabling point: (default: 0.01)
--high-noise-skip-layer-end END (high noise) SLG disabling point: (default: 0.2)
--high-noise-scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)
--high-noise-scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)
--high-noise-sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}
(high noise) sampling method (default: "euler_a")
--high-noise-steps STEPS (high noise) number of sample steps (default: -1 = auto)
@ -364,6 +356,9 @@ arguments:
--clip-skip N ignore last_dot_pos layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
--vae-tiling process vae in tiles to reduce memory usage
--vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)
--vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)
--vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)
--vae-on-cpu keep vae in cpu (for low vram)
--clip-on-cpu keep clip in cpu (for low vram)
--diffusion-fa use flash attention in the diffusion model (for low vram)
@ -393,9 +388,9 @@ arguments:
./bin/sd -m ../models/sd-v1-4.ckpt -p "a lovely cat"
# ./bin/sd -m ../models/v1-5-pruned-emaonly.safetensors -p "a lovely cat"
# ./bin/sd -m ../models/sd_xl_base_1.0.safetensors --vae ../models/sdxl_vae-fp16-fix.safetensors -H 1024 -W 1024 -p "a lovely cat" -v
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
# ./bin/sd -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
# ./bin/sd -m ../models/sd3_medium_incl_clips_t5xxlfp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable Diffusion CPP\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
# ./bin/sd --diffusion-model ../models/flux1-dev-q3_k.gguf --vae ../models/ae.sft --clip_l ../models/clip_l.safetensors --t5xxl ../models/t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
# ./bin/sd -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
```
Using formats of different precisions will yield results of varying quality.

View File

@ -548,9 +548,15 @@ protected:
int64_t embed_dim;
int64_t vocab_size;
int64_t num_positions;
bool force_clip_f32;
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, const std::string prefix = "") {
enum ggml_type token_wtype = GGML_TYPE_F32;
enum ggml_type token_wtype = GGML_TYPE_F32;
if (!force_clip_f32) {
auto tensor_type = tensor_types.find(prefix + "token_embedding.weight");
if (tensor_type != tensor_types.end())
token_wtype = tensor_type->second;
}
enum ggml_type position_wtype = GGML_TYPE_F32;
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, token_wtype, embed_dim, vocab_size);
@ -560,10 +566,12 @@ protected:
public:
CLIPEmbeddings(int64_t embed_dim,
int64_t vocab_size = 49408,
int64_t num_positions = 77)
int64_t num_positions = 77,
bool force_clip_f32 = false)
: embed_dim(embed_dim),
vocab_size(vocab_size),
num_positions(num_positions) {
num_positions(num_positions),
force_clip_f32(force_clip_f32) {
}
struct ggml_tensor* get_token_embed_weight() {
@ -678,12 +686,11 @@ public:
int32_t n_head = 12;
int32_t n_layer = 12; // num_hidden_layers
int32_t projection_dim = 1280; // only for OPEN_CLIP_VIT_BIGG_14
int32_t clip_skip = -1;
bool with_final_ln = true;
CLIPTextModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14,
bool with_final_ln = true,
int clip_skip_value = -1)
bool force_clip_f32 = false)
: version(version), with_final_ln(with_final_ln) {
if (version == OPEN_CLIP_VIT_H_14) {
hidden_size = 1024;
@ -696,20 +703,12 @@ public:
n_head = 20;
n_layer = 32;
}
set_clip_skip(clip_skip_value);
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token));
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token, force_clip_f32));
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size));
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size));
}
void set_clip_skip(int skip) {
if (skip <= 0) {
skip = -1;
}
clip_skip = skip;
}
struct ggml_tensor* get_token_embed_weight() {
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
return embeddings->get_token_embed_weight();
@ -720,7 +719,8 @@ public:
struct ggml_tensor* input_ids,
struct ggml_tensor* tkn_embeddings,
size_t max_token_idx = 0,
bool return_pooled = false) {
bool return_pooled = false,
int clip_skip = -1) {
// input_ids: [N, n_token]
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
@ -889,8 +889,8 @@ struct CLIPTextModelRunner : public GGMLRunner {
const std::string prefix,
CLIPVersion version = OPENAI_CLIP_VIT_L_14,
bool with_final_ln = true,
int clip_skip_value = -1)
: GGMLRunner(backend, offload_params_to_cpu), model(version, with_final_ln, clip_skip_value) {
bool force_clip_f32 = false)
: GGMLRunner(backend, offload_params_to_cpu), model(version, with_final_ln, force_clip_f32) {
model.init(params_ctx, tensor_types, prefix);
}
@ -898,10 +898,6 @@ struct CLIPTextModelRunner : public GGMLRunner {
return "clip";
}
void set_clip_skip(int clip_skip) {
model.set_clip_skip(clip_skip);
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
@ -911,7 +907,8 @@ struct CLIPTextModelRunner : public GGMLRunner {
struct ggml_tensor* input_ids,
struct ggml_tensor* embeddings,
size_t max_token_idx = 0,
bool return_pooled = false) {
bool return_pooled = false,
int clip_skip = -1) {
size_t N = input_ids->ne[1];
size_t n_token = input_ids->ne[0];
if (input_ids->ne[0] > model.n_token) {
@ -919,14 +916,15 @@ struct CLIPTextModelRunner : public GGMLRunner {
input_ids = ggml_reshape_2d(ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
}
return model.forward(ctx, backend, input_ids, embeddings, max_token_idx, return_pooled);
return model.forward(ctx, backend, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
int num_custom_embeddings = 0,
void* custom_embeddings_data = NULL,
size_t max_token_idx = 0,
bool return_pooled = false) {
bool return_pooled = false,
int clip_skip = -1) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
input_ids = to_backend(input_ids);
@ -945,7 +943,7 @@ struct CLIPTextModelRunner : public GGMLRunner {
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
}
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, embeddings, max_token_idx, return_pooled);
struct ggml_tensor* hidden_states = forward(compute_ctx, runtime_backend, input_ids, embeddings, max_token_idx, return_pooled, clip_skip);
ggml_build_forward_expand(gf, hidden_states);
@ -958,10 +956,11 @@ struct CLIPTextModelRunner : public GGMLRunner {
void* custom_embeddings_data,
size_t max_token_idx,
bool return_pooled,
int clip_skip,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled);
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled, clip_skip);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}

View File

@ -61,30 +61,16 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
const String2GGMLType& tensor_types,
const std::string& embd_dir,
SDVersion version = VERSION_SD1,
PMVersion pv = PM_VERSION_1,
int clip_skip = -1)
PMVersion pv = PM_VERSION_1)
: version(version), pm_version(pv), tokenizer(sd_version_is_sd2(version) ? 0 : 49407), embd_dir(embd_dir) {
bool force_clip_f32 = embd_dir.size() > 0;
if (sd_version_is_sd1(version)) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14);
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, true, force_clip_f32);
} else if (sd_version_is_sd2(version)) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14);
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14, true, force_clip_f32);
} else if (sd_version_is_sdxl(version)) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
}
set_clip_skip(clip_skip);
}
void set_clip_skip(int clip_skip) {
if (clip_skip <= 0) {
clip_skip = 1;
if (sd_version_is_sd2(version) || sd_version_is_sdxl(version)) {
clip_skip = 2;
}
}
text_model->set_clip_skip(clip_skip);
if (sd_version_is_sdxl(version)) {
text_model2->set_clip_skip(clip_skip);
text_model = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, false, force_clip_f32);
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false, force_clip_f32);
}
}
@ -129,7 +115,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
return true;
}
struct ggml_init_params params;
params.mem_size = 10 * 1024 * 1024; // max for custom embeddings 10 MB
params.mem_size = 100 * 1024 * 1024; // max for custom embeddings 100 MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* embd_ctx = ggml_init(params);
@ -412,7 +398,6 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
int height,
int adm_in_channels = -1,
bool zero_out_masked = false) {
set_clip_skip(clip_skip);
int64_t t0 = ggml_time_ms();
struct ggml_tensor* hidden_states = NULL; // [N, n_token, hidden_size]
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, hidden_size] or [n_token, hidden_size + hidden_size2]
@ -421,6 +406,10 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
struct ggml_tensor* pooled = NULL;
std::vector<float> hidden_states_vec;
if (clip_skip <= 0) {
clip_skip = (sd_version_is_sd2(version) || sd_version_is_sdxl(version)) ? 2 : 1;
}
size_t chunk_len = 77;
size_t chunk_count = tokens.size() / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
@ -455,6 +444,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
token_embed_custom.data(),
max_token_idx,
false,
clip_skip,
&chunk_hidden_states1,
work_ctx);
if (sd_version_is_sdxl(version)) {
@ -464,6 +454,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
token_embed_custom.data(),
max_token_idx,
false,
clip_skip,
&chunk_hidden_states2, work_ctx);
// concat
chunk_hidden_states = ggml_tensor_concat(work_ctx, chunk_hidden_states1, chunk_hidden_states2, 0);
@ -475,6 +466,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
token_embed_custom.data(),
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
}
@ -669,21 +661,11 @@ struct SD3CLIPEmbedder : public Conditioner {
SD3CLIPEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {},
int clip_skip = -1)
const String2GGMLType& tensor_types = {})
: clip_g_tokenizer(0) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, false);
clip_g = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, false);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
set_clip_skip(clip_skip);
}
void set_clip_skip(int clip_skip) {
if (clip_skip <= 0) {
clip_skip = 2;
}
clip_l->set_clip_skip(clip_skip);
clip_g->set_clip_skip(clip_skip);
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
@ -780,7 +762,6 @@ struct SD3CLIPEmbedder : public Conditioner {
std::vector<std::pair<std::vector<int>, std::vector<float>>> token_and_weights,
int clip_skip,
bool zero_out_masked = false) {
set_clip_skip(clip_skip);
auto& clip_l_tokens = token_and_weights[0].first;
auto& clip_l_weights = token_and_weights[0].second;
auto& clip_g_tokens = token_and_weights[1].first;
@ -788,6 +769,10 @@ struct SD3CLIPEmbedder : public Conditioner {
auto& t5_tokens = token_and_weights[2].first;
auto& t5_weights = token_and_weights[2].second;
if (clip_skip <= 0) {
clip_skip = 2;
}
int64_t t0 = ggml_time_ms();
struct ggml_tensor* hidden_states = NULL; // [N, n_token*2, 4096]
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token*2, 4096]
@ -818,6 +803,7 @@ struct SD3CLIPEmbedder : public Conditioner {
NULL,
max_token_idx,
false,
clip_skip,
&chunk_hidden_states_l,
work_ctx);
{
@ -845,6 +831,7 @@ struct SD3CLIPEmbedder : public Conditioner {
NULL,
max_token_idx,
true,
clip_skip,
&pooled_l,
work_ctx);
}
@ -866,6 +853,7 @@ struct SD3CLIPEmbedder : public Conditioner {
NULL,
max_token_idx,
false,
clip_skip,
&chunk_hidden_states_g,
work_ctx);
@ -894,6 +882,7 @@ struct SD3CLIPEmbedder : public Conditioner {
NULL,
max_token_idx,
true,
clip_skip,
&pooled_g,
work_ctx);
}
@ -1017,18 +1006,9 @@ struct FluxCLIPEmbedder : public Conditioner {
FluxCLIPEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {},
int clip_skip = -1) {
const String2GGMLType& tensor_types = {}) {
clip_l = std::make_shared<CLIPTextModelRunner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, true);
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer");
set_clip_skip(clip_skip);
}
void set_clip_skip(int clip_skip) {
if (clip_skip <= 0) {
clip_skip = 2;
}
clip_l->set_clip_skip(clip_skip);
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
@ -1109,12 +1089,15 @@ struct FluxCLIPEmbedder : public Conditioner {
std::vector<std::pair<std::vector<int>, std::vector<float>>> token_and_weights,
int clip_skip,
bool zero_out_masked = false) {
set_clip_skip(clip_skip);
auto& clip_l_tokens = token_and_weights[0].first;
auto& clip_l_weights = token_and_weights[0].second;
auto& t5_tokens = token_and_weights[1].first;
auto& t5_weights = token_and_weights[1].second;
if (clip_skip <= 0) {
clip_skip = 2;
}
int64_t t0 = ggml_time_ms();
struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096]
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096]
@ -1143,6 +1126,7 @@ struct FluxCLIPEmbedder : public Conditioner {
NULL,
max_token_idx,
true,
clip_skip,
&pooled,
work_ctx);
}
@ -1241,7 +1225,6 @@ struct T5CLIPEmbedder : public Conditioner {
T5CLIPEmbedder(ggml_backend_t backend,
bool offload_params_to_cpu,
const String2GGMLType& tensor_types = {},
int clip_skip = -1,
bool use_mask = false,
int mask_pad = 1,
bool is_umt5 = false)
@ -1249,9 +1232,6 @@ struct T5CLIPEmbedder : public Conditioner {
t5 = std::make_shared<T5Runner>(backend, offload_params_to_cpu, tensor_types, "text_encoders.t5xxl.transformer", is_umt5);
}
void set_clip_skip(int clip_skip) {
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}

View File

@ -251,6 +251,35 @@ struct KarrasSchedule : SigmaSchedule {
}
};
// Close to Beta Schedule, but increadably simple in code.
struct SmoothStepSchedule : SigmaSchedule {
static constexpr float smoothstep(float x) {
return x * x * (3.0f - 2.0f * x);
}
std::vector<float> get_sigmas(uint32_t n, float /*sigma_min*/, float /*sigma_max*/, t_to_sigma_t t_to_sigma) override {
std::vector<float> result;
result.reserve(n + 1);
const int t_max = TIMESTEPS - 1;
if (n == 0) {
return result;
} else if (n == 1) {
result.push_back(t_to_sigma((float)t_max));
result.push_back(0.f);
return result;
}
for (uint32_t i = 0; i < n; i++) {
float u = 1.f - float(i) / float(n);
result.push_back(t_to_sigma(std::round(smoothstep(u) * t_max)));
}
result.push_back(0.f);
return result;
}
};
struct Denoiser {
std::shared_ptr<SigmaSchedule> scheduler = std::make_shared<DiscreteSchedule>();
virtual float sigma_min() = 0;

View File

@ -97,8 +97,9 @@ struct MMDiTModel : public DiffusionModel {
MMDiTModel(ggml_backend_t backend,
bool offload_params_to_cpu,
bool flash_attn = false,
const String2GGMLType& tensor_types = {})
: mmdit(backend, offload_params_to_cpu, tensor_types, "model.diffusion_model") {
: mmdit(backend, offload_params_to_cpu, flash_attn, tensor_types, "model.diffusion_model") {
}
std::string get_desc() {

View File

@ -24,7 +24,7 @@ You can download the preconverted gguf weights from [silveroxides/Chroma-GGUF](h
For example:
```
.\bin\Release\sd.exe --diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask
.\bin\Release\sd.exe --diffusion-model ..\models\chroma-unlocked-v40-q8_0.gguf --vae ..\models\ae.sft --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'chroma.cpp'" --cfg-scale 4.0 --sampling-method euler -v --chroma-disable-dit-mask --clip-on-cpu
```
![](../assets/flux/chroma_v40.png)

View File

@ -28,7 +28,7 @@ Using fp16 will lead to overflow, but ggml's support for bf16 is not yet fully d
For example:
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
```
Using formats of different precisions will yield results of varying quality.
@ -44,7 +44,7 @@ Using formats of different precisions will yield results of varying quality.
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-schnell-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'" --cfg-scale 1.0 --sampling-method euler -v --steps 4 --clip-on-cpu
```
| q8_0 |
@ -60,7 +60,7 @@ Since many flux LoRA training libraries have used various LoRA naming formats, i
- LoRA model from https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main (using comfy converted version!!!)
```
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models
.\bin\Release\sd.exe --diffusion-model ..\models\flux1-dev-q8_0.gguf --vae ...\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "a lovely cat holding a sign says 'flux.cpp'<lora:realism_lora_comfy_converted:1>" --cfg-scale 1.0 --sampling-method euler -v --lora-model-dir ../models --clip-on-cpu
```
![output](../assets/flux/flux1-dev-q8_0%20with%20lora.png)

View File

@ -27,7 +27,7 @@ You can download the preconverted gguf weights from [FLUX.1-Kontext-dev-GGUF](ht
For example:
```
.\bin\Release\sd.exe -r .\flux1-dev-q8_0.png --diffusion-model ..\models\flux1-kontext-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "change 'flux.cpp' to 'kontext.cpp'" --cfg-scale 1.0 --sampling-method euler -v
.\bin\Release\sd.exe -r .\flux1-dev-q8_0.png --diffusion-model ..\models\flux1-kontext-dev-q8_0.gguf --vae ..\models\ae.sft --clip_l ..\models\clip_l.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -p "change 'flux.cpp' to 'kontext.cpp'" --cfg-scale 1.0 --sampling-method euler -v --clip-on-cpu
```

View File

@ -14,7 +14,7 @@
For example:
```
.\bin\Release\sd.exe -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v
.\bin\Release\sd.exe -m ..\models\sd3.5_large.safetensors --clip_l ..\models\clip_l.safetensors --clip_g ..\models\clip_g.safetensors --t5xxl ..\models\t5xxl_fp16.safetensors -H 1024 -W 1024 -p 'a lovely cat holding a sign says \"Stable diffusion 3.5 Large\"' --cfg-scale 4.5 --sampling-method euler -v --clip-on-cpu
```
![](../assets/sd3.5_large.png)

View File

@ -104,7 +104,6 @@ struct SDParams {
rng_type_t rng_type = CUDA_RNG;
int64_t seed = 42;
bool verbose = false;
bool vae_tiling = false;
bool offload_params_to_cpu = false;
bool control_net_cpu = false;
bool normalize_input = false;
@ -122,6 +121,8 @@ struct SDParams {
int chroma_t5_mask_pad = 1;
float flow_shift = INFINITY;
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
SDParams() {
sd_sample_params_init(&sample_params);
sd_sample_params_init(&high_noise_sample_params);
@ -184,7 +185,7 @@ void print_params(SDParams params) {
printf(" rng: %s\n", sd_rng_type_name(params.rng_type));
printf(" seed: %zd\n", params.seed);
printf(" batch_count: %d\n", params.batch_count);
printf(" vae_tiling: %s\n", params.vae_tiling ? "true" : "false");
printf(" vae_tiling: %s\n", params.vae_tiling_params.enabled ? "true" : "false");
printf(" upscale_repeats: %d\n", params.upscale_repeats);
printf(" chroma_use_dit_mask: %s\n", params.chroma_use_dit_mask ? "true" : "false");
printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false");
@ -246,9 +247,9 @@ void print_usage(int argc, const char* argv[]) {
printf(" --skip-layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --skip-layer-start START SLG enabling point: (default: 0.01)\n");
printf(" --skip-layer-end END SLG disabling point: (default: 0.2)\n");
printf(" --scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)\n");
printf(" --scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)\n");
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}\n");
printf(" sampling method (default: \"euler_a\")\n");
printf(" sampling method (default: \"euler\" for Flux/SD3/Wan, \"euler_a\" otherwise)\n");
printf(" --steps STEPS number of sample steps (default: 20)\n");
printf(" --high-noise-cfg-scale SCALE (high noise) unconditional guidance scale: (default: 7.0)\n");
printf(" --high-noise-img-cfg-scale SCALE (high noise) image guidance scale for inpaint or instruct-pix2pix models: (default: same as --cfg-scale)\n");
@ -259,7 +260,7 @@ void print_usage(int argc, const char* argv[]) {
printf(" --high-noise-skip-layers LAYERS (high noise) Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --high-noise-skip-layer-start (high noise) SLG enabling point: (default: 0.01)\n");
printf(" --high-noise-skip-layer-end END (high noise) SLG disabling point: (default: 0.2)\n");
printf(" --high-noise-scheduler {discrete, karras, exponential, ays, gits} Denoiser sigma scheduler (default: discrete)\n");
printf(" --high-noise-scheduler {discrete, karras, exponential, ays, gits, smoothstep} Denoiser sigma scheduler (default: discrete)\n");
printf(" --high-noise-sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing, tcd}\n");
printf(" (high noise) sampling method (default: \"euler_a\")\n");
printf(" --high-noise-steps STEPS (high noise) number of sample steps (default: -1 = auto)\n");
@ -276,6 +277,9 @@ void print_usage(int argc, const char* argv[]) {
printf(" --clip-skip N ignore last_dot_pos layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
printf(" --vae-tile-size [X]x[Y] tile size for vae tiling (default: 32x32)\n");
printf(" --vae-relative-tile-size [X]x[Y] relative tile size for vae tiling, in fraction of image size if < 1, in number of tiles per dim if >=1 (overrides --vae-tile-size)\n");
printf(" --vae-tile-overlap OVERLAP tile overlap for vae tiling, in fraction of tile size (default: 0.5)\n");
printf(" --vae-on-cpu keep vae in cpu (for low vram)\n");
printf(" --clip-on-cpu keep clip in cpu (for low vram)\n");
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
@ -495,7 +499,6 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"-o", "--output", "", &params.output_path},
{"-p", "--prompt", "", &params.prompt},
{"-n", "--negative-prompt", "", &params.negative_prompt},
{"", "--upscale-model", "", &params.esrgan_path},
};
@ -534,10 +537,11 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"", "--moe-boundary", "", &params.moe_boundary},
{"", "--flow-shift", "", &params.flow_shift},
{"", "--vace-strength", "", &params.vace_strength},
{"", "--vae-tile-overlap", "", &params.vae_tiling_params.target_overlap},
};
options.bool_options = {
{"", "--vae-tiling", "", true, &params.vae_tiling},
{"", "--vae-tiling", "", true, &params.vae_tiling_params.enabled},
{"", "--offload-to-cpu", "", true, &params.offload_params_to_cpu},
{"", "--control-net-cpu", "", true, &params.control_net_cpu},
{"", "--normalize-input", "", true, &params.normalize_input},
@ -737,6 +741,52 @@ void parse_args(int argc, const char** argv, SDParams& params) {
return 1;
};
auto on_tile_size_arg = [&](int argc, const char** argv, int index) {
if (++index >= argc) {
return -1;
}
std::string tile_size_str = argv[index];
size_t x_pos = tile_size_str.find('x');
try {
if (x_pos != std::string::npos) {
std::string tile_x_str = tile_size_str.substr(0, x_pos);
std::string tile_y_str = tile_size_str.substr(x_pos + 1);
params.vae_tiling_params.tile_size_x = std::stoi(tile_x_str);
params.vae_tiling_params.tile_size_y = std::stoi(tile_y_str);
} else {
params.vae_tiling_params.tile_size_x = params.vae_tiling_params.tile_size_y = std::stoi(tile_size_str);
}
} catch (const std::invalid_argument& e) {
return -1;
} catch (const std::out_of_range& e) {
return -1;
}
return 1;
};
auto on_relative_tile_size_arg = [&](int argc, const char** argv, int index) {
if (++index >= argc) {
return -1;
}
std::string rel_size_str = argv[index];
size_t x_pos = rel_size_str.find('x');
try {
if (x_pos != std::string::npos) {
std::string rel_x_str = rel_size_str.substr(0, x_pos);
std::string rel_y_str = rel_size_str.substr(x_pos + 1);
params.vae_tiling_params.rel_size_x = std::stof(rel_x_str);
params.vae_tiling_params.rel_size_y = std::stof(rel_y_str);
} else {
params.vae_tiling_params.rel_size_x = params.vae_tiling_params.rel_size_y = std::stof(rel_size_str);
}
} catch (const std::invalid_argument& e) {
return -1;
} catch (const std::out_of_range& e) {
return -1;
}
return 1;
};
options.manual_options = {
{"-M", "--mode", "", on_mode_arg},
{"", "--type", "", on_type_arg},
@ -750,6 +800,8 @@ void parse_args(int argc, const char** argv, SDParams& params) {
{"", "--high-noise-skip-layers", "", on_high_noise_skip_layers_arg},
{"-r", "--ref-image", "", on_ref_image_arg},
{"-h", "--help", "", on_help_arg},
{"", "--vae-tile-size", "", on_tile_size_arg},
{"", "--vae-relative-tile-size", "", on_relative_tile_size_arg},
};
if (!parse_options(argc, argv, options)) {
@ -1233,7 +1285,6 @@ int main(int argc, const char* argv[]) {
params.embedding_dir.c_str(),
params.stacked_id_embed_dir.c_str(),
vae_decode_only,
params.vae_tiling,
true,
params.n_threads,
params.wtype,
@ -1259,6 +1310,10 @@ int main(int argc, const char* argv[]) {
return 1;
}
if (params.sample_params.sample_method == SAMPLE_METHOD_DEFAULT) {
params.sample_params.sample_method = sd_get_default_sample_method(sd_ctx);
}
sd_image_t* results;
int num_results = 1;
if (params.mode == IMG_GEN) {
@ -1282,6 +1337,7 @@ int main(int argc, const char* argv[]) {
params.style_ratio,
params.normalize_input,
params.input_id_images_path.c_str(),
params.vae_tiling_params,
};
results = generate_image(sd_ctx, &img_gen_params);

View File

@ -56,6 +56,25 @@
#define __STATIC_INLINE__ static inline
#endif
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void*) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG:
LOG_DEBUG(text);
break;
case GGML_LOG_LEVEL_INFO:
LOG_INFO(text);
break;
case GGML_LOG_LEVEL_WARN:
LOG_WARN(text);
break;
case GGML_LOG_LEVEL_ERROR:
LOG_ERROR(text);
break;
default:
LOG_DEBUG(text);
}
}
static_assert(GGML_MAX_NAME >= 128, "GGML_MAX_NAME must be at least 128");
// n-mode trensor-matrix product
@ -124,13 +143,6 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_kronecker(ggml_context* ctx, struct g
b);
}
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
(void)level;
(void)user_data;
fputs(text, stderr);
fflush(stderr);
}
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
uint32_t n = (uint32_t)ggml_nelements(tensor);
std::vector<float> random_numbers = rng->randn(n);
@ -512,7 +524,10 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output,
int x,
int y,
int overlap) {
int overlap_x,
int overlap_y,
int x_skip = 0,
int y_skip = 0) {
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
@ -521,17 +536,17 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
int64_t img_height = output->ne[1];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int iy = y_skip; iy < height; iy++) {
for (int ix = x_skip; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
if (overlap > 0) { // blend colors in overlapped area
if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
const float x_f_0 = (x > 0) ? ix / float(overlap) : 1;
const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1;
const float y_f_0 = (y > 0) ? iy / float(overlap) : 1;
const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1;
const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1;
const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1;
const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1;
const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1;
const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);
@ -763,22 +778,102 @@ __STATIC_INLINE__ std::vector<struct ggml_tensor*> ggml_chunk(struct ggml_contex
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
__STATIC_INLINE__ void sd_tiling_calc_tiles(int& num_tiles_dim,
float& tile_overlap_factor_dim,
int small_dim,
int tile_size,
const float tile_overlap_factor) {
int tile_overlap = (tile_size * tile_overlap_factor);
int non_tile_overlap = tile_size - tile_overlap;
num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap;
int overshoot_dim = ((num_tiles_dim + 1) * non_tile_overlap + tile_overlap) % small_dim;
if ((overshoot_dim != non_tile_overlap) && (overshoot_dim <= num_tiles_dim * (tile_size / 2 - tile_overlap))) {
// if tiles don't fit perfectly using the desired overlap
// and there is enough room to squeeze an extra tile without overlap becoming >0.5
num_tiles_dim++;
}
tile_overlap_factor_dim = (float)(tile_size * num_tiles_dim - small_dim) / (float)(tile_size * (num_tiles_dim - 1));
if (num_tiles_dim <= 2) {
if (small_dim <= tile_size) {
num_tiles_dim = 1;
tile_overlap_factor_dim = 0;
} else {
num_tiles_dim = 2;
tile_overlap_factor_dim = (2 * tile_size - small_dim) / (float)tile_size;
}
}
}
// Tiling
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
__STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input,
ggml_tensor* output,
const int scale,
const int p_tile_size_x,
const int p_tile_size_y,
const float tile_overlap_factor,
on_tile_process on_processing) {
output = ggml_set_f32(output, 0);
int input_width = (int)input->ne[0];
int input_height = (int)input->ne[1];
int output_width = (int)output->ne[0];
int output_height = (int)output->ne[1];
GGML_ASSERT(((input_width / output_width) == (input_height / output_height)) &&
((output_width / input_width) == (output_height / input_height)));
GGML_ASSERT(((input_width / output_width) == scale) ||
((output_width / input_width) == scale));
int small_width = output_width;
int small_height = output_height;
bool decode = output_width > input_width;
if (decode) {
small_width = input_width;
small_height = input_height;
}
int num_tiles_x;
float tile_overlap_factor_x;
sd_tiling_calc_tiles(num_tiles_x, tile_overlap_factor_x, small_width, p_tile_size_x, tile_overlap_factor);
int num_tiles_y;
float tile_overlap_factor_y;
sd_tiling_calc_tiles(num_tiles_y, tile_overlap_factor_y, small_height, p_tile_size_y, tile_overlap_factor);
LOG_DEBUG("num tiles : %d, %d ", num_tiles_x, num_tiles_y);
LOG_DEBUG("optimal overlap : %f, %f (targeting %f)", tile_overlap_factor_x, tile_overlap_factor_y, tile_overlap_factor);
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
int non_tile_overlap = tile_size - tile_overlap;
int tile_overlap_x = (int32_t)(p_tile_size_x * tile_overlap_factor_x);
int non_tile_overlap_x = p_tile_size_x - tile_overlap_x;
int tile_overlap_y = (int32_t)(p_tile_size_y * tile_overlap_factor_y);
int non_tile_overlap_y = p_tile_size_y - tile_overlap_y;
int tile_size_x = p_tile_size_x < small_width ? p_tile_size_x : small_width;
int tile_size_y = p_tile_size_y < small_height ? p_tile_size_y : small_height;
int input_tile_size_x = tile_size_x;
int input_tile_size_y = tile_size_y;
int output_tile_size_x = tile_size_x;
int output_tile_size_y = tile_size_y;
if (decode) {
output_tile_size_x *= scale;
output_tile_size_y *= scale;
} else {
input_tile_size_x *= scale;
input_tile_size_y *= scale;
}
struct ggml_init_params params = {};
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * sizeof(float); // input chunk
params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
@ -793,29 +888,50 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
}
// tiling
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
on_processing(input_tile, NULL, true);
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], 1);
int num_tiles = num_tiles_x * num_tiles_y;
LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(1, num_tiles, 0.0f);
pretty_progress(0, num_tiles, 0.0f);
int tile_count = 1;
bool last_y = false, last_x = false;
float last_time = 0.0f;
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
if (y + tile_size >= input_height) {
y = input_height - tile_size;
for (int y = 0; y < small_height && !last_y; y += non_tile_overlap_y) {
int dy = 0;
if (y + tile_size_y >= small_height) {
int _y = y;
y = small_height - tile_size_y;
dy = _y - y;
if (decode) {
dy *= scale;
}
last_y = true;
}
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
if (x + tile_size >= input_width) {
x = input_width - tile_size;
for (int x = 0; x < small_width && !last_x; x += non_tile_overlap_x) {
int dx = 0;
if (x + tile_size_x >= small_width) {
int _x = x;
x = small_width - tile_size_x;
dx = _x - x;
if (decode) {
dx *= scale;
}
last_x = true;
}
int x_in = decode ? x : scale * x;
int y_in = decode ? y : scale * y;
int x_out = decode ? x * scale : x;
int y_out = decode ? y * scale : y;
int overlap_x_out = decode ? tile_overlap_x * scale : tile_overlap_x;
int overlap_y_out = decode ? tile_overlap_y * scale : tile_overlap_y;
int64_t t1 = ggml_time_ms();
ggml_split_tensor_2d(input, input_tile, x, y);
ggml_split_tensor_2d(input, input_tile, x_in, y_in);
on_processing(input_tile, output_tile, false);
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
ggml_merge_tensor_2d(output_tile, output, x_out, y_out, overlap_x_out, overlap_y_out, dx, dy);
int64_t t2 = ggml_time_ms();
last_time = (t2 - t1) / 1000.0f;
pretty_progress(tile_count, num_tiles, last_time);
@ -829,6 +945,15 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
ggml_free(tiles_ctx);
}
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input,
ggml_tensor* output,
const int scale,
const int tile_size,
const float tile_overlap_factor,
on_tile_process on_processing) {
sd_tiling_non_square(input, output, scale, tile_size, tile_size, tile_overlap_factor, on_processing);
}
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
struct ggml_tensor* a) {
const float eps = 1e-6f; // default eps parameter

View File

@ -147,14 +147,16 @@ public:
int64_t num_heads;
bool pre_only;
std::string qk_norm;
bool flash_attn;
public:
SelfAttention(int64_t dim,
int64_t num_heads = 8,
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false)
: num_heads(num_heads), pre_only(pre_only), qk_norm(qk_norm) {
bool pre_only = false,
bool flash_attn = false)
: num_heads(num_heads), pre_only(pre_only), qk_norm(qk_norm), flash_attn(flash_attn) {
int64_t d_head = dim / num_heads;
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * 3, qkv_bias));
if (!pre_only) {
@ -206,8 +208,8 @@ public:
ggml_backend_t backend,
struct ggml_tensor* x) {
auto qkv = pre_attention(ctx, x);
x = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
x = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, true); // [N, n_token, dim]
x = post_attention(ctx, x); // [N, n_token, dim]
return x;
}
};
@ -232,6 +234,7 @@ public:
int64_t num_heads;
bool pre_only;
bool self_attn;
bool flash_attn;
public:
DismantledBlock(int64_t hidden_size,
@ -240,16 +243,17 @@ public:
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn = false)
bool self_attn = false,
bool flash_attn = false)
: num_heads(num_heads), pre_only(pre_only), self_attn(self_attn) {
// rmsnorm is always Flase
// scale_mod_only is always Flase
// swiglu is always Flase
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
blocks["attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, pre_only));
blocks["attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, pre_only, flash_attn));
if (self_attn) {
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, false));
blocks["attn2"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qk_norm, qkv_bias, false, flash_attn));
}
if (!pre_only) {
@ -435,8 +439,8 @@ public:
auto qkv2 = std::get<1>(qkv_intermediates);
auto intermediates = std::get<2>(qkv_intermediates);
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, backend, qkv2[0], qkv2[1], qkv2[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
auto attn2_out = ggml_nn_attention_ext(ctx, backend, qkv2[0], qkv2[1], qkv2[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = post_attention_x(ctx,
attn_out,
attn2_out,
@ -452,7 +456,7 @@ public:
auto qkv = qkv_intermediates.first;
auto intermediates = qkv_intermediates.second;
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads); // [N, n_token, dim]
auto attn_out = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], num_heads, NULL, false, false, flash_attn); // [N, n_token, dim]
x = post_attention(ctx,
attn_out,
intermediates[0],
@ -468,6 +472,7 @@ public:
__STATIC_INLINE__ std::pair<struct ggml_tensor*, struct ggml_tensor*>
block_mixing(struct ggml_context* ctx,
ggml_backend_t backend,
bool flash_attn,
struct ggml_tensor* context,
struct ggml_tensor* x,
struct ggml_tensor* c,
@ -497,8 +502,8 @@ block_mixing(struct ggml_context* ctx,
qkv.push_back(ggml_concat(ctx, context_qkv[i], x_qkv[i], 1));
}
auto attn = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], x_block->num_heads); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto attn = ggml_nn_attention_ext(ctx, backend, qkv[0], qkv[1], qkv[2], x_block->num_heads, NULL, false, false, flash_attn); // [N, n_context + n_token, hidden_size]
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_context + n_token, N, hidden_size]
auto context_attn = ggml_view_3d(ctx,
attn,
attn->ne[0],
@ -556,6 +561,8 @@ block_mixing(struct ggml_context* ctx,
}
struct JointBlock : public GGMLBlock {
bool flash_attn;
public:
JointBlock(int64_t hidden_size,
int64_t num_heads,
@ -563,9 +570,11 @@ public:
std::string qk_norm = "",
bool qkv_bias = false,
bool pre_only = false,
bool self_attn_x = false) {
blocks["context_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, pre_only));
blocks["x_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, false, self_attn_x));
bool self_attn_x = false,
bool flash_attn = false)
: flash_attn(flash_attn) {
blocks["context_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, pre_only, false, flash_attn));
blocks["x_block"] = std::shared_ptr<GGMLBlock>(new DismantledBlock(hidden_size, num_heads, mlp_ratio, qk_norm, qkv_bias, false, self_attn_x, flash_attn));
}
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
@ -576,7 +585,7 @@ public:
auto context_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["context_block"]);
auto x_block = std::dynamic_pointer_cast<DismantledBlock>(blocks["x_block"]);
return block_mixing(ctx, backend, context, x, c, context_block, x_block);
return block_mixing(ctx, backend, flash_attn, context, x, c, context_block, x_block);
}
};
@ -634,6 +643,7 @@ protected:
int64_t context_embedder_out_dim = 1536;
int64_t hidden_size;
std::string qk_norm;
bool flash_attn = false;
void init_params(struct ggml_context* ctx, const String2GGMLType& tensor_types = {}, std::string prefix = "") {
enum ggml_type wtype = GGML_TYPE_F32;
@ -641,7 +651,8 @@ protected:
}
public:
MMDiT(const String2GGMLType& tensor_types = {}) {
MMDiT(bool flash_attn = false, const String2GGMLType& tensor_types = {})
: flash_attn(flash_attn) {
// input_size is always None
// learn_sigma is always False
// register_length is alwalys 0
@ -709,7 +720,8 @@ public:
qk_norm,
true,
i == depth - 1,
i <= d_self));
i <= d_self,
flash_attn));
}
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new FinalLayer(hidden_size, patch_size, out_channels));
@ -856,9 +868,10 @@ struct MMDiTRunner : public GGMLRunner {
MMDiTRunner(ggml_backend_t backend,
bool offload_params_to_cpu,
bool flash_attn,
const String2GGMLType& tensor_types = {},
const std::string prefix = "")
: GGMLRunner(backend, offload_params_to_cpu), mmdit(tensor_types) {
: GGMLRunner(backend, offload_params_to_cpu), mmdit(flash_attn, tensor_types) {
mmdit.init(params_ctx, tensor_types, prefix);
}
@ -957,7 +970,7 @@ struct MMDiTRunner : public GGMLRunner {
// ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend, false));
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend, false, false));
{
LOG_INFO("loading from '%s'", file_path.c_str());

View File

@ -107,7 +107,7 @@ const char* unused_tensors[] = {
};
bool is_unused_tensor(std::string name) {
for (int i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) {
for (size_t i = 0; i < sizeof(unused_tensors) / sizeof(const char*); i++) {
if (starts_with(name, unused_tensors[i])) {
return true;
}
@ -2310,7 +2310,7 @@ std::vector<std::pair<std::string, ggml_type>> parse_tensor_type_rules(const std
if (type_name == "f32") {
tensor_type = GGML_TYPE_F32;
} else {
for (size_t i = 0; i < SD_TYPE_COUNT; i++) {
for (size_t i = 0; i < GGML_TYPE_COUNT; i++) {
auto trait = ggml_get_type_traits((ggml_type)i);
if (trait->to_float && trait->type_size && type_name == trait->type_name) {
tensor_type = (ggml_type)i;

View File

@ -119,7 +119,7 @@ struct TensorStorage {
size_t file_index = 0;
int index_in_zip = -1; // >= means stored in a zip file
size_t offset = 0; // offset in file
uint64_t offset = 0; // offset in file
TensorStorage() = default;
@ -164,10 +164,10 @@ struct TensorStorage {
std::vector<TensorStorage> chunk(size_t n) {
std::vector<TensorStorage> chunks;
size_t chunk_size = nbytes_to_read() / n;
uint64_t chunk_size = nbytes_to_read() / n;
// printf("%d/%d\n", chunk_size, nbytes_to_read());
reverse_ne();
for (int i = 0; i < n; i++) {
for (size_t i = 0; i < n; i++) {
TensorStorage chunk_i = *this;
chunk_i.ne[0] = ne[0] / n;
chunk_i.offset = offset + i * chunk_size;

View File

@ -164,7 +164,7 @@ void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float lo
bool preprocess_canny(sd_image_t img, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10MB
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);

View File

@ -43,7 +43,7 @@ const char* model_version_to_str[] = {
};
const char* sampling_methods_str[] = {
"Euler A",
"default",
"Euler",
"Heun",
"DPM2",
@ -55,6 +55,7 @@ const char* sampling_methods_str[] = {
"LCM",
"DDIM \"trailing\"",
"TCD",
"Euler A",
};
/*================================================== Helper Functions ================================================*/
@ -107,10 +108,10 @@ public:
std::shared_ptr<PhotoMakerIDEmbed> pmid_id_embeds;
std::string taesd_path;
bool use_tiny_autoencoder = false;
bool vae_tiling = false;
bool offload_params_to_cpu = false;
bool stacked_id = false;
bool use_tiny_autoencoder = false;
sd_tiling_params_t vae_tiling_params = {false, 0, 0, 0.5f, 0, 0};
bool offload_params_to_cpu = false;
bool stacked_id = false;
bool is_using_v_parameterization = false;
bool is_using_edm_v_parameterization = false;
@ -145,7 +146,6 @@ public:
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_log_set(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
@ -183,7 +183,6 @@ public:
lora_model_dir = SAFE_STR(sd_ctx_params->lora_model_dir);
taesd_path = SAFE_STR(sd_ctx_params->taesd_path);
use_tiny_autoencoder = taesd_path.size() > 0;
vae_tiling = sd_ctx_params->vae_tiling;
offload_params_to_cpu = sd_ctx_params->offload_params_to_cpu;
if (sd_ctx_params->rng_type == STD_DEFAULT_RNG) {
@ -192,6 +191,8 @@ public:
rng = std::make_shared<PhiloxRNG>();
}
ggml_log_set(ggml_log_callback_default, nullptr);
init_backend();
ModelLoader model_loader;
@ -264,7 +265,9 @@ public:
}
LOG_INFO("Version: %s ", model_version_to_str[version]);
ggml_type wtype = (ggml_type)sd_ctx_params->wtype;
ggml_type wtype = (int)sd_ctx_params->wtype < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT)
? (ggml_type)sd_ctx_params->wtype
: GGML_TYPE_COUNT;
if (wtype == GGML_TYPE_COUNT) {
model_wtype = model_loader.get_sd_wtype();
if (model_wtype == GGML_TYPE_COUNT) {
@ -292,11 +295,6 @@ public:
model_loader.set_wtype_override(wtype);
}
if (sd_version_is_sdxl(version)) {
vae_wtype = GGML_TYPE_F32;
model_loader.set_wtype_override(GGML_TYPE_F32, "vae.");
}
LOG_INFO("Weight type: %s", ggml_type_name(model_wtype));
LOG_INFO("Conditioner weight type: %s", ggml_type_name(conditioner_wtype));
LOG_INFO("Diffusion model weight type: %s", ggml_type_name(diffusion_model_wtype));
@ -344,14 +342,12 @@ public:
LOG_INFO("Using flash attention in the diffusion model");
}
if (sd_version_is_sd3(version)) {
if (sd_ctx_params->diffusion_flash_attn) {
LOG_WARN("flash attention in this diffusion model is currently unsupported!");
}
cond_stage_model = std::make_shared<SD3CLIPEmbedder>(clip_backend,
offload_params_to_cpu,
model_loader.tensor_storages_types);
diffusion_model = std::make_shared<MMDiTModel>(backend,
offload_params_to_cpu,
sd_ctx_params->diffusion_flash_attn,
model_loader.tensor_storages_types);
} else if (sd_version_is_flux(version)) {
bool is_chroma = false;
@ -362,10 +358,18 @@ public:
}
}
if (is_chroma) {
if (sd_ctx_params->diffusion_flash_attn && sd_ctx_params->chroma_use_dit_mask) {
LOG_WARN(
"!!!It looks like you are using Chroma with flash attention. "
"This is currently unsupported. "
"If you find that the generated images are broken, "
"try either disabling flash attention or specifying "
"--chroma-disable-dit-mask as a workaround.");
}
cond_stage_model = std::make_shared<T5CLIPEmbedder>(clip_backend,
offload_params_to_cpu,
model_loader.tensor_storages_types,
-1,
sd_ctx_params->chroma_use_t5_mask,
sd_ctx_params->chroma_t5_mask_pad);
} else {
@ -383,7 +387,6 @@ public:
cond_stage_model = std::make_shared<T5CLIPEmbedder>(clip_backend,
offload_params_to_cpu,
model_loader.tensor_storages_types,
-1,
true,
1,
true);
@ -744,6 +747,10 @@ public:
denoiser->scheduler = std::make_shared<GITSSchedule>();
denoiser->scheduler->version = version;
break;
case SMOOTHSTEP:
LOG_INFO("Running with SmoothStep scheduler");
denoiser->scheduler = std::make_shared<SmoothStepSchedule>();
break;
case DEFAULT:
// Don't touch anything.
break;
@ -1272,15 +1279,77 @@ public:
return latent;
}
ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool decode_video = false) {
void get_tile_sizes(int& tile_size_x,
int& tile_size_y,
float& tile_overlap,
const sd_tiling_params_t& params,
int latent_x,
int latent_y,
float encoding_factor = 1.0f) {
tile_overlap = std::max(std::min(params.target_overlap, 0.5f), 0.0f);
auto get_tile_size = [&](int requested_size, float factor, int latent_size) {
const int default_tile_size = 32;
const int min_tile_dimension = 4;
int tile_size = default_tile_size;
// factor <= 1 means simple fraction of the latent dimension
// factor > 1 means number of tiles across that dimension
if (factor > 0.f) {
if (factor > 1.0)
factor = 1 / (factor - factor * tile_overlap + tile_overlap);
tile_size = std::round(latent_size * factor);
} else if (requested_size >= min_tile_dimension) {
tile_size = requested_size;
}
tile_size *= encoding_factor;
return std::max(std::min(tile_size, latent_size), min_tile_dimension);
};
tile_size_x = get_tile_size(params.tile_size_x, params.rel_size_x, latent_x);
tile_size_y = get_tile_size(params.tile_size_y, params.rel_size_y, latent_y);
}
ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool encode_video = false) {
int64_t t0 = ggml_time_ms();
ggml_tensor* result = NULL;
int W = x->ne[0] / 8;
int H = x->ne[1] / 8;
if (vae_tiling_params.enabled && !encode_video) {
// TODO wan2.2 vae support?
int C = sd_version_is_dit(version) ? 16 : 4;
if (!use_tiny_autoencoder) {
C *= 2;
}
result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, x->ne[3]);
}
if (!use_tiny_autoencoder) {
float tile_overlap;
int tile_size_x, tile_size_y;
// multiply tile size for encode to keep the compute buffer size consistent
get_tile_sizes(tile_size_x, tile_size_y, tile_overlap, vae_tiling_params, W, H, 1.30539f);
LOG_DEBUG("VAE Tile size: %dx%d", tile_size_x, tile_size_y);
process_vae_input_tensor(x);
first_stage_model->compute(n_threads, x, false, &result, work_ctx);
if (vae_tiling_params.enabled && !encode_video) {
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
first_stage_model->compute(n_threads, in, false, &out, work_ctx);
};
sd_tiling_non_square(x, result, 8, tile_size_x, tile_size_y, tile_overlap, on_tiling);
} else {
first_stage_model->compute(n_threads, x, false, &result, work_ctx);
}
first_stage_model->free_compute_buffer();
} else {
tae_first_stage->compute(n_threads, x, false, &result, work_ctx);
if (vae_tiling_params.enabled && !encode_video) {
// split latent in 32x32 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
tae_first_stage->compute(n_threads, in, false, &out, NULL);
};
sd_tiling(x, result, 8, 64, 0.5f, on_tiling);
} else {
tae_first_stage->compute(n_threads, x, false, &result, work_ctx);
}
tae_first_stage->free_compute_buffer();
}
@ -1397,24 +1466,29 @@ public:
C,
x->ne[3]);
}
int64_t t0 = ggml_time_ms();
if (!use_tiny_autoencoder) {
float tile_overlap;
int tile_size_x, tile_size_y;
get_tile_sizes(tile_size_x, tile_size_y, tile_overlap, vae_tiling_params, x->ne[0], x->ne[1]);
LOG_DEBUG("VAE Tile size: %dx%d", tile_size_x, tile_size_y);
process_latent_out(x);
// x = load_tensor_from_file(work_ctx, "wan_vae_z.bin");
if (vae_tiling && !decode_video) {
if (vae_tiling_params.enabled && !decode_video) {
// split latent in 32x32 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
first_stage_model->compute(n_threads, in, true, &out, NULL);
};
sd_tiling(x, result, 8, 32, 0.5f, on_tiling);
sd_tiling_non_square(x, result, 8, tile_size_x, tile_size_y, tile_overlap, on_tiling);
} else {
first_stage_model->compute(n_threads, x, true, &result, work_ctx);
}
first_stage_model->free_compute_buffer();
process_vae_output_tensor(result);
} else {
if (vae_tiling && !decode_video) {
if (vae_tiling_params.enabled && !decode_video) {
// split latent in 64x64 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
tae_first_stage->compute(n_threads, in, true, &out);
@ -1438,11 +1512,14 @@ public:
#define NONE_STR "NONE"
const char* sd_type_name(enum sd_type_t type) {
return ggml_type_name((ggml_type)type);
if ((int)type < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT)) {
return ggml_type_name((ggml_type)type);
}
return NONE_STR;
}
enum sd_type_t str_to_sd_type(const char* str) {
for (int i = 0; i < SD_TYPE_COUNT; i++) {
for (int i = 0; i < std::min<int>(SD_TYPE_COUNT, GGML_TYPE_COUNT); i++) {
auto trait = ggml_get_type_traits((ggml_type)i);
if (!strcmp(str, trait->type_name)) {
return (enum sd_type_t)i;
@ -1473,7 +1550,7 @@ enum rng_type_t str_to_rng_type(const char* str) {
}
const char* sample_method_to_str[] = {
"euler_a",
"default",
"euler",
"heun",
"dpm2",
@ -1485,6 +1562,7 @@ const char* sample_method_to_str[] = {
"lcm",
"ddim_trailing",
"tcd",
"euler_a",
};
const char* sd_sample_method_name(enum sample_method_t sample_method) {
@ -1510,6 +1588,7 @@ const char* schedule_to_str[] = {
"exponential",
"ays",
"gits",
"smoothstep",
};
const char* sd_schedule_name(enum scheduler_t scheduler) {
@ -1529,9 +1608,8 @@ enum scheduler_t str_to_schedule(const char* str) {
}
void sd_ctx_params_init(sd_ctx_params_t* sd_ctx_params) {
memset((void*)sd_ctx_params, 0, sizeof(sd_ctx_params_t));
*sd_ctx_params = {};
sd_ctx_params->vae_decode_only = true;
sd_ctx_params->vae_tiling = false;
sd_ctx_params->free_params_immediately = true;
sd_ctx_params->n_threads = get_num_physical_cores();
sd_ctx_params->wtype = SD_TYPE_COUNT;
@ -1595,7 +1673,6 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
SAFE_STR(sd_ctx_params->embedding_dir),
SAFE_STR(sd_ctx_params->stacked_id_embed_dir),
BOOL_STR(sd_ctx_params->vae_decode_only),
BOOL_STR(sd_ctx_params->vae_tiling),
BOOL_STR(sd_ctx_params->free_params_immediately),
sd_ctx_params->n_threads,
sd_type_name(sd_ctx_params->wtype),
@ -1613,6 +1690,7 @@ char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params) {
}
void sd_sample_params_init(sd_sample_params_t* sample_params) {
*sample_params = {};
sample_params->guidance.txt_cfg = 7.0f;
sample_params->guidance.img_cfg = INFINITY;
sample_params->guidance.distilled_guidance = 3.5f;
@ -1621,7 +1699,7 @@ void sd_sample_params_init(sd_sample_params_t* sample_params) {
sample_params->guidance.slg.layer_end = 0.2f;
sample_params->guidance.slg.scale = 0.f;
sample_params->scheduler = DEFAULT;
sample_params->sample_method = EULER_A;
sample_params->sample_method = SAMPLE_METHOD_DEFAULT;
sample_params->sample_steps = 20;
}
@ -1659,18 +1737,19 @@ char* sd_sample_params_to_str(const sd_sample_params_t* sample_params) {
}
void sd_img_gen_params_init(sd_img_gen_params_t* sd_img_gen_params) {
memset((void*)sd_img_gen_params, 0, sizeof(sd_img_gen_params_t));
sd_img_gen_params->clip_skip = -1;
*sd_img_gen_params = {};
sd_sample_params_init(&sd_img_gen_params->sample_params);
sd_img_gen_params->ref_images_count = 0;
sd_img_gen_params->width = 512;
sd_img_gen_params->height = 512;
sd_img_gen_params->strength = 0.75f;
sd_img_gen_params->seed = -1;
sd_img_gen_params->batch_count = 1;
sd_img_gen_params->control_strength = 0.9f;
sd_img_gen_params->style_strength = 20.f;
sd_img_gen_params->normalize_input = false;
sd_img_gen_params->clip_skip = -1;
sd_img_gen_params->ref_images_count = 0;
sd_img_gen_params->width = 512;
sd_img_gen_params->height = 512;
sd_img_gen_params->strength = 0.75f;
sd_img_gen_params->seed = -1;
sd_img_gen_params->batch_count = 1;
sd_img_gen_params->control_strength = 0.9f;
sd_img_gen_params->style_strength = 20.f;
sd_img_gen_params->normalize_input = false;
sd_img_gen_params->vae_tiling_params = {false, 0, 0, 0.5f, 0.0f, 0.0f};
}
char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
@ -1690,6 +1769,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
"sample_params: %s\n"
"strength: %.2f\n"
"seed: %" PRId64
"VAE tiling:"
"\n"
"batch_count: %d\n"
"ref_images_count: %d\n"
@ -1706,6 +1786,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
SAFE_STR(sample_params_str),
sd_img_gen_params->strength,
sd_img_gen_params->seed,
BOOL_STR(sd_img_gen_params->vae_tiling_params.enabled),
sd_img_gen_params->batch_count,
sd_img_gen_params->ref_images_count,
BOOL_STR(sd_img_gen_params->increase_ref_index),
@ -1718,7 +1799,7 @@ char* sd_img_gen_params_to_str(const sd_img_gen_params_t* sd_img_gen_params) {
}
void sd_vid_gen_params_init(sd_vid_gen_params_t* sd_vid_gen_params) {
memset((void*)sd_vid_gen_params, 0, sizeof(sd_vid_gen_params_t));
*sd_vid_gen_params = {};
sd_sample_params_init(&sd_vid_gen_params->sample_params);
sd_sample_params_init(&sd_vid_gen_params->high_noise_sample_params);
sd_vid_gen_params->high_noise_sample_params.sample_steps = -1;
@ -1743,6 +1824,7 @@ sd_ctx_t* new_sd_ctx(const sd_ctx_params_t* sd_ctx_params) {
sd_ctx->sd = new StableDiffusionGGML();
if (sd_ctx->sd == NULL) {
free(sd_ctx);
return NULL;
}
@ -1763,6 +1845,17 @@ void free_sd_ctx(sd_ctx_t* sd_ctx) {
free(sd_ctx);
}
enum sample_method_t sd_get_default_sample_method(const sd_ctx_t* sd_ctx) {
if (sd_ctx != NULL && sd_ctx->sd != NULL) {
SDVersion version = sd_ctx->sd->version;
if (sd_version_is_dit(version))
return EULER;
else
return EULER_A;
}
return SAMPLE_METHOD_COUNT;
}
sd_image_t* generate_image_internal(sd_ctx_t* sd_ctx,
struct ggml_context* work_ctx,
ggml_tensor* init_latent,
@ -2131,8 +2224,9 @@ ggml_tensor* generate_init_latent(sd_ctx_t* sd_ctx,
}
sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_gen_params) {
int width = sd_img_gen_params->width;
int height = sd_img_gen_params->height;
sd_ctx->sd->vae_tiling_params = sd_img_gen_params->vae_tiling_params;
int width = sd_img_gen_params->width;
int height = sd_img_gen_params->height;
if (sd_version_is_dit(sd_ctx->sd->version)) {
if (width % 16 || height % 16) {
LOG_ERROR("Image dimensions must be must be a multiple of 16 on each axis for %s models. (Got %dx%d)",
@ -2154,19 +2248,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
}
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
if (sd_version_is_sd3(sd_ctx->sd->version)) {
params.mem_size *= 3;
}
if (sd_version_is_flux(sd_ctx->sd->version)) {
params.mem_size *= 4;
}
if (sd_ctx->sd->stacked_id) {
params.mem_size += static_cast<size_t>(10 * 1024 * 1024); // 10 MB
}
params.mem_size += width * height * 3 * sizeof(float) * 3;
params.mem_size += width * height * 3 * sizeof(float) * 3 * sd_img_gen_params->ref_images_count;
params.mem_size *= sd_img_gen_params->batch_count;
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
params.mem_buffer = NULL;
params.no_alloc = false;
// LOG_DEBUG("mem_size %u ", params.mem_size);
@ -2327,6 +2409,11 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
}
enum sample_method_t sample_method = sd_img_gen_params->sample_params.sample_method;
if (sample_method == SAMPLE_METHOD_DEFAULT) {
sample_method = sd_get_default_sample_method(sd_ctx);
}
sd_image_t* result_images = generate_image_internal(sd_ctx,
work_ctx,
init_latent,
@ -2337,7 +2424,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
sd_img_gen_params->sample_params.eta,
width,
height,
sd_img_gen_params->sample_params.sample_method,
sample_method,
sigmas,
seed,
sd_img_gen_params->batch_count,
@ -2345,7 +2432,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx, const sd_img_gen_params_t* sd_img_g
sd_img_gen_params->control_strength,
sd_img_gen_params->style_strength,
sd_img_gen_params->normalize_input,
sd_img_gen_params->input_id_images_path,
SAFE_STR(sd_img_gen_params->input_id_images_path),
ref_latents,
sd_img_gen_params->increase_ref_index,
concat_latent,

View File

@ -35,7 +35,7 @@ enum rng_type_t {
};
enum sample_method_t {
EULER_A,
SAMPLE_METHOD_DEFAULT,
EULER,
HEUN,
DPM2,
@ -47,6 +47,7 @@ enum sample_method_t {
LCM,
DDIM_TRAILING,
TCD,
EULER_A,
SAMPLE_METHOD_COUNT
};
@ -57,6 +58,7 @@ enum scheduler_t {
EXPONENTIAL,
AYS,
GITS,
SMOOTHSTEP,
SCHEDULE_COUNT
};
@ -112,6 +114,15 @@ enum sd_log_level_t {
SD_LOG_ERROR
};
typedef struct {
bool enabled;
int tile_size_x;
int tile_size_y;
float target_overlap;
float rel_size_x;
float rel_size_y;
} sd_tiling_params_t;
typedef struct {
const char* model_path;
const char* clip_l_path;
@ -127,7 +138,6 @@ typedef struct {
const char* embedding_dir;
const char* stacked_id_embed_dir;
bool vae_decode_only;
bool vae_tiling;
bool free_params_immediately;
int n_threads;
enum sd_type_t wtype;
@ -195,6 +205,7 @@ typedef struct {
float style_strength;
bool normalize_input;
const char* input_id_images_path;
sd_tiling_params_t vae_tiling_params;
} sd_img_gen_params_t;
typedef struct {
@ -240,6 +251,7 @@ SD_API char* sd_ctx_params_to_str(const sd_ctx_params_t* sd_ctx_params);
SD_API sd_ctx_t* new_sd_ctx(const sd_ctx_params_t* sd_ctx_params);
SD_API void free_sd_ctx(sd_ctx_t* sd_ctx);
SD_API enum sample_method_t sd_get_default_sample_method(const sd_ctx_t* sd_ctx);
SD_API void sd_sample_params_init(sd_sample_params_t* sample_params);
SD_API char* sd_sample_params_to_str(const sd_sample_params_t* sample_params);

View File

@ -19,13 +19,13 @@ struct UpscalerGGML {
bool load_from_file(const std::string& esrgan_path,
bool offload_params_to_cpu) {
ggml_log_set(ggml_log_callback_default, nullptr);
#ifdef SD_USE_CUDA
LOG_DEBUG("Using CUDA backend");
backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_log_set(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
@ -69,8 +69,7 @@ struct UpscalerGGML {
input_image.width, input_image.height, output_width, output_height);
struct ggml_init_params params;
params.mem_size = output_width * output_height * 3 * sizeof(float) * 2;
params.mem_size += 2 * ggml_tensor_overhead();
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
params.mem_buffer = NULL;
params.no_alloc = false;
@ -80,7 +79,7 @@ struct UpscalerGGML {
LOG_ERROR("ggml_init() failed");
return upscaled_image;
}
LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
// LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1);
sd_image_to_tensor(input_image, input_image_tensor);

View File

@ -414,7 +414,10 @@ void log_printf(sd_log_level_t level, const char* file, int line, const char* fo
if (written >= 0 && written < LOG_BUFFER_SIZE) {
vsnprintf(log_buffer + written, LOG_BUFFER_SIZE - written, format, args);
}
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - strlen(log_buffer));
size_t len = strlen(log_buffer);
if (log_buffer[len - 1] != '\n') {
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - len);
}
if (sd_log_cb) {
sd_log_cb(level, log_buffer, sd_log_cb_data);

View File

@ -588,7 +588,7 @@ struct AutoEncoderKL : public VAE {
};
// ggml_set_f32(z, 0.5f);
// print_ggml_tensor(z);
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
void test() {

View File

@ -1219,7 +1219,7 @@ namespace WAN {
void test() {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(1000 * 1024 * 1024); // 10 MB
params.mem_size = static_cast<size_t>(1024 * 1024) * 1024; // 1G
params.mem_buffer = NULL;
params.no_alloc = false;