mirror of
https://github.com/leejet/stable-diffusion.cpp.git
synced 2025-12-13 05:48:56 +00:00
add flux support
This commit is contained in:
parent
5b8d16aa68
commit
00b542da22
@ -367,7 +367,7 @@ protected:
|
||||
int64_t n_head;
|
||||
int64_t d_head;
|
||||
int64_t depth = 1; // 1
|
||||
int64_t context_dim = 768; // hidden_size, 1024 for VERSION_2_x
|
||||
int64_t context_dim = 768; // hidden_size, 1024 for VERSION_SD2
|
||||
|
||||
public:
|
||||
SpatialTransformer(int64_t in_channels,
|
||||
|
||||
256
conditioner.hpp
256
conditioner.hpp
@ -43,7 +43,7 @@ struct Conditioner {
|
||||
// ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
// Ref: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/cad87bf4e3e0b0a759afa94e933527c3123d59bc/modules/sd_hijack_clip.py#L283
|
||||
struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
SDVersion version = VERSION_1_x;
|
||||
SDVersion version = VERSION_SD1;
|
||||
CLIPTokenizer tokenizer;
|
||||
ggml_type wtype;
|
||||
std::shared_ptr<CLIPTextModelRunner> text_model;
|
||||
@ -58,20 +58,20 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
FrozenCLIPEmbedderWithCustomWords(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
const std::string& embd_dir,
|
||||
SDVersion version = VERSION_1_x,
|
||||
SDVersion version = VERSION_SD1,
|
||||
int clip_skip = -1)
|
||||
: version(version), tokenizer(version == VERSION_2_x ? 0 : 49407), embd_dir(embd_dir), wtype(wtype) {
|
||||
: version(version), tokenizer(version == VERSION_SD2 ? 0 : 49407), embd_dir(embd_dir), wtype(wtype) {
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 1;
|
||||
if (version == VERSION_2_x || version == VERSION_XL) {
|
||||
if (version == VERSION_SD2 || version == VERSION_SDXL) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
}
|
||||
if (version == VERSION_1_x) {
|
||||
if (version == VERSION_SD1) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip);
|
||||
} else if (version == VERSION_2_x) {
|
||||
} else if (version == VERSION_SD2) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPEN_CLIP_VIT_H_14, clip_skip);
|
||||
} else if (version == VERSION_XL) {
|
||||
} else if (version == VERSION_SDXL) {
|
||||
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip, false);
|
||||
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPEN_CLIP_VIT_BIGG_14, clip_skip, false);
|
||||
}
|
||||
@ -79,35 +79,35 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
text_model->set_clip_skip(clip_skip);
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
text_model2->set_clip_skip(clip_skip);
|
||||
}
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
text_model->get_param_tensors(tensors, "cond_stage_model.transformer.text_model");
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
text_model2->get_param_tensors(tensors, "cond_stage_model.1.transformer.text_model");
|
||||
}
|
||||
}
|
||||
|
||||
void alloc_params_buffer() {
|
||||
text_model->alloc_params_buffer();
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
text_model2->alloc_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
void free_params_buffer() {
|
||||
text_model->free_params_buffer();
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
text_model2->free_params_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() {
|
||||
size_t buffer_size = text_model->get_params_buffer_size();
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
buffer_size += text_model2->get_params_buffer_size();
|
||||
}
|
||||
return buffer_size;
|
||||
@ -398,7 +398,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
|
||||
struct ggml_tensor* input_ids2 = NULL;
|
||||
size_t max_token_idx = 0;
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), tokenizer.EOS_TOKEN_ID);
|
||||
if (it != chunk_tokens.end()) {
|
||||
std::fill(std::next(it), chunk_tokens.end(), 0);
|
||||
@ -423,7 +423,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
false,
|
||||
&chunk_hidden_states1,
|
||||
work_ctx);
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
text_model2->compute(n_threads,
|
||||
input_ids2,
|
||||
0,
|
||||
@ -482,7 +482,7 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
|
||||
ggml_tensor* vec = NULL;
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
int out_dim = 256;
|
||||
vec = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, adm_in_channels);
|
||||
// [0:1280]
|
||||
@ -978,4 +978,230 @@ struct SD3CLIPEmbedder : public Conditioner {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct FluxCLIPEmbedder : public Conditioner {
|
||||
ggml_type wtype;
|
||||
CLIPTokenizer clip_l_tokenizer;
|
||||
T5UniGramTokenizer t5_tokenizer;
|
||||
std::shared_ptr<CLIPTextModelRunner> clip_l;
|
||||
std::shared_ptr<T5Runner> t5;
|
||||
|
||||
FluxCLIPEmbedder(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
int clip_skip = -1)
|
||||
: wtype(wtype) {
|
||||
if (clip_skip <= 0) {
|
||||
clip_skip = 2;
|
||||
}
|
||||
clip_l = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip, true);
|
||||
t5 = std::make_shared<T5Runner>(backend, wtype);
|
||||
}
|
||||
|
||||
void set_clip_skip(int clip_skip) {
|
||||
clip_l->set_clip_skip(clip_skip);
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
clip_l->get_param_tensors(tensors, "text_encoders.clip_l.text_model");
|
||||
t5->get_param_tensors(tensors, "text_encoders.t5xxl");
|
||||
}
|
||||
|
||||
void alloc_params_buffer() {
|
||||
clip_l->alloc_params_buffer();
|
||||
t5->alloc_params_buffer();
|
||||
}
|
||||
|
||||
void free_params_buffer() {
|
||||
clip_l->free_params_buffer();
|
||||
t5->free_params_buffer();
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() {
|
||||
size_t buffer_size = clip_l->get_params_buffer_size();
|
||||
buffer_size += t5->get_params_buffer_size();
|
||||
return buffer_size;
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> tokenize(std::string text,
|
||||
size_t max_length = 0,
|
||||
bool padding = false) {
|
||||
auto parsed_attention = parse_prompt_attention(text);
|
||||
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (const auto& item : parsed_attention) {
|
||||
ss << "['" << item.first << "', " << item.second << "], ";
|
||||
}
|
||||
ss << "]";
|
||||
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
|
||||
}
|
||||
|
||||
auto on_new_token_cb = [&](std::string& str, std::vector<int32_t>& bpe_tokens) -> bool {
|
||||
return false;
|
||||
};
|
||||
|
||||
std::vector<int> clip_l_tokens;
|
||||
std::vector<float> clip_l_weights;
|
||||
std::vector<int> t5_tokens;
|
||||
std::vector<float> t5_weights;
|
||||
for (const auto& item : parsed_attention) {
|
||||
const std::string& curr_text = item.first;
|
||||
float curr_weight = item.second;
|
||||
|
||||
std::vector<int> curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb);
|
||||
clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight);
|
||||
|
||||
curr_tokens = t5_tokenizer.Encode(curr_text, true);
|
||||
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
|
||||
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
|
||||
}
|
||||
|
||||
clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
|
||||
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding);
|
||||
|
||||
// for (int i = 0; i < clip_l_tokens.size(); i++) {
|
||||
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
|
||||
// for (int i = 0; i < t5_tokens.size(); i++) {
|
||||
// std::cout << t5_tokens[i] << ":" << t5_weights[i] << ", ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
|
||||
return {{clip_l_tokens, clip_l_weights}, {t5_tokens, t5_weights}};
|
||||
}
|
||||
|
||||
SDCondition get_learned_condition_common(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
std::vector<std::pair<std::vector<int>, std::vector<float>>> token_and_weights,
|
||||
int clip_skip,
|
||||
bool force_zero_embeddings = false) {
|
||||
set_clip_skip(clip_skip);
|
||||
auto& clip_l_tokens = token_and_weights[0].first;
|
||||
auto& clip_l_weights = token_and_weights[0].second;
|
||||
auto& t5_tokens = token_and_weights[1].first;
|
||||
auto& t5_weights = token_and_weights[1].second;
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096]
|
||||
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096]
|
||||
struct ggml_tensor* pooled = NULL; // [768,]
|
||||
std::vector<float> hidden_states_vec;
|
||||
|
||||
size_t chunk_len = 256;
|
||||
size_t chunk_count = t5_tokens.size() / chunk_len;
|
||||
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
|
||||
// clip_l
|
||||
if (chunk_idx == 0) {
|
||||
size_t chunk_len_l = 77;
|
||||
std::vector<int> chunk_tokens(clip_l_tokens.begin(),
|
||||
clip_l_tokens.begin() + chunk_len_l);
|
||||
std::vector<float> chunk_weights(clip_l_weights.begin(),
|
||||
clip_l_weights.begin() + chunk_len_l);
|
||||
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
|
||||
size_t max_token_idx = 0;
|
||||
|
||||
// auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID);
|
||||
// max_token_idx = std::min<size_t>(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1);
|
||||
// clip_l->compute(n_threads,
|
||||
// input_ids,
|
||||
// 0,
|
||||
// NULL,
|
||||
// max_token_idx,
|
||||
// true,
|
||||
// &pooled,
|
||||
// work_ctx);
|
||||
|
||||
// clip_l.transformer.text_model.text_projection no in file, ignore
|
||||
// TODO: use torch.eye(embed_dim) as default clip_l.transformer.text_model.text_projection
|
||||
pooled = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 768);
|
||||
ggml_set_f32(pooled, 0.f);
|
||||
}
|
||||
|
||||
// t5
|
||||
{
|
||||
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
|
||||
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
|
||||
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
|
||||
t5_weights.begin() + (chunk_idx + 1) * chunk_len);
|
||||
|
||||
auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
|
||||
|
||||
t5->compute(n_threads,
|
||||
input_ids,
|
||||
&chunk_hidden_states,
|
||||
work_ctx);
|
||||
{
|
||||
auto tensor = chunk_hidden_states;
|
||||
float original_mean = ggml_tensor_mean(tensor);
|
||||
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
|
||||
float value = ggml_tensor_get_f32(tensor, i0, i1, i2);
|
||||
value *= chunk_weights[i1];
|
||||
ggml_tensor_set_f32(tensor, value, i0, i1, i2);
|
||||
}
|
||||
}
|
||||
}
|
||||
float new_mean = ggml_tensor_mean(tensor);
|
||||
ggml_tensor_scale(tensor, (original_mean / new_mean));
|
||||
}
|
||||
}
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0);
|
||||
if (force_zero_embeddings) {
|
||||
float* vec = (float*)chunk_hidden_states->data;
|
||||
for (int i = 0; i < ggml_nelements(chunk_hidden_states); i++) {
|
||||
vec[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
hidden_states_vec.insert(hidden_states_vec.end(),
|
||||
(float*)chunk_hidden_states->data,
|
||||
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
|
||||
}
|
||||
|
||||
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
|
||||
hidden_states = ggml_reshape_2d(work_ctx,
|
||||
hidden_states,
|
||||
chunk_hidden_states->ne[0],
|
||||
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
|
||||
return SDCondition(hidden_states, pooled, NULL);
|
||||
}
|
||||
|
||||
SDCondition get_learned_condition(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
const std::string& text,
|
||||
int clip_skip,
|
||||
int width,
|
||||
int height,
|
||||
int adm_in_channels = -1,
|
||||
bool force_zero_embeddings = false) {
|
||||
auto tokens_and_weights = tokenize(text, 256, true);
|
||||
return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings);
|
||||
}
|
||||
|
||||
std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
|
||||
int n_threads,
|
||||
const std::string& text,
|
||||
int clip_skip,
|
||||
int width,
|
||||
int height,
|
||||
int num_input_imgs,
|
||||
int adm_in_channels = -1,
|
||||
bool force_zero_embeddings = false) {
|
||||
GGML_ASSERT(0 && "Not implemented yet!");
|
||||
}
|
||||
|
||||
std::string remove_trigger_from_prompt(ggml_context* work_ctx,
|
||||
const std::string& prompt) {
|
||||
GGML_ASSERT(0 && "Not implemented yet!");
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
18
control.hpp
18
control.hpp
@ -14,7 +14,7 @@
|
||||
*/
|
||||
class ControlNetBlock : public GGMLBlock {
|
||||
protected:
|
||||
SDVersion version = VERSION_1_x;
|
||||
SDVersion version = VERSION_SD1;
|
||||
// network hparams
|
||||
int in_channels = 4;
|
||||
int out_channels = 4;
|
||||
@ -26,19 +26,19 @@ protected:
|
||||
int time_embed_dim = 1280; // model_channels*4
|
||||
int num_heads = 8;
|
||||
int num_head_channels = -1; // channels // num_heads
|
||||
int context_dim = 768; // 1024 for VERSION_2_x, 2048 for VERSION_XL
|
||||
int context_dim = 768; // 1024 for VERSION_SD2, 2048 for VERSION_SDXL
|
||||
|
||||
public:
|
||||
int model_channels = 320;
|
||||
int adm_in_channels = 2816; // only for VERSION_XL
|
||||
int adm_in_channels = 2816; // only for VERSION_SDXL
|
||||
|
||||
ControlNetBlock(SDVersion version = VERSION_1_x)
|
||||
ControlNetBlock(SDVersion version = VERSION_SD1)
|
||||
: version(version) {
|
||||
if (version == VERSION_2_x) {
|
||||
if (version == VERSION_SD2) {
|
||||
context_dim = 1024;
|
||||
num_head_channels = 64;
|
||||
num_heads = -1;
|
||||
} else if (version == VERSION_XL) {
|
||||
} else if (version == VERSION_SDXL) {
|
||||
context_dim = 2048;
|
||||
attention_resolutions = {4, 2};
|
||||
channel_mult = {1, 2, 4};
|
||||
@ -58,7 +58,7 @@ public:
|
||||
// time_embed_1 is nn.SiLU()
|
||||
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
|
||||
|
||||
if (version == VERSION_XL || version == VERSION_SVD) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SVD) {
|
||||
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
|
||||
// label_emb_1 is nn.SiLU()
|
||||
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
|
||||
@ -307,7 +307,7 @@ public:
|
||||
};
|
||||
|
||||
struct ControlNet : public GGMLRunner {
|
||||
SDVersion version = VERSION_1_x;
|
||||
SDVersion version = VERSION_SD1;
|
||||
ControlNetBlock control_net;
|
||||
|
||||
ggml_backend_buffer_t control_buffer = NULL; // keep control output tensors in backend memory
|
||||
@ -318,7 +318,7 @@ struct ControlNet : public GGMLRunner {
|
||||
|
||||
ControlNet(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_1_x)
|
||||
SDVersion version = VERSION_SD1)
|
||||
: GGMLRunner(backend, wtype), control_net(version) {
|
||||
control_net.init(params_ctx, wtype);
|
||||
}
|
||||
|
||||
67
denoiser.hpp
67
denoiser.hpp
@ -8,6 +8,7 @@
|
||||
// Ref: https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/external.py
|
||||
|
||||
#define TIMESTEPS 1000
|
||||
#define FLUX_TIMESTEPS 1000
|
||||
|
||||
struct SigmaSchedule {
|
||||
int version = 0;
|
||||
@ -144,13 +145,13 @@ struct AYSSchedule : SigmaSchedule {
|
||||
std::vector<float> results(n + 1);
|
||||
|
||||
switch (version) {
|
||||
case VERSION_2_x: /* fallthrough */
|
||||
case VERSION_SD2: /* fallthrough */
|
||||
LOG_WARN("AYS not designed for SD2.X models");
|
||||
case VERSION_1_x:
|
||||
case VERSION_SD1:
|
||||
LOG_INFO("AYS using SD1.5 noise levels");
|
||||
inputs = noise_levels[0];
|
||||
break;
|
||||
case VERSION_XL:
|
||||
case VERSION_SDXL:
|
||||
LOG_INFO("AYS using SDXL noise levels");
|
||||
inputs = noise_levels[1];
|
||||
break;
|
||||
@ -350,6 +351,66 @@ struct DiscreteFlowDenoiser : public Denoiser {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
float flux_time_shift(float mu, float sigma, float t) {
|
||||
return std::exp(mu) / (std::exp(mu) + std::pow((1.0 / t - 1.0), sigma));
|
||||
}
|
||||
|
||||
struct FluxFlowDenoiser : public Denoiser {
|
||||
float sigmas[TIMESTEPS];
|
||||
float shift = 1.15f;
|
||||
|
||||
float sigma_data = 1.0f;
|
||||
|
||||
FluxFlowDenoiser(float shift = 1.15f) {
|
||||
set_parameters(shift);
|
||||
}
|
||||
|
||||
void set_parameters(float shift = 1.15f) {
|
||||
this->shift = shift;
|
||||
for (int i = 1; i < TIMESTEPS + 1; i++) {
|
||||
sigmas[i - 1] = t_to_sigma(i/TIMESTEPS * TIMESTEPS);
|
||||
}
|
||||
}
|
||||
|
||||
float sigma_min() {
|
||||
return sigmas[0];
|
||||
}
|
||||
|
||||
float sigma_max() {
|
||||
return sigmas[TIMESTEPS - 1];
|
||||
}
|
||||
|
||||
float sigma_to_t(float sigma) {
|
||||
return sigma;
|
||||
}
|
||||
|
||||
float t_to_sigma(float t) {
|
||||
t = t + 1;
|
||||
return flux_time_shift(shift, 1.0f, t / TIMESTEPS);
|
||||
}
|
||||
|
||||
std::vector<float> get_scalings(float sigma) {
|
||||
float c_skip = 1.0f;
|
||||
float c_out = -sigma;
|
||||
float c_in = 1.0f;
|
||||
return {c_skip, c_out, c_in};
|
||||
}
|
||||
|
||||
// this function will modify noise/latent
|
||||
ggml_tensor* noise_scaling(float sigma, ggml_tensor* noise, ggml_tensor* latent) {
|
||||
ggml_tensor_scale(noise, sigma);
|
||||
ggml_tensor_scale(latent, 1.0f - sigma);
|
||||
ggml_tensor_add(latent, noise);
|
||||
return latent;
|
||||
}
|
||||
|
||||
ggml_tensor* inverse_noise_scaling(float sigma, ggml_tensor* latent) {
|
||||
ggml_tensor_scale(latent, 1.0f / (1.0f - sigma));
|
||||
return latent;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::function<ggml_tensor*(ggml_tensor*, float, int)> denoise_cb_t;
|
||||
|
||||
// k diffusion reverse ODE: dx = (x - D(x;\sigma)) / \sigma dt; \sigma(t) = t
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include "mmdit.hpp"
|
||||
#include "unet.hpp"
|
||||
#include "flux.hpp"
|
||||
|
||||
struct DiffusionModel {
|
||||
virtual void compute(int n_threads,
|
||||
@ -11,6 +12,7 @@ struct DiffusionModel {
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
@ -29,7 +31,7 @@ struct UNetModel : public DiffusionModel {
|
||||
|
||||
UNetModel(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_1_x)
|
||||
SDVersion version = VERSION_SD1)
|
||||
: unet(backend, wtype, version) {
|
||||
}
|
||||
|
||||
@ -63,6 +65,7 @@ struct UNetModel : public DiffusionModel {
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
@ -77,7 +80,7 @@ struct MMDiTModel : public DiffusionModel {
|
||||
|
||||
MMDiTModel(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_3_2B)
|
||||
SDVersion version = VERSION_SD3_2B)
|
||||
: mmdit(backend, wtype, version) {
|
||||
}
|
||||
|
||||
@ -111,6 +114,7 @@ struct MMDiTModel : public DiffusionModel {
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
@ -120,4 +124,54 @@ struct MMDiTModel : public DiffusionModel {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct FluxModel : public DiffusionModel {
|
||||
Flux::FluxRunner flux;
|
||||
|
||||
FluxModel(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_FLUX_DEV)
|
||||
: flux(backend, wtype, version) {
|
||||
}
|
||||
|
||||
void alloc_params_buffer() {
|
||||
flux.alloc_params_buffer();
|
||||
}
|
||||
|
||||
void free_params_buffer() {
|
||||
flux.free_params_buffer();
|
||||
}
|
||||
|
||||
void free_compute_buffer() {
|
||||
flux.free_compute_buffer();
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
|
||||
flux.get_param_tensors(tensors, "model.diffusion_model");
|
||||
}
|
||||
|
||||
size_t get_params_buffer_size() {
|
||||
return flux.get_params_buffer_size();
|
||||
}
|
||||
|
||||
int64_t get_adm_in_channels() {
|
||||
return 768;
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* c_concat,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
int num_video_frames = -1,
|
||||
std::vector<struct ggml_tensor*> controls = {},
|
||||
float control_strength = 0.f,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
return flux.compute(n_threads, x, timesteps, context, y, guidance, output, output_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
@ -7,9 +7,8 @@
|
||||
#include <vector>
|
||||
|
||||
// #include "preprocessing.hpp"
|
||||
#include "mmdit.hpp"
|
||||
#include "flux.hpp"
|
||||
#include "stable-diffusion.h"
|
||||
#include "t5.hpp"
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#define STB_IMAGE_STATIC
|
||||
@ -68,6 +67,9 @@ struct SDParams {
|
||||
SDMode mode = TXT2IMG;
|
||||
|
||||
std::string model_path;
|
||||
std::string clip_l_path;
|
||||
std::string t5xxl_path;
|
||||
std::string diffusion_model_path;
|
||||
std::string vae_path;
|
||||
std::string taesd_path;
|
||||
std::string esrgan_path;
|
||||
@ -85,6 +87,7 @@ struct SDParams {
|
||||
std::string negative_prompt;
|
||||
float min_cfg = 1.0f;
|
||||
float cfg_scale = 7.0f;
|
||||
float guidance = 3.5f;
|
||||
float style_ratio = 20.f;
|
||||
int clip_skip = -1; // <= 0 represents unspecified
|
||||
int width = 512;
|
||||
@ -120,6 +123,9 @@ void print_params(SDParams params) {
|
||||
printf(" mode: %s\n", modes_str[params.mode]);
|
||||
printf(" model_path: %s\n", params.model_path.c_str());
|
||||
printf(" wtype: %s\n", params.wtype < SD_TYPE_COUNT ? sd_type_name(params.wtype) : "unspecified");
|
||||
printf(" clip_l_path: %s\n", params.clip_l_path.c_str());
|
||||
printf(" t5xxl_path: %s\n", params.t5xxl_path.c_str());
|
||||
printf(" diffusion_model_path: %s\n", params.diffusion_model_path.c_str());
|
||||
printf(" vae_path: %s\n", params.vae_path.c_str());
|
||||
printf(" taesd_path: %s\n", params.taesd_path.c_str());
|
||||
printf(" esrgan_path: %s\n", params.esrgan_path.c_str());
|
||||
@ -140,6 +146,7 @@ void print_params(SDParams params) {
|
||||
printf(" negative_prompt: %s\n", params.negative_prompt.c_str());
|
||||
printf(" min_cfg: %.2f\n", params.min_cfg);
|
||||
printf(" cfg_scale: %.2f\n", params.cfg_scale);
|
||||
printf(" guidance: %.2f\n", params.guidance);
|
||||
printf(" clip_skip: %d\n", params.clip_skip);
|
||||
printf(" width: %d\n", params.width);
|
||||
printf(" height: %d\n", params.height);
|
||||
@ -240,6 +247,24 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
break;
|
||||
}
|
||||
params.model_path = argv[i];
|
||||
} else if (arg == "--clip_l") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
break;
|
||||
}
|
||||
params.clip_l_path = argv[i];
|
||||
} else if (arg == "--t5xxl") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
break;
|
||||
}
|
||||
params.t5xxl_path = argv[i];
|
||||
} else if (arg == "--diffusion-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
break;
|
||||
}
|
||||
params.diffusion_model_path = argv[i];
|
||||
} else if (arg == "--vae") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
@ -359,6 +384,12 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
break;
|
||||
}
|
||||
params.cfg_scale = std::stof(argv[i]);
|
||||
} else if (arg == "--guidance") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
break;
|
||||
}
|
||||
params.guidance = std::stof(argv[i]);
|
||||
} else if (arg == "--strength") {
|
||||
if (++i >= argc) {
|
||||
invalid_arg = true;
|
||||
@ -501,8 +532,8 @@ void parse_args(int argc, const char** argv, SDParams& params) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (params.model_path.length() == 0) {
|
||||
fprintf(stderr, "error: the following arguments are required: model_path\n");
|
||||
if (params.model_path.length() == 0 && params.diffusion_model_path.length() == 0) {
|
||||
fprintf(stderr, "error: the following arguments are required: model_path/diffusion_model\n");
|
||||
print_usage(argc, argv);
|
||||
exit(1);
|
||||
}
|
||||
@ -570,6 +601,7 @@ std::string get_image_params(SDParams params, int64_t seed) {
|
||||
}
|
||||
parameter_string += "Steps: " + std::to_string(params.sample_steps) + ", ";
|
||||
parameter_string += "CFG scale: " + std::to_string(params.cfg_scale) + ", ";
|
||||
parameter_string += "Guidance: " + std::to_string(params.guidance) + ", ";
|
||||
parameter_string += "Seed: " + std::to_string(seed) + ", ";
|
||||
parameter_string += "Size: " + std::to_string(params.width) + "x" + std::to_string(params.height) + ", ";
|
||||
parameter_string += "Model: " + sd_basename(params.model_path) + ", ";
|
||||
@ -717,6 +749,9 @@ int main(int argc, const char* argv[]) {
|
||||
}
|
||||
|
||||
sd_ctx_t* sd_ctx = new_sd_ctx(params.model_path.c_str(),
|
||||
params.clip_l_path.c_str(),
|
||||
params.t5xxl_path.c_str(),
|
||||
params.diffusion_model_path.c_str(),
|
||||
params.vae_path.c_str(),
|
||||
params.taesd_path.c_str(),
|
||||
params.controlnet_path.c_str(),
|
||||
@ -770,6 +805,7 @@ int main(int argc, const char* argv[]) {
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
params.cfg_scale,
|
||||
params.guidance,
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_method,
|
||||
@ -830,6 +866,7 @@ int main(int argc, const char* argv[]) {
|
||||
params.negative_prompt.c_str(),
|
||||
params.clip_skip,
|
||||
params.cfg_scale,
|
||||
params.guidance,
|
||||
params.width,
|
||||
params.height,
|
||||
params.sample_method,
|
||||
|
||||
963
flux.hpp
Normal file
963
flux.hpp
Normal file
@ -0,0 +1,963 @@
|
||||
#ifndef __FLUX_HPP__
|
||||
#define __FLUX_HPP__
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#include "model.h"
|
||||
|
||||
#define FLUX_GRAPH_SIZE 10240
|
||||
|
||||
namespace Flux {
|
||||
|
||||
struct MLPEmbedder : public UnaryBlock {
|
||||
public:
|
||||
MLPEmbedder(int64_t in_dim, int64_t hidden_dim) {
|
||||
blocks["in_layer"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true));
|
||||
blocks["out_layer"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, hidden_dim, true));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
// x: [..., in_dim]
|
||||
// return: [..., hidden_dim]
|
||||
auto in_layer = std::dynamic_pointer_cast<Linear>(blocks["in_layer"]);
|
||||
auto out_layer = std::dynamic_pointer_cast<Linear>(blocks["out_layer"]);
|
||||
|
||||
x = in_layer->forward(ctx, x);
|
||||
x = ggml_silu_inplace(ctx, x);
|
||||
x = out_layer->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
class RMSNorm : public UnaryBlock {
|
||||
protected:
|
||||
int64_t hidden_size;
|
||||
float eps;
|
||||
|
||||
void init_params(struct ggml_context* ctx, ggml_type wtype) {
|
||||
params["scale"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size);
|
||||
}
|
||||
|
||||
public:
|
||||
RMSNorm(int64_t hidden_size,
|
||||
float eps = 1e-06f)
|
||||
: hidden_size(hidden_size),
|
||||
eps(eps) {}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
struct ggml_tensor* w = params["scale"];
|
||||
x = ggml_rms_norm(ctx, x, eps);
|
||||
x = ggml_mul(ctx, x, w);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct QKNorm : public GGMLBlock {
|
||||
public:
|
||||
QKNorm(int64_t dim) {
|
||||
blocks["query_norm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(dim));
|
||||
blocks["key_norm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(dim));
|
||||
}
|
||||
|
||||
struct ggml_tensor* query_norm(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
// x: [..., dim]
|
||||
// return: [..., dim]
|
||||
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["query_norm"]);
|
||||
|
||||
x = norm->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* key_norm(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
// x: [..., dim]
|
||||
// return: [..., dim]
|
||||
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["key_norm"]);
|
||||
|
||||
x = norm->forward(ctx, x);
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* pe) {
|
||||
// x: [N, L, n_head, d_head]
|
||||
// pe: [L, d_head/2, 2, 2]
|
||||
int64_t d_head = x->ne[0];
|
||||
int64_t n_head = x->ne[1];
|
||||
int64_t L = x->ne[2];
|
||||
int64_t N = x->ne[3];
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N, n_head, L, d_head]
|
||||
x = ggml_reshape_4d(ctx, x, 2, d_head/2, L, n_head * N); // [N * n_head, L, d_head/2, 2]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 3, 0, 1, 2)); // [2, N * n_head, L, d_head/2]
|
||||
|
||||
int64_t offset = x->nb[2] * x->ne[2];
|
||||
auto x_0 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 0); // [N * n_head, L, d_head/2]
|
||||
auto x_1 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 1); // [N * n_head, L, d_head/2]
|
||||
x_0 = ggml_reshape_4d(ctx, x_0, 1, x_0->ne[0], x_0->ne[1], x_0->ne[2]); // [N * n_head, L, d_head/2, 1]
|
||||
x_1 = ggml_reshape_4d(ctx, x_1, 1, x_1->ne[0], x_1->ne[1], x_1->ne[2]); // [N * n_head, L, d_head/2, 1]
|
||||
auto temp_x = ggml_new_tensor_4d(ctx, x_0->type, 2, x_0->ne[1], x_0->ne[2], x_0->ne[3]);
|
||||
x_0 = ggml_repeat(ctx, x_0, temp_x); // [N * n_head, L, d_head/2, 2]
|
||||
x_1 = ggml_repeat(ctx, x_1, temp_x); // [N * n_head, L, d_head/2, 2]
|
||||
|
||||
pe = ggml_cont(ctx, ggml_permute(ctx, pe, 3, 0, 1, 2)); // [2, L, d_head/2, 2]
|
||||
offset = pe->nb[2] * pe->ne[2];
|
||||
auto pe_0 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 0); // [L, d_head/2, 2]
|
||||
auto pe_1 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 1); // [L, d_head/2, 2]
|
||||
|
||||
auto x_out = ggml_add_inplace(ctx, ggml_mul(ctx, x_0, pe_0), ggml_mul(ctx, x_1, pe_1)); // [N * n_head, L, d_head/2, 2]
|
||||
x_out = ggml_reshape_3d(ctx, x_out, d_head, L, n_head*N); // [N*n_head, L, d_head]
|
||||
return x_out;
|
||||
}
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* attention(struct ggml_context* ctx,
|
||||
struct ggml_tensor* q,
|
||||
struct ggml_tensor* k,
|
||||
struct ggml_tensor* v,
|
||||
struct ggml_tensor* pe) {
|
||||
// q,k,v: [N, L, n_head, d_head]
|
||||
// pe: [L, d_head/2, 2, 2]
|
||||
// return: [N, L, n_head*d_head]
|
||||
q = apply_rope(ctx, q, pe); // [N*n_head, L, d_head]
|
||||
k = apply_rope(ctx, k, pe); // [N*n_head, L, d_head]
|
||||
|
||||
auto x = ggml_nn_attention_ext(ctx, q, k, v, v->ne[1], NULL, false, true); // [N, L, n_head*d_head]
|
||||
return x;
|
||||
}
|
||||
|
||||
struct SelfAttention : public GGMLBlock {
|
||||
public:
|
||||
int64_t num_heads;
|
||||
|
||||
public:
|
||||
SelfAttention(int64_t dim,
|
||||
int64_t num_heads = 8,
|
||||
bool qkv_bias = false)
|
||||
: num_heads(num_heads) {
|
||||
int64_t head_dim = dim / num_heads;
|
||||
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * 3, qkv_bias));
|
||||
blocks["norm"] = std::shared_ptr<GGMLBlock>(new QKNorm(head_dim));
|
||||
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim));
|
||||
}
|
||||
|
||||
std::vector<struct ggml_tensor*> pre_attention(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
|
||||
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
||||
|
||||
|
||||
auto qkv = qkv_proj->forward(ctx, x);
|
||||
auto qkv_vec = split_qkv(ctx, qkv);
|
||||
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]);
|
||||
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]);
|
||||
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]);
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
return {q, k, v};
|
||||
}
|
||||
|
||||
struct ggml_tensor* post_attention(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||||
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]);
|
||||
|
||||
x = proj->forward(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* pe) {
|
||||
// x: [N, n_token, dim]
|
||||
// pe: [n_token, d_head/2, 2, 2]
|
||||
// return [N, n_token, dim]
|
||||
auto qkv = pre_attention(ctx, x); // q,k,v: [N, n_token, n_head, d_head]
|
||||
x = attention(ctx, qkv[0], qkv[1], qkv[2], pe); // [N, n_token, dim]
|
||||
x = post_attention(ctx, x); // [N, n_token, dim]
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct ModulationOut {
|
||||
ggml_tensor* shift = NULL;
|
||||
ggml_tensor* scale = NULL;
|
||||
ggml_tensor* gate = NULL;
|
||||
|
||||
ModulationOut(ggml_tensor* shift = NULL, ggml_tensor* scale = NULL, ggml_tensor* gate = NULL)
|
||||
: shift(shift), scale(scale), gate(gate) {}
|
||||
};
|
||||
|
||||
struct Modulation : public GGMLBlock {
|
||||
public:
|
||||
bool is_double;
|
||||
int multiplier;
|
||||
public:
|
||||
Modulation(int64_t dim, bool is_double): is_double(is_double) {
|
||||
multiplier = is_double? 6 : 3;
|
||||
blocks["lin"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * multiplier));
|
||||
}
|
||||
|
||||
std::vector<ModulationOut> forward(struct ggml_context* ctx, struct ggml_tensor* vec) {
|
||||
// x: [N, dim]
|
||||
// return: [ModulationOut, ModulationOut]
|
||||
auto lin = std::dynamic_pointer_cast<Linear>(blocks["lin"]);
|
||||
|
||||
auto out = ggml_silu(ctx, vec);
|
||||
out = lin->forward(ctx, out); // [N, multiplier*dim]
|
||||
|
||||
auto m = ggml_reshape_3d(ctx, out, vec->ne[0], multiplier, vec->ne[1]); // [N, multiplier, dim]
|
||||
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); // [multiplier, N, dim]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, dim]
|
||||
auto scale_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, dim]
|
||||
auto gate_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); // [N, dim]
|
||||
|
||||
if (is_double) {
|
||||
auto shift_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); // [N, dim]
|
||||
auto scale_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); // [N, dim]
|
||||
auto gate_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); // [N, dim]
|
||||
return {ModulationOut(shift_0, scale_0, gate_0), ModulationOut(shift_1, scale_1, gate_1)};
|
||||
}
|
||||
|
||||
return {ModulationOut(shift_0, scale_0, gate_0), ModulationOut()};
|
||||
}
|
||||
};
|
||||
|
||||
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* shift,
|
||||
struct ggml_tensor* scale) {
|
||||
// x: [N, L, C]
|
||||
// scale: [N, C]
|
||||
// shift: [N, C]
|
||||
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); // [N, 1, C]
|
||||
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); // [N, 1, C]
|
||||
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
|
||||
x = ggml_add(ctx, x, shift);
|
||||
return x;
|
||||
}
|
||||
|
||||
struct DoubleStreamBlock : public GGMLBlock {
|
||||
public:
|
||||
DoubleStreamBlock(int64_t hidden_size,
|
||||
int64_t num_heads,
|
||||
float mlp_ratio,
|
||||
bool qkv_bias = false) {
|
||||
int64_t mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
blocks["img_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true));
|
||||
blocks["img_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false));
|
||||
blocks["img_attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qkv_bias));
|
||||
|
||||
blocks["img_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false));
|
||||
blocks["img_mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, mlp_hidden_dim));
|
||||
// img_mlp.1 is nn.GELU(approximate="tanh")
|
||||
blocks["img_mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(mlp_hidden_dim, hidden_size));
|
||||
|
||||
blocks["txt_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true));
|
||||
blocks["txt_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false));
|
||||
blocks["txt_attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qkv_bias));
|
||||
|
||||
blocks["txt_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false));
|
||||
blocks["txt_mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, mlp_hidden_dim));
|
||||
// img_mlp.1 is nn.GELU(approximate="tanh")
|
||||
blocks["txt_mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(mlp_hidden_dim, hidden_size));
|
||||
}
|
||||
|
||||
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx,
|
||||
struct ggml_tensor* img,
|
||||
struct ggml_tensor* txt,
|
||||
struct ggml_tensor* vec,
|
||||
struct ggml_tensor* pe) {
|
||||
// img: [N, n_img_token, hidden_size]
|
||||
// txt: [N, n_txt_token, hidden_size]
|
||||
// pe: [n_img_token + n_txt_token, d_head/2, 2, 2]
|
||||
// return: ([N, n_img_token, hidden_size], [N, n_txt_token, hidden_size])
|
||||
|
||||
auto img_mod = std::dynamic_pointer_cast<Modulation>(blocks["img_mod"]);
|
||||
auto img_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["img_norm1"]);
|
||||
auto img_attn = std::dynamic_pointer_cast<SelfAttention>(blocks["img_attn"]);
|
||||
|
||||
auto img_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["img_norm2"]);
|
||||
auto img_mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["img_mlp.0"]);
|
||||
auto img_mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["img_mlp.2"]);
|
||||
|
||||
auto txt_mod = std::dynamic_pointer_cast<Modulation>(blocks["txt_mod"]);
|
||||
auto txt_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["txt_norm1"]);
|
||||
auto txt_attn = std::dynamic_pointer_cast<SelfAttention>(blocks["txt_attn"]);
|
||||
|
||||
auto txt_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["txt_norm2"]);
|
||||
auto txt_mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["txt_mlp.0"]);
|
||||
auto txt_mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["txt_mlp.2"]);
|
||||
|
||||
|
||||
auto img_mods = img_mod->forward(ctx, vec);
|
||||
ModulationOut img_mod1 = img_mods[0];
|
||||
ModulationOut img_mod2 = img_mods[1];
|
||||
auto txt_mods = txt_mod->forward(ctx, vec);
|
||||
ModulationOut txt_mod1 = txt_mods[0];
|
||||
ModulationOut txt_mod2 = txt_mods[1];
|
||||
|
||||
// prepare image for attention
|
||||
auto img_modulated = img_norm1->forward(ctx, img);
|
||||
img_modulated = Flux::modulate(ctx, img_modulated, img_mod1.shift, img_mod1.scale);
|
||||
auto img_qkv = img_attn->pre_attention(ctx, img_modulated); // q,k,v: [N, n_img_token, n_head, d_head]
|
||||
auto img_q = img_qkv[0];
|
||||
auto img_k = img_qkv[1];
|
||||
auto img_v = img_qkv[2];
|
||||
|
||||
// prepare txt for attention
|
||||
auto txt_modulated = txt_norm1->forward(ctx, txt);
|
||||
txt_modulated = Flux::modulate(ctx, txt_modulated, txt_mod1.shift, txt_mod1.scale);
|
||||
auto txt_qkv = txt_attn->pre_attention(ctx, txt_modulated); // q,k,v: [N, n_txt_token, n_head, d_head]
|
||||
auto txt_q = txt_qkv[0];
|
||||
auto txt_k = txt_qkv[1];
|
||||
auto txt_v = txt_qkv[2];
|
||||
|
||||
// run actual attention
|
||||
auto q = ggml_concat(ctx, txt_q, img_q, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto k = ggml_concat(ctx, txt_k, img_k, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
auto v = ggml_concat(ctx, txt_v, img_v, 2); // [N, n_txt_token + n_img_token, n_head, d_head]
|
||||
|
||||
auto attn = attention(ctx, q, k, v, pe); // [N, n_txt_token + n_img_token, n_head*d_head]
|
||||
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
auto txt_attn_out = ggml_view_3d(ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
txt->ne[1],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
0); // [n_txt_token, N, hidden_size]
|
||||
txt_attn_out = ggml_cont(ctx, ggml_permute(ctx, txt_attn_out, 0, 2, 1, 3)); // [N, n_txt_token, hidden_size]
|
||||
auto img_attn_out = ggml_view_3d(ctx,
|
||||
attn,
|
||||
attn->ne[0],
|
||||
attn->ne[1],
|
||||
img->ne[1],
|
||||
attn->nb[1],
|
||||
attn->nb[2],
|
||||
attn->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img_attn_out = ggml_cont(ctx, ggml_permute(ctx, img_attn_out, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
|
||||
// calculate the img bloks
|
||||
img = ggml_add(ctx, img, ggml_mul(ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate));
|
||||
|
||||
auto img_mlp_out = img_mlp_0->forward(ctx, Flux::modulate(ctx, img_norm2->forward(ctx, img), img_mod2.shift, img_mod2.scale));
|
||||
img_mlp_out = ggml_gelu_inplace(ctx, img_mlp_out);
|
||||
img_mlp_out = img_mlp_2->forward(ctx, img_mlp_out);
|
||||
|
||||
img = ggml_add(ctx, img, ggml_mul(ctx, img_mlp_out, img_mod2.gate));
|
||||
|
||||
// calculate the txt bloks
|
||||
txt = ggml_add(ctx, txt, ggml_mul(ctx, txt_attn->post_attention(ctx, txt_attn_out), txt_mod1.gate));
|
||||
|
||||
auto txt_mlp_out = txt_mlp_0->forward(ctx, Flux::modulate(ctx, txt_norm2->forward(ctx, txt), txt_mod2.shift, txt_mod2.scale));
|
||||
txt_mlp_out = ggml_gelu_inplace(ctx, txt_mlp_out);
|
||||
txt_mlp_out = txt_mlp_2->forward(ctx, txt_mlp_out);
|
||||
|
||||
txt = ggml_add(ctx, txt, ggml_mul(ctx, txt_mlp_out, txt_mod2.gate));
|
||||
|
||||
return {img, txt};
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct SingleStreamBlock : public GGMLBlock {
|
||||
public:
|
||||
int64_t num_heads;
|
||||
int64_t hidden_size;
|
||||
int64_t mlp_hidden_dim;
|
||||
public:
|
||||
SingleStreamBlock(int64_t hidden_size,
|
||||
int64_t num_heads,
|
||||
float mlp_ratio = 4.0f,
|
||||
float qk_scale = 0.f) :
|
||||
hidden_size(hidden_size), num_heads(num_heads) {
|
||||
int64_t head_dim = hidden_size / num_heads;
|
||||
float scale = qk_scale;
|
||||
if (scale <= 0.f) {
|
||||
scale = 1 / sqrt((float)head_dim);
|
||||
}
|
||||
mlp_hidden_dim = hidden_size * mlp_ratio;
|
||||
|
||||
blocks["linear1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim));
|
||||
blocks["linear2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size + mlp_hidden_dim, hidden_size));
|
||||
blocks["norm"] = std::shared_ptr<GGMLBlock>(new QKNorm(head_dim));
|
||||
blocks["pre_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false));
|
||||
// mlp_act is nn.GELU(approximate="tanh")
|
||||
blocks["modulation"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, false));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* vec,
|
||||
struct ggml_tensor* pe) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
// pe: [n_token, d_head/2, 2, 2]
|
||||
// return: [N, n_token, hidden_size]
|
||||
|
||||
auto linear1 = std::dynamic_pointer_cast<Linear>(blocks["linear1"]);
|
||||
auto linear2 = std::dynamic_pointer_cast<Linear>(blocks["linear2"]);
|
||||
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]);
|
||||
auto pre_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["pre_norm"]);
|
||||
auto modulation = std::dynamic_pointer_cast<Modulation>(blocks["modulation"]);
|
||||
|
||||
auto mods = modulation->forward(ctx, vec);
|
||||
ModulationOut mod = mods[0];
|
||||
|
||||
auto x_mod = Flux::modulate(ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale);
|
||||
auto qkv_mlp = linear1->forward(ctx, x_mod); // [N, n_token, hidden_size * 3 + mlp_hidden_dim]
|
||||
qkv_mlp = ggml_cont(ctx, ggml_permute(ctx, qkv_mlp, 2, 0, 1, 3)); // [hidden_size * 3 + mlp_hidden_dim, N, n_token]
|
||||
|
||||
auto qkv = ggml_view_3d(ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
hidden_size * 3,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
0); // [hidden_size * 3 , N, n_token]
|
||||
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 1, 2, 0, 3)); // [N, n_token, hidden_size * 3]
|
||||
auto mlp = ggml_view_3d(ctx,
|
||||
qkv_mlp,
|
||||
qkv_mlp->ne[0],
|
||||
qkv_mlp->ne[1],
|
||||
mlp_hidden_dim,
|
||||
qkv_mlp->nb[1],
|
||||
qkv_mlp->nb[2],
|
||||
qkv_mlp->nb[2] * hidden_size * 3); // [mlp_hidden_dim , N, n_token]
|
||||
mlp = ggml_cont(ctx, ggml_permute(ctx, mlp, 1, 2, 0, 3)); // [N, n_token, mlp_hidden_dim]
|
||||
|
||||
auto qkv_vec = split_qkv(ctx, qkv); // q,k,v: [N, n_token, hidden_size]
|
||||
int64_t head_dim = hidden_size / num_heads;
|
||||
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); // [N, n_token, n_head, d_head]
|
||||
q = norm->query_norm(ctx, q);
|
||||
k = norm->key_norm(ctx, k);
|
||||
auto attn = attention(ctx, q, k, v, pe); // [N, n_token, hidden_size]
|
||||
|
||||
auto attn_mlp = ggml_concat(ctx, attn, ggml_gelu_inplace(ctx, mlp), 0); // [N, n_token, hidden_size + mlp_hidden_dim]
|
||||
auto output = linear2->forward(ctx, attn_mlp); // [N, n_token, hidden_size]
|
||||
|
||||
output = ggml_add(ctx, x, ggml_mul(ctx, output, mod.gate));
|
||||
return output;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct LastLayer : public GGMLBlock {
|
||||
public:
|
||||
LastLayer(int64_t hidden_size,
|
||||
int64_t patch_size,
|
||||
int64_t out_channels) {
|
||||
blocks["norm_final"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false));
|
||||
blocks["linear"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, patch_size * patch_size * out_channels));
|
||||
blocks["adaLN_modulation.1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, 2 * hidden_size));
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* c) {
|
||||
// x: [N, n_token, hidden_size]
|
||||
// c: [N, hidden_size]
|
||||
// return: [N, n_token, patch_size * patch_size * out_channels]
|
||||
auto norm_final = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]);
|
||||
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
|
||||
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);
|
||||
|
||||
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx, c)); // [N, 2 * hidden_size]
|
||||
m = ggml_reshape_3d(ctx, m, c->ne[0], 2, c->ne[1]); // [N, 2, hidden_size]
|
||||
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); // [2, N, hidden_size]
|
||||
|
||||
int64_t offset = m->nb[1] * m->ne[1];
|
||||
auto shift = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); // [N, hidden_size]
|
||||
auto scale = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); // [N, hidden_size]
|
||||
|
||||
x = Flux::modulate(ctx, norm_final->forward(ctx, x), shift, scale);
|
||||
x = linear->forward(ctx, x);
|
||||
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
struct FluxParams {
|
||||
int64_t in_channels = 64;
|
||||
int64_t vec_in_dim=768;
|
||||
int64_t context_in_dim = 4096;
|
||||
int64_t hidden_size = 3072;
|
||||
float mlp_ratio = 4.0f;
|
||||
int64_t num_heads = 24;
|
||||
int64_t depth = 19;
|
||||
int64_t depth_single_blocks = 38;
|
||||
std::vector<int> axes_dim = {16, 56, 56};
|
||||
int64_t axes_dim_sum = 128;
|
||||
int theta = 10000;
|
||||
bool qkv_bias = true;
|
||||
bool guidance_embed = true;
|
||||
};
|
||||
|
||||
|
||||
struct Flux : public GGMLBlock {
|
||||
public:
|
||||
std::vector<float> linspace(float start, float end, int num) {
|
||||
std::vector<float> result(num);
|
||||
float step = (end - start) / (num - 1);
|
||||
for (int i = 0; i < num; ++i) {
|
||||
result[i] = start + i * step;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) {
|
||||
int rows = mat.size();
|
||||
int cols = mat[0].size();
|
||||
std::vector<std::vector<float>> transposed(cols, std::vector<float>(rows));
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
transposed[j][i] = mat[i][j];
|
||||
}
|
||||
}
|
||||
return transposed;
|
||||
}
|
||||
|
||||
std::vector<float> flatten(const std::vector<std::vector<float>>& vec) {
|
||||
std::vector<float> flat_vec;
|
||||
for (const auto& sub_vec : vec) {
|
||||
flat_vec.insert(flat_vec.end(), sub_vec.begin(), sub_vec.end());
|
||||
}
|
||||
return flat_vec;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> rope(const std::vector<float>& pos, int dim, int theta) {
|
||||
assert(dim % 2 == 0);
|
||||
int half_dim = dim / 2;
|
||||
|
||||
std::vector<float> scale = linspace(0, (dim * 1.0f - 2) / dim, half_dim);
|
||||
|
||||
std::vector<float> omega(half_dim);
|
||||
for (int i = 0; i < half_dim; ++i) {
|
||||
omega[i] = 1.0 / std::pow(theta, scale[i]);
|
||||
}
|
||||
|
||||
int pos_size = pos.size();
|
||||
std::vector<std::vector<float>> out(pos_size, std::vector<float>(half_dim));
|
||||
for (int i = 0; i < pos_size; ++i) {
|
||||
for (int j = 0; j < half_dim; ++j) {
|
||||
out[i][j] = pos[i] * omega[j];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> result(pos_size, std::vector<float>(half_dim * 4));
|
||||
for (int i = 0; i < pos_size; ++i) {
|
||||
for (int j = 0; j < half_dim; ++j) {
|
||||
result[i][4 * j] = std::cos(out[i][j]);
|
||||
result[i][4 * j + 1] = -std::sin(out[i][j]);
|
||||
result[i][4 * j + 2] = std::sin(out[i][j]);
|
||||
result[i][4 * j + 3] = std::cos(out[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Generate IDs for image patches and text
|
||||
std::vector<std::vector<float>> gen_ids(int h, int w, int patch_size, int bs, int context_len) {
|
||||
int h_len = (h + (patch_size / 2)) / patch_size;
|
||||
int w_len = (w + (patch_size / 2)) / patch_size;
|
||||
|
||||
std::vector<std::vector<float>> img_ids(h_len * w_len, std::vector<float>(3, 0.0));
|
||||
|
||||
std::vector<float> row_ids = linspace(0, h_len - 1, h_len);
|
||||
std::vector<float> col_ids = linspace(0, w_len - 1, w_len);
|
||||
|
||||
for (int i = 0; i < h_len; ++i) {
|
||||
for (int j = 0; j < w_len; ++j) {
|
||||
img_ids[i * w_len + j][1] = row_ids[i];
|
||||
img_ids[i * w_len + j][2] = col_ids[j];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> img_ids_repeated(bs * img_ids.size(), std::vector<float>(3));
|
||||
for (int i = 0; i < bs; ++i) {
|
||||
for (int j = 0; j < img_ids.size(); ++j) {
|
||||
img_ids_repeated[i * img_ids.size() + j] = img_ids[j];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> txt_ids(bs * context_len, std::vector<float>(3, 0.0));
|
||||
std::vector<std::vector<float>> ids(bs * (context_len + img_ids.size()), std::vector<float>(3));
|
||||
for (int i = 0; i < bs; ++i) {
|
||||
for (int j = 0; j < context_len; ++j) {
|
||||
ids[i * (context_len + img_ids.size()) + j] = txt_ids[j];
|
||||
}
|
||||
for (int j = 0; j < img_ids.size(); ++j) {
|
||||
ids[i * (context_len + img_ids.size()) + context_len + j] = img_ids_repeated[i * img_ids.size() + j];
|
||||
}
|
||||
}
|
||||
|
||||
return ids;
|
||||
}
|
||||
|
||||
// Generate positional embeddings
|
||||
std::vector<float> gen_pe(int h, int w, int patch_size, int bs, int context_len, int theta, const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_ids(h, w, patch_size, bs, context_len);
|
||||
std::vector<std::vector<float>> trans_ids = transpose(ids);
|
||||
size_t pos_len = ids.size();
|
||||
int num_axes = axes_dim.size();
|
||||
for (int i = 0; i < pos_len; i++) {
|
||||
// std::cout << trans_ids[0][i] << " " << trans_ids[1][i] << " " << trans_ids[2][i] << std::endl;
|
||||
}
|
||||
|
||||
|
||||
int emb_dim = 0;
|
||||
for (int d : axes_dim) emb_dim += d / 2;
|
||||
|
||||
std::vector<std::vector<float>> emb(bs * pos_len, std::vector<float>(emb_dim * 2 * 2, 0.0));
|
||||
int offset = 0;
|
||||
for (int i = 0; i < num_axes; ++i) {
|
||||
std::vector<std::vector<float>> rope_emb = rope(trans_ids[i], axes_dim[i], theta); // [bs*pos_len, axes_dim[i]/2 * 2 * 2]
|
||||
for (int b = 0; b < bs; ++b) {
|
||||
for (int j = 0; j < pos_len; ++j) {
|
||||
for (int k = 0; k < rope_emb[0].size(); ++k) {
|
||||
emb[b * pos_len + j][offset + k] = rope_emb[j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
offset += rope_emb[0].size();
|
||||
}
|
||||
|
||||
return flatten(emb);
|
||||
}
|
||||
public:
|
||||
FluxParams params;
|
||||
Flux() {}
|
||||
Flux(FluxParams params) : params(params) {
|
||||
int64_t out_channels = params.in_channels;
|
||||
int64_t pe_dim = params.hidden_size / params.num_heads;
|
||||
|
||||
blocks["img_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.in_channels, params.hidden_size));
|
||||
blocks["time_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size));
|
||||
blocks["vector_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(params.vec_in_dim, params.hidden_size));
|
||||
if (params.guidance_embed) {
|
||||
blocks["guidance_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size));
|
||||
}
|
||||
blocks["txt_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.context_in_dim, params.hidden_size));
|
||||
|
||||
for (int i = 0; i < params.depth; i++) {
|
||||
blocks["double_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new DoubleStreamBlock(params.hidden_size,
|
||||
params.num_heads,
|
||||
params.mlp_ratio,
|
||||
params.qkv_bias));
|
||||
}
|
||||
|
||||
for (int i = 0; i < params.depth_single_blocks; i++) {
|
||||
blocks["single_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new SingleStreamBlock(params.hidden_size,
|
||||
params.num_heads,
|
||||
params.mlp_ratio));
|
||||
}
|
||||
|
||||
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new LastLayer(params.hidden_size, 1, out_channels));
|
||||
}
|
||||
|
||||
struct ggml_tensor* patchify(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int64_t patch_size) {
|
||||
// x: [N, C, H, W]
|
||||
// return: [N, h*w, C * patch_size * patch_size]
|
||||
int64_t N = x->ne[3];
|
||||
int64_t C = x->ne[2];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t W = x->ne[0];
|
||||
int64_t p = patch_size;
|
||||
int64_t h = H / patch_size;
|
||||
int64_t w = W / patch_size;
|
||||
|
||||
GGML_ASSERT(h * p == H && w * p == W);
|
||||
|
||||
x = ggml_reshape_4d(ctx, x, p, w, p, h*C*N); // [N*C*h, p, w, p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, w, p, p]
|
||||
x = ggml_reshape_4d(ctx, x, p * p, w * h, C, N); // [N, C, h*w, p*p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N, h*w, C, p*p]
|
||||
x = ggml_reshape_3d(ctx, x, p*p*C, w*h, N); // [N, h*w, C*p*p]
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* unpatchify(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
int64_t h,
|
||||
int64_t w,
|
||||
int64_t patch_size) {
|
||||
// x: [N, h*w, C*patch_size*patch_size]
|
||||
// return: [N, C, H, W]
|
||||
int64_t N = x->ne[2];
|
||||
int64_t C = x->ne[0] / patch_size / patch_size;
|
||||
int64_t H = h * patch_size;
|
||||
int64_t W = w * patch_size;
|
||||
int64_t p = patch_size;
|
||||
|
||||
GGML_ASSERT(C * p * p == x->ne[0]);
|
||||
|
||||
x = ggml_reshape_4d(ctx, x, p * p, C, w * h, N); // [N, h*w, C, p*p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N, C, h*w, p*p]
|
||||
x = ggml_reshape_4d(ctx, x, p, p, w, h * C * N); // [N*C*h, w, p, p]
|
||||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // [N*C*h, p, w, p]
|
||||
x = ggml_reshape_4d(ctx, x, W, H, C, N); // [N, C, h*p, w*p]
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward_orig(struct ggml_context* ctx,
|
||||
struct ggml_tensor* img,
|
||||
struct ggml_tensor* txt,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
struct ggml_tensor* pe) {
|
||||
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]);
|
||||
auto time_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["time_in"]);
|
||||
auto vector_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["vector_in"]);
|
||||
auto txt_in = std::dynamic_pointer_cast<Linear>(blocks["txt_in"]);
|
||||
auto final_layer = std::dynamic_pointer_cast<LastLayer>(blocks["final_layer"]);
|
||||
|
||||
img = img_in->forward(ctx, img);
|
||||
auto vec = time_in->forward(ctx, ggml_nn_timestep_embedding(ctx, timesteps, 256, 10000, 1000.f));
|
||||
|
||||
if (params.guidance_embed) {
|
||||
GGML_ASSERT(guidance != NULL);
|
||||
auto guidance_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["guidance_in"]);
|
||||
// bf16 and fp16 result is different
|
||||
auto g_in = ggml_nn_timestep_embedding(ctx, guidance, 256, 10000, 1000.f);
|
||||
vec = ggml_add(ctx, vec, guidance_in->forward(ctx, g_in));
|
||||
}
|
||||
|
||||
vec = ggml_add(ctx, vec, vector_in->forward(ctx, y));
|
||||
txt = txt_in->forward(ctx, txt);
|
||||
|
||||
for (int i = 0; i < params.depth; i++) {
|
||||
auto block = std::dynamic_pointer_cast<DoubleStreamBlock>(blocks["double_blocks." + std::to_string(i)]);
|
||||
|
||||
auto img_txt = block->forward(ctx, img, txt, vec, pe);
|
||||
img = img_txt.first; // [N, n_img_token, hidden_size]
|
||||
txt = img_txt.second; // [N, n_txt_token, hidden_size]
|
||||
}
|
||||
|
||||
auto txt_img = ggml_concat(ctx, txt, img, 1); // [N, n_txt_token + n_img_token, hidden_size]
|
||||
for (int i = 0; i < params.depth_single_blocks; i++) {
|
||||
auto block = std::dynamic_pointer_cast<SingleStreamBlock>(blocks["single_blocks." + std::to_string(i)]);
|
||||
|
||||
txt_img = block->forward(ctx, txt_img, vec, pe);
|
||||
}
|
||||
|
||||
txt_img = ggml_cont(ctx, ggml_permute(ctx, txt_img, 0, 2, 1, 3)); // [n_txt_token + n_img_token, N, hidden_size]
|
||||
img = ggml_view_3d(ctx,
|
||||
txt_img,
|
||||
txt_img->ne[0],
|
||||
txt_img->ne[1],
|
||||
img->ne[1],
|
||||
txt_img->nb[1],
|
||||
txt_img->nb[2],
|
||||
txt_img->nb[2] * txt->ne[1]); // [n_img_token, N, hidden_size]
|
||||
img = ggml_cont(ctx, ggml_permute(ctx, img, 0, 2, 1, 3)); // [N, n_img_token, hidden_size]
|
||||
|
||||
img = final_layer->forward(ctx, img, vec); // (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
return img;
|
||||
}
|
||||
|
||||
struct ggml_tensor* forward(struct ggml_context* ctx,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timestep,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
struct ggml_tensor* pe) {
|
||||
// Forward pass of DiT.
|
||||
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
// timestep: (N,) tensor of diffusion timesteps
|
||||
// context: (N, L, D)
|
||||
// y: (N, adm_in_channels) tensor of class labels
|
||||
// guidance: (N,)
|
||||
// pe: (L, d_head/2, 2, 2)
|
||||
// return: (N, C, H, W)
|
||||
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
|
||||
int64_t W = x->ne[0];
|
||||
int64_t H = x->ne[1];
|
||||
int64_t patch_size = 2;
|
||||
int pad_h = (patch_size - H % patch_size) % patch_size;
|
||||
int pad_w = (patch_size - W % patch_size) % patch_size;
|
||||
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); // [N, C, H + pad_h, W + pad_w]
|
||||
|
||||
// img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
auto img = patchify(ctx, x, patch_size); // [N, h*w, C * patch_size * patch_size]
|
||||
|
||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe); // [N, h*w, C * patch_size * patch_size]
|
||||
|
||||
// rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)
|
||||
out = unpatchify(ctx, out, (H + pad_h) / patch_size, (W + pad_w) / patch_size, patch_size); // [N, C, H + pad_h, W + pad_w]
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct FluxRunner : public GGMLRunner {
|
||||
public:
|
||||
FluxParams flux_params;
|
||||
Flux flux;
|
||||
std::vector<float> pe_vec; // for cache
|
||||
|
||||
FluxRunner(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_FLUX_DEV)
|
||||
: GGMLRunner(backend, wtype) {
|
||||
if (version == VERSION_FLUX_SCHNELL) {
|
||||
flux_params.guidance_embed = false;
|
||||
}
|
||||
flux = Flux(flux_params);
|
||||
flux.init(params_ctx, wtype);
|
||||
}
|
||||
|
||||
std::string get_desc() {
|
||||
return "flux";
|
||||
}
|
||||
|
||||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
|
||||
flux.get_param_tensors(tensors, prefix);
|
||||
}
|
||||
|
||||
struct ggml_cgraph* build_graph(struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
|
||||
|
||||
x = to_backend(x);
|
||||
context = to_backend(context);
|
||||
y = to_backend(y);
|
||||
timesteps = to_backend(timesteps);
|
||||
guidance = to_backend(guidance);
|
||||
|
||||
pe_vec = flux.gen_pe(x->ne[1], x->ne[0], 2, x->ne[3], context->ne[1], flux_params.theta, flux_params.axes_dim);
|
||||
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2;
|
||||
// LOG_DEBUG("pos_len %d", pos_len);
|
||||
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, flux_params.axes_dim_sum/2, pos_len);
|
||||
// pe->data = pe_vec.data();
|
||||
// print_ggml_tensor(pe);
|
||||
// pe->data = NULL;
|
||||
set_backend_tensor_data(pe, pe_vec.data());
|
||||
|
||||
|
||||
struct ggml_tensor* out = flux.forward(compute_ctx,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
y,
|
||||
guidance,
|
||||
pe);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
void compute(int n_threads,
|
||||
struct ggml_tensor* x,
|
||||
struct ggml_tensor* timesteps,
|
||||
struct ggml_tensor* context,
|
||||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
struct ggml_tensor** output = NULL,
|
||||
struct ggml_context* output_ctx = NULL) {
|
||||
// x: [N, in_channels, h, w]
|
||||
// timesteps: [N, ]
|
||||
// context: [N, max_position, hidden_size]
|
||||
// y: [N, adm_in_channels] or [1, adm_in_channels]
|
||||
// guidance: [N, ]
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(x, timesteps, context, y, guidance);
|
||||
};
|
||||
|
||||
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
|
||||
}
|
||||
|
||||
void test() {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(20 * 1024 * 1024); // 20 MB
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
GGML_ASSERT(work_ctx != NULL);
|
||||
|
||||
{
|
||||
// cpu f16:
|
||||
// cuda f16: nan
|
||||
// cuda q8_0: pass
|
||||
auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
|
||||
ggml_set_f32(x, 0.01f);
|
||||
// print_ggml_tensor(x);
|
||||
|
||||
std::vector<float> timesteps_vec(1, 999.f);
|
||||
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
|
||||
|
||||
std::vector<float> guidance_vec(1, 3.5f);
|
||||
auto guidance = vector_to_ggml_tensor(work_ctx, guidance_vec);
|
||||
|
||||
auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 4096, 256, 1);
|
||||
ggml_set_f32(context, 0.01f);
|
||||
// print_ggml_tensor(context);
|
||||
|
||||
auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, 1);
|
||||
ggml_set_f32(y, 0.01f);
|
||||
// print_ggml_tensor(y);
|
||||
|
||||
struct ggml_tensor* out = NULL;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
compute(8, x, timesteps, context, y, guidance, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
LOG_DEBUG("flux test done in %dms", t1 - t0);
|
||||
}
|
||||
}
|
||||
|
||||
static void load_from_file_and_test(const std::string& file_path) {
|
||||
ggml_backend_t backend = ggml_backend_cuda_init(0);
|
||||
// ggml_backend_t backend = ggml_backend_cpu_init();
|
||||
ggml_type model_data_type = GGML_TYPE_Q8_0;
|
||||
std::shared_ptr<FluxRunner> flux = std::shared_ptr<FluxRunner>(new FluxRunner(backend, model_data_type));
|
||||
{
|
||||
LOG_INFO("loading from '%s'", file_path.c_str());
|
||||
|
||||
flux->alloc_params_buffer();
|
||||
std::map<std::string, ggml_tensor*> tensors;
|
||||
flux->get_param_tensors(tensors, "model.diffusion_model");
|
||||
|
||||
ModelLoader model_loader;
|
||||
if (!model_loader.init_from_file(file_path, "model.diffusion_model.")) {
|
||||
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
bool success = model_loader.load_tensors(tensors, backend);
|
||||
|
||||
if (!success) {
|
||||
LOG_ERROR("load tensors from model loader failed");
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INFO("flux model loaded");
|
||||
}
|
||||
flux->test();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Flux
|
||||
|
||||
#endif // __FLUX_HPP__
|
||||
@ -627,6 +627,20 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context*
|
||||
return x; // [N, OC, T, OH * OW]
|
||||
}
|
||||
|
||||
// qkv: [N, L, 3*C]
|
||||
// return: ([N, L, C], [N, L, C], [N, L, C])
|
||||
__STATIC_INLINE__ std::vector<struct ggml_tensor*> split_qkv(struct ggml_context* ctx,
|
||||
struct ggml_tensor* qkv) {
|
||||
qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); // [N, L, 3, C]
|
||||
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); // [3, N, L, C]
|
||||
|
||||
int64_t offset = qkv->nb[2] * qkv->ne[2];
|
||||
auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); // [N, L, C]
|
||||
auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); // [N, L, C]
|
||||
auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); // [N, L, C]
|
||||
return {q, k, v};
|
||||
}
|
||||
|
||||
// q: [N * n_head, n_token, d_head]
|
||||
// k: [N * n_head, n_k, d_head]
|
||||
// v: [N * n_head, d_head, n_k]
|
||||
@ -653,9 +667,9 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx
|
||||
return kqv;
|
||||
}
|
||||
|
||||
// q: [N, L_q, C]
|
||||
// k: [N, L_k, C]
|
||||
// v: [N, L_k, C]
|
||||
// q: [N, L_q, C] or [N*n_head, L_q, d_head]
|
||||
// k: [N, L_k, C] or [N*n_head, L_k, d_head]
|
||||
// v: [N, L_k, C] or [N, L_k, n_head, d_head]
|
||||
// return: [N, L_q, C]
|
||||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx,
|
||||
struct ggml_tensor* q,
|
||||
@ -663,38 +677,61 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context*
|
||||
struct ggml_tensor* v,
|
||||
int64_t n_head,
|
||||
struct ggml_tensor* mask = NULL,
|
||||
bool diag_mask_inf = false) {
|
||||
int64_t L_q = q->ne[1];
|
||||
int64_t L_k = k->ne[1];
|
||||
int64_t C = q->ne[0];
|
||||
int64_t N = q->ne[2];
|
||||
bool diag_mask_inf = false,
|
||||
bool skip_reshape = false) {
|
||||
int64_t L_q;
|
||||
int64_t L_k;
|
||||
int64_t C ;
|
||||
int64_t N ;
|
||||
int64_t d_head;
|
||||
if (!skip_reshape) {
|
||||
L_q = q->ne[1];
|
||||
L_k = k->ne[1];
|
||||
C = q->ne[0];
|
||||
N = q->ne[2];
|
||||
d_head = C / n_head;
|
||||
q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); // [N, L_q, n_head, d_head]
|
||||
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, L_q, d_head]
|
||||
q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); // [N * n_head, L_q, d_head]
|
||||
|
||||
k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||||
k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
|
||||
k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
|
||||
|
||||
v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||||
} else {
|
||||
L_q = q->ne[1];
|
||||
L_k = k->ne[1];
|
||||
d_head = v->ne[0];
|
||||
N = v->ne[3];
|
||||
C = d_head * n_head;
|
||||
}
|
||||
|
||||
int64_t d_head = C / n_head;
|
||||
float scale = (1.0f / sqrt((float)d_head));
|
||||
|
||||
q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); // [N, L_q, n_head, d_head]
|
||||
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, L_q, d_head]
|
||||
q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); // [N * n_head, L_q, d_head]
|
||||
bool use_flash_attn = false;
|
||||
ggml_tensor* kqv = NULL;
|
||||
if (use_flash_attn) {
|
||||
v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
|
||||
v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
|
||||
LOG_DEBUG("k->ne[1] == %d", k->ne[1]);
|
||||
kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0);
|
||||
} else {
|
||||
v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, L_k]
|
||||
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); // [N * n_head, d_head, L_k]
|
||||
|
||||
k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||||
k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
|
||||
k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
|
||||
auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
if (mask) {
|
||||
kq = ggml_add(ctx, kq, mask);
|
||||
}
|
||||
if (diag_mask_inf) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
|
||||
v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||||
v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, L_k]
|
||||
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); // [N * n_head, d_head, L_k]
|
||||
|
||||
auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k]
|
||||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||||
if (mask) {
|
||||
kq = ggml_add(ctx, kq, mask);
|
||||
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||||
}
|
||||
if (diag_mask_inf) {
|
||||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||||
}
|
||||
kq = ggml_soft_max_inplace(ctx, kq);
|
||||
|
||||
auto kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||||
|
||||
kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N); // [N, n_head, L_q, d_head]
|
||||
kqv = ggml_cont(ctx, ggml_permute(ctx, kqv, 0, 2, 1, 3)); // [N, L_q, n_head, d_head]
|
||||
@ -846,7 +883,9 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding(
|
||||
struct ggml_context* ctx,
|
||||
struct ggml_tensor* timesteps,
|
||||
int dim,
|
||||
int max_period = 10000) {
|
||||
int max_period = 10000,
|
||||
float time_factor = 1.0f) {
|
||||
timesteps = ggml_scale(ctx, timesteps, time_factor);
|
||||
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
||||
}
|
||||
|
||||
|
||||
22
mmdit.hpp
22
mmdit.hpp
@ -142,20 +142,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
__STATIC_INLINE__ std::vector<struct ggml_tensor*> split_qkv(struct ggml_context* ctx,
|
||||
struct ggml_tensor* qkv) {
|
||||
// qkv: [N, L, 3*C]
|
||||
// return: ([N, L, C], [N, L, C], [N, L, C])
|
||||
qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); // [N, L, 3, C]
|
||||
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); // [3, N, L, C]
|
||||
|
||||
int64_t offset = qkv->nb[2] * qkv->ne[2];
|
||||
auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); // [N, L, C]
|
||||
auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); // [N, L, C]
|
||||
auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); // [N, L, C]
|
||||
return {q, k, v};
|
||||
}
|
||||
|
||||
class SelfAttention : public GGMLBlock {
|
||||
public:
|
||||
int64_t num_heads;
|
||||
@ -469,7 +455,7 @@ public:
|
||||
struct MMDiT : public GGMLBlock {
|
||||
// Diffusion model with a Transformer backbone.
|
||||
protected:
|
||||
SDVersion version = VERSION_3_2B;
|
||||
SDVersion version = VERSION_SD3_2B;
|
||||
int64_t input_size = -1;
|
||||
int64_t patch_size = 2;
|
||||
int64_t in_channels = 16;
|
||||
@ -487,7 +473,7 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
MMDiT(SDVersion version = VERSION_3_2B)
|
||||
MMDiT(SDVersion version = VERSION_SD3_2B)
|
||||
: version(version) {
|
||||
// input_size is always None
|
||||
// learn_sigma is always False
|
||||
@ -501,7 +487,7 @@ public:
|
||||
// pos_embed_scaling_factor is not used
|
||||
// pos_embed_offset is not used
|
||||
// context_embedder_config is always {'target': 'torch.nn.Linear', 'params': {'in_features': 4096, 'out_features': 1536}}
|
||||
if (version == VERSION_3_2B) {
|
||||
if (version == VERSION_SD3_2B) {
|
||||
input_size = -1;
|
||||
patch_size = 2;
|
||||
in_channels = 16;
|
||||
@ -669,7 +655,7 @@ struct MMDiTRunner : public GGMLRunner {
|
||||
|
||||
MMDiTRunner(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_3_2B)
|
||||
SDVersion version = VERSION_SD3_2B)
|
||||
: GGMLRunner(backend, wtype), mmdit(version) {
|
||||
mmdit.init(params_ctx, wtype);
|
||||
}
|
||||
|
||||
84
model.cpp
84
model.cpp
@ -1291,15 +1291,22 @@ bool ModelLoader::init_from_ckpt_file(const std::string& file_path, const std::s
|
||||
|
||||
SDVersion ModelLoader::get_sd_version() {
|
||||
TensorStorage token_embedding_weight;
|
||||
bool is_flux = false;
|
||||
for (auto& tensor_storage : tensor_storages) {
|
||||
if (tensor_storage.name.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) {
|
||||
return VERSION_FLUX_DEV;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.double_blocks.") != std::string::npos) {
|
||||
is_flux = true;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.joint_blocks.23.") != std::string::npos) {
|
||||
return VERSION_3_2B;
|
||||
return VERSION_SD3_2B;
|
||||
}
|
||||
if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos) {
|
||||
return VERSION_XL;
|
||||
return VERSION_SDXL;
|
||||
}
|
||||
if (tensor_storage.name.find("cond_stage_model.1") != std::string::npos) {
|
||||
return VERSION_XL;
|
||||
return VERSION_SDXL;
|
||||
}
|
||||
if (tensor_storage.name.find("model.diffusion_model.input_blocks.8.0.time_mixer.mix_factor") != std::string::npos) {
|
||||
return VERSION_SVD;
|
||||
@ -1315,10 +1322,13 @@ SDVersion ModelLoader::get_sd_version() {
|
||||
// break;
|
||||
}
|
||||
}
|
||||
if (is_flux) {
|
||||
return VERSION_FLUX_SCHNELL;
|
||||
}
|
||||
if (token_embedding_weight.ne[0] == 768) {
|
||||
return VERSION_1_x;
|
||||
return VERSION_SD1;
|
||||
} else if (token_embedding_weight.ne[0] == 1024) {
|
||||
return VERSION_2_x;
|
||||
return VERSION_SD2;
|
||||
}
|
||||
return VERSION_COUNT;
|
||||
}
|
||||
@ -1330,8 +1340,68 @@ ggml_type ModelLoader::get_sd_wtype() {
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find(".weight") != std::string::npos &&
|
||||
(tensor_storage.name.find("time_embed") != std::string::npos) ||
|
||||
tensor_storage.name.find("context_embedder") != std::string::npos) {
|
||||
(tensor_storage.name.find("time_embed") != std::string::npos ||
|
||||
tensor_storage.name.find("context_embedder") != std::string::npos ||
|
||||
tensor_storage.name.find("time_in") != std::string::npos)) {
|
||||
return tensor_storage.type;
|
||||
}
|
||||
}
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
ggml_type ModelLoader::get_conditioner_wtype() {
|
||||
for (auto& tensor_storage : tensor_storages) {
|
||||
if (is_unused_tensor(tensor_storage.name)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((tensor_storage.name.find("text_encoders") == std::string::npos &&
|
||||
tensor_storage.name.find("cond_stage_model") == std::string::npos &&
|
||||
tensor_storage.name.find("te.text_model.") == std::string::npos &&
|
||||
tensor_storage.name.find("conditioner") == std::string::npos)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find(".weight") != std::string::npos) {
|
||||
return tensor_storage.type;
|
||||
}
|
||||
}
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
|
||||
ggml_type ModelLoader::get_diffusion_model_wtype() {
|
||||
for (auto& tensor_storage : tensor_storages) {
|
||||
if (is_unused_tensor(tensor_storage.name)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find("model.diffusion_model.") == std::string::npos) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find(".weight") != std::string::npos &&
|
||||
(tensor_storage.name.find("time_embed") != std::string::npos ||
|
||||
tensor_storage.name.find("context_embedder") != std::string::npos ||
|
||||
tensor_storage.name.find("time_in") != std::string::npos)) {
|
||||
return tensor_storage.type;
|
||||
}
|
||||
}
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
ggml_type ModelLoader::get_vae_wtype() {
|
||||
for (auto& tensor_storage : tensor_storages) {
|
||||
if (is_unused_tensor(tensor_storage.name)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find("vae.") == std::string::npos &&
|
||||
tensor_storage.name.find("first_stage_model") == std::string::npos) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensor_storage.name.find(".weight")) {
|
||||
return tensor_storage.type;
|
||||
}
|
||||
}
|
||||
|
||||
13
model.h
13
model.h
@ -18,11 +18,13 @@
|
||||
#define SD_MAX_DIMS 5
|
||||
|
||||
enum SDVersion {
|
||||
VERSION_1_x,
|
||||
VERSION_2_x,
|
||||
VERSION_XL,
|
||||
VERSION_SD1,
|
||||
VERSION_SD2,
|
||||
VERSION_SDXL,
|
||||
VERSION_SVD,
|
||||
VERSION_3_2B,
|
||||
VERSION_SD3_2B,
|
||||
VERSION_FLUX_DEV,
|
||||
VERSION_FLUX_SCHNELL,
|
||||
VERSION_COUNT,
|
||||
};
|
||||
|
||||
@ -144,6 +146,9 @@ public:
|
||||
bool init_from_file(const std::string& file_path, const std::string& prefix = "");
|
||||
SDVersion get_sd_version();
|
||||
ggml_type get_sd_wtype();
|
||||
ggml_type get_conditioner_wtype();
|
||||
ggml_type get_diffusion_model_wtype();
|
||||
ggml_type get_vae_wtype();
|
||||
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend_t backend);
|
||||
bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
|
||||
ggml_backend_t backend,
|
||||
|
||||
4
pmid.hpp
4
pmid.hpp
@ -161,7 +161,7 @@ struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
|
||||
|
||||
struct PhotoMakerIDEncoder : public GGMLRunner {
|
||||
public:
|
||||
SDVersion version = VERSION_XL;
|
||||
SDVersion version = VERSION_SDXL;
|
||||
PhotoMakerIDEncoderBlock id_encoder;
|
||||
float style_strength;
|
||||
|
||||
@ -175,7 +175,7 @@ public:
|
||||
std::vector<float> zeros_right;
|
||||
|
||||
public:
|
||||
PhotoMakerIDEncoder(ggml_backend_t backend, ggml_type wtype, SDVersion version = VERSION_XL, float sty = 20.f)
|
||||
PhotoMakerIDEncoder(ggml_backend_t backend, ggml_type wtype, SDVersion version = VERSION_SDXL, float sty = 20.f)
|
||||
: GGMLRunner(backend, wtype),
|
||||
version(version),
|
||||
style_strength(sty) {
|
||||
|
||||
@ -25,11 +25,13 @@
|
||||
// #include "stb_image_write.h"
|
||||
|
||||
const char* model_version_to_str[] = {
|
||||
"1.x",
|
||||
"2.x",
|
||||
"XL",
|
||||
"SD 1.x",
|
||||
"SD 2.x",
|
||||
"SDXL",
|
||||
"SVD",
|
||||
"3 2B"};
|
||||
"SD3 2B",
|
||||
"Flux Dev",
|
||||
"Flux Schnell"};
|
||||
|
||||
const char* sampling_methods_str[] = {
|
||||
"Euler A",
|
||||
@ -67,7 +69,11 @@ public:
|
||||
ggml_backend_t clip_backend = NULL;
|
||||
ggml_backend_t control_net_backend = NULL;
|
||||
ggml_backend_t vae_backend = NULL;
|
||||
ggml_type model_data_type = GGML_TYPE_COUNT;
|
||||
ggml_type model_wtype = GGML_TYPE_COUNT;
|
||||
ggml_type conditioner_wtype = GGML_TYPE_COUNT;
|
||||
ggml_type diffusion_model_wtype = GGML_TYPE_COUNT;
|
||||
ggml_type vae_wtype = GGML_TYPE_COUNT;
|
||||
|
||||
|
||||
SDVersion version;
|
||||
bool vae_decode_only = false;
|
||||
@ -131,6 +137,9 @@ public:
|
||||
}
|
||||
|
||||
bool load_from_file(const std::string& model_path,
|
||||
const std::string& clip_l_path,
|
||||
const std::string& t5xxl_path,
|
||||
const std::string& diffusion_model_path,
|
||||
const std::string& vae_path,
|
||||
const std::string control_net_path,
|
||||
const std::string embeddings_path,
|
||||
@ -164,14 +173,36 @@ public:
|
||||
LOG_INFO("Flash Attention enabled");
|
||||
#endif
|
||||
#endif
|
||||
LOG_INFO("loading model from '%s'", model_path.c_str());
|
||||
ModelLoader model_loader;
|
||||
|
||||
vae_tiling = vae_tiling_;
|
||||
|
||||
if (!model_loader.init_from_file(model_path)) {
|
||||
LOG_ERROR("init model loader from file failed: '%s'", model_path.c_str());
|
||||
return false;
|
||||
if (model_path.size() > 0) {
|
||||
LOG_INFO("loading model from '%s'", model_path.c_str());
|
||||
if (!model_loader.init_from_file(model_path)) {
|
||||
LOG_ERROR("init model loader from file failed: '%s'", model_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (clip_l_path.size() > 0) {
|
||||
LOG_INFO("loading clip_l from '%s'", clip_l_path.c_str());
|
||||
if (!model_loader.init_from_file(clip_l_path, "text_encoders.clip_l.")) {
|
||||
LOG_WARN("loading clip_l from '%s' failed", clip_l_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (t5xxl_path.size() > 0) {
|
||||
LOG_INFO("loading t5xxl from '%s'", t5xxl_path.c_str());
|
||||
if (!model_loader.init_from_file(t5xxl_path, "text_encoders.t5xxl.")) {
|
||||
LOG_WARN("loading t5xxl from '%s' failed", t5xxl_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (diffusion_model_path.size() > 0) {
|
||||
LOG_INFO("loading diffusion model from '%s'", diffusion_model_path.c_str());
|
||||
if (!model_loader.init_from_file(diffusion_model_path, "model.diffusion_model.")) {
|
||||
LOG_WARN("loading diffusion model from '%s' failed", diffusion_model_path.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (vae_path.size() > 0) {
|
||||
@ -187,16 +218,45 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
LOG_INFO("Stable Diffusion %s ", model_version_to_str[version]);
|
||||
LOG_INFO("Version: %s ", model_version_to_str[version]);
|
||||
if (wtype == GGML_TYPE_COUNT) {
|
||||
model_data_type = model_loader.get_sd_wtype();
|
||||
model_wtype = model_loader.get_sd_wtype();
|
||||
if (model_wtype == GGML_TYPE_COUNT) {
|
||||
model_wtype = GGML_TYPE_F32;
|
||||
LOG_WARN("can not get mode wtype frome weight, use f32");
|
||||
}
|
||||
conditioner_wtype = model_loader.get_conditioner_wtype();
|
||||
if (conditioner_wtype == GGML_TYPE_COUNT) {
|
||||
conditioner_wtype = wtype;
|
||||
}
|
||||
diffusion_model_wtype = model_loader.get_diffusion_model_wtype();
|
||||
if (diffusion_model_wtype == GGML_TYPE_COUNT) {
|
||||
diffusion_model_wtype = wtype;
|
||||
}
|
||||
vae_wtype = model_loader.get_vae_wtype();
|
||||
|
||||
if (vae_wtype == GGML_TYPE_COUNT) {
|
||||
vae_wtype = wtype;
|
||||
}
|
||||
} else {
|
||||
model_data_type = wtype;
|
||||
model_wtype = wtype;
|
||||
conditioner_wtype = wtype;
|
||||
diffusion_model_wtype = wtype;
|
||||
vae_wtype = wtype;
|
||||
}
|
||||
LOG_INFO("Stable Diffusion weight type: %s", ggml_type_name(model_data_type));
|
||||
|
||||
if (version == VERSION_SDXL) {
|
||||
vae_wtype = GGML_TYPE_F32;
|
||||
}
|
||||
|
||||
LOG_INFO("Weight type: %s", ggml_type_name(model_wtype));
|
||||
LOG_INFO("Conditioner weight type: %s", ggml_type_name(conditioner_wtype));
|
||||
LOG_INFO("Diffsuion model weight type: %s", ggml_type_name(diffusion_model_wtype));
|
||||
LOG_INFO("VAE weight type: %s", ggml_type_name(vae_wtype));
|
||||
|
||||
LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor));
|
||||
|
||||
if (version == VERSION_XL) {
|
||||
if (version == VERSION_SDXL) {
|
||||
scale_factor = 0.13025f;
|
||||
if (vae_path.size() == 0 && taesd_path.size() == 0) {
|
||||
LOG_WARN(
|
||||
@ -205,26 +265,33 @@ public:
|
||||
"try specifying SDXL VAE FP16 Fix with the --vae parameter. "
|
||||
"You can find it here: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors");
|
||||
}
|
||||
} else if (version == VERSION_3_2B) {
|
||||
} else if (version == VERSION_SD3_2B) {
|
||||
scale_factor = 1.5305f;
|
||||
} else if (version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
scale_factor = 0.3611;
|
||||
// TODO: shift_factor
|
||||
}
|
||||
|
||||
if (version == VERSION_SVD) {
|
||||
clip_vision = std::make_shared<FrozenCLIPVisionEmbedder>(backend, model_data_type);
|
||||
clip_vision = std::make_shared<FrozenCLIPVisionEmbedder>(backend, conditioner_wtype);
|
||||
clip_vision->alloc_params_buffer();
|
||||
clip_vision->get_param_tensors(tensors);
|
||||
|
||||
diffusion_model = std::make_shared<UNetModel>(backend, model_data_type, version);
|
||||
diffusion_model = std::make_shared<UNetModel>(backend, diffusion_model_wtype, version);
|
||||
diffusion_model->alloc_params_buffer();
|
||||
diffusion_model->get_param_tensors(tensors);
|
||||
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(backend, model_data_type, vae_decode_only, true, version);
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(backend, vae_wtype, vae_decode_only, true, version);
|
||||
LOG_DEBUG("vae_decode_only %d", vae_decode_only);
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
} else {
|
||||
clip_backend = backend;
|
||||
if (!ggml_backend_is_cpu(backend) && version == VERSION_3_2B && model_data_type != GGML_TYPE_F32) {
|
||||
bool use_t5xxl = false;
|
||||
if (version == VERSION_SD3_2B || version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
use_t5xxl = true;
|
||||
}
|
||||
if (!ggml_backend_is_cpu(backend) && use_t5xxl && conditioner_wtype != GGML_TYPE_F32) {
|
||||
clip_on_cpu = true;
|
||||
LOG_INFO("set clip_on_cpu to true");
|
||||
}
|
||||
@ -232,12 +299,15 @@ public:
|
||||
LOG_INFO("CLIP: Using CPU backend");
|
||||
clip_backend = ggml_backend_cpu_init();
|
||||
}
|
||||
if (version == VERSION_3_2B) {
|
||||
cond_stage_model = std::make_shared<SD3CLIPEmbedder>(clip_backend, model_data_type);
|
||||
diffusion_model = std::make_shared<MMDiTModel>(backend, model_data_type, version);
|
||||
if (version == VERSION_SD3_2B) {
|
||||
cond_stage_model = std::make_shared<SD3CLIPEmbedder>(clip_backend, conditioner_wtype);
|
||||
diffusion_model = std::make_shared<MMDiTModel>(backend, diffusion_model_wtype, version);
|
||||
} else if (version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
cond_stage_model = std::make_shared<FluxCLIPEmbedder>(clip_backend, conditioner_wtype);
|
||||
diffusion_model = std::make_shared<FluxModel>(backend, diffusion_model_wtype, version);
|
||||
} else {
|
||||
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, model_data_type, embeddings_path, version);
|
||||
diffusion_model = std::make_shared<UNetModel>(backend, model_data_type, version);
|
||||
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, conditioner_wtype, embeddings_path, version);
|
||||
diffusion_model = std::make_shared<UNetModel>(backend, diffusion_model_wtype, version);
|
||||
}
|
||||
cond_stage_model->alloc_params_buffer();
|
||||
cond_stage_model->get_param_tensors(tensors);
|
||||
@ -245,11 +315,6 @@ public:
|
||||
diffusion_model->alloc_params_buffer();
|
||||
diffusion_model->get_param_tensors(tensors);
|
||||
|
||||
ggml_type vae_type = model_data_type;
|
||||
if (version == VERSION_XL) {
|
||||
vae_type = GGML_TYPE_F32; // avoid nan, not work...
|
||||
}
|
||||
|
||||
if (!use_tiny_autoencoder) {
|
||||
if (vae_on_cpu && !ggml_backend_is_cpu(backend)) {
|
||||
LOG_INFO("VAE Autoencoder: Using CPU backend");
|
||||
@ -257,11 +322,11 @@ public:
|
||||
} else {
|
||||
vae_backend = backend;
|
||||
}
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend, vae_type, vae_decode_only, false, version);
|
||||
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend, vae_wtype, vae_decode_only, false, version);
|
||||
first_stage_model->alloc_params_buffer();
|
||||
first_stage_model->get_param_tensors(tensors, "first_stage_model");
|
||||
} else {
|
||||
tae_first_stage = std::make_shared<TinyAutoEncoder>(backend, model_data_type, vae_decode_only);
|
||||
tae_first_stage = std::make_shared<TinyAutoEncoder>(backend, vae_wtype, vae_decode_only);
|
||||
}
|
||||
// first_stage_model->get_param_tensors(tensors, "first_stage_model.");
|
||||
|
||||
@ -273,12 +338,12 @@ public:
|
||||
} else {
|
||||
controlnet_backend = backend;
|
||||
}
|
||||
control_net = std::make_shared<ControlNet>(controlnet_backend, model_data_type, version);
|
||||
control_net = std::make_shared<ControlNet>(controlnet_backend, diffusion_model_wtype, version);
|
||||
}
|
||||
|
||||
pmid_model = std::make_shared<PhotoMakerIDEncoder>(clip_backend, model_data_type, version);
|
||||
pmid_model = std::make_shared<PhotoMakerIDEncoder>(clip_backend, model_wtype, version);
|
||||
if (id_embeddings_path.size() > 0) {
|
||||
pmid_lora = std::make_shared<LoraModel>(backend, model_data_type, id_embeddings_path, "");
|
||||
pmid_lora = std::make_shared<LoraModel>(backend, model_wtype, id_embeddings_path, "");
|
||||
if (!pmid_lora->load_from_file(true)) {
|
||||
LOG_WARN("load photomaker lora tensors from %s failed", id_embeddings_path.c_str());
|
||||
return false;
|
||||
@ -423,7 +488,7 @@ public:
|
||||
|
||||
// check is_using_v_parameterization_for_sd2
|
||||
bool is_using_v_parameterization = false;
|
||||
if (version == VERSION_2_x) {
|
||||
if (version == VERSION_SD2) {
|
||||
if (is_using_v_parameterization_for_sd2(ctx)) {
|
||||
is_using_v_parameterization = true;
|
||||
}
|
||||
@ -432,9 +497,16 @@ public:
|
||||
is_using_v_parameterization = true;
|
||||
}
|
||||
|
||||
if (version == VERSION_3_2B) {
|
||||
if (version == VERSION_SD3_2B) {
|
||||
LOG_INFO("running in FLOW mode");
|
||||
denoiser = std::make_shared<DiscreteFlowDenoiser>();
|
||||
} else if (version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
LOG_INFO("running in Flux FLOW mode");
|
||||
float shift = 1.15f;
|
||||
if (version == VERSION_FLUX_SCHNELL) {
|
||||
shift = 1.0f; // TODO: validate
|
||||
}
|
||||
denoiser = std::make_shared<FluxFlowDenoiser>(shift);
|
||||
} else if (is_using_v_parameterization) {
|
||||
LOG_INFO("running in v-prediction mode");
|
||||
denoiser = std::make_shared<CompVisVDenoiser>();
|
||||
@ -489,7 +561,7 @@ public:
|
||||
ggml_set_f32(timesteps, 999);
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t);
|
||||
diffusion_model->compute(n_threads, x_t, timesteps, c, NULL, NULL, -1, {}, 0.f, &out);
|
||||
diffusion_model->compute(n_threads, x_t, timesteps, c, NULL, NULL, NULL, -1, {}, 0.f, &out);
|
||||
diffusion_model->free_compute_buffer();
|
||||
|
||||
double result = 0.f;
|
||||
@ -522,7 +594,7 @@ public:
|
||||
LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str());
|
||||
return;
|
||||
}
|
||||
LoraModel lora(backend, model_data_type, file_path);
|
||||
LoraModel lora(backend, model_wtype, file_path);
|
||||
if (!lora.load_from_file()) {
|
||||
LOG_WARN("load lora tensors from %s failed", file_path.c_str());
|
||||
return;
|
||||
@ -538,7 +610,7 @@ public:
|
||||
}
|
||||
|
||||
void apply_loras(const std::unordered_map<std::string, float>& lora_state) {
|
||||
if (lora_state.size() > 0 && model_data_type != GGML_TYPE_F16 && model_data_type != GGML_TYPE_F32) {
|
||||
if (lora_state.size() > 0 && model_wtype != GGML_TYPE_F16 && model_wtype != GGML_TYPE_F32) {
|
||||
LOG_WARN("In quantized models when applying LoRA, the images have poor quality.");
|
||||
}
|
||||
std::unordered_map<std::string, float> lora_state_diff;
|
||||
@ -663,6 +735,7 @@ public:
|
||||
float control_strength,
|
||||
float min_cfg,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
sample_method_t method,
|
||||
const std::vector<float>& sigmas,
|
||||
int start_merge_step,
|
||||
@ -701,6 +774,8 @@ public:
|
||||
float t = denoiser->sigma_to_t(sigma);
|
||||
std::vector<float> timesteps_vec(x->ne[3], t); // [N, ]
|
||||
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);
|
||||
std::vector<float> guidance_vec(x->ne[3], guidance);
|
||||
auto guidance_tensor = vector_to_ggml_tensor(work_ctx, guidance_vec);
|
||||
|
||||
copy_ggml_tensor(noised_input, input);
|
||||
// noised_input = noised_input * c_in
|
||||
@ -723,6 +798,7 @@ public:
|
||||
cond.c_crossattn,
|
||||
cond.c_concat,
|
||||
cond.c_vector,
|
||||
guidance_tensor,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
@ -734,6 +810,7 @@ public:
|
||||
id_cond.c_crossattn,
|
||||
cond.c_concat,
|
||||
id_cond.c_vector,
|
||||
guidance_tensor,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
@ -753,6 +830,7 @@ public:
|
||||
uncond.c_crossattn,
|
||||
uncond.c_concat,
|
||||
uncond.c_vector,
|
||||
guidance_tensor,
|
||||
-1,
|
||||
controls,
|
||||
control_strength,
|
||||
@ -838,7 +916,9 @@ public:
|
||||
if (use_tiny_autoencoder) {
|
||||
C = 4;
|
||||
} else {
|
||||
if (version == VERSION_3_2B) {
|
||||
if (version == VERSION_SD3_2B) {
|
||||
C = 32;
|
||||
} else if (version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
C = 32;
|
||||
}
|
||||
}
|
||||
@ -904,6 +984,9 @@ struct sd_ctx_t {
|
||||
};
|
||||
|
||||
sd_ctx_t* new_sd_ctx(const char* model_path_c_str,
|
||||
const char* clip_l_path_c_str,
|
||||
const char* t5xxl_path_c_str,
|
||||
const char* diffusion_model_path_c_str,
|
||||
const char* vae_path_c_str,
|
||||
const char* taesd_path_c_str,
|
||||
const char* control_net_path_c_str,
|
||||
@ -925,6 +1008,9 @@ sd_ctx_t* new_sd_ctx(const char* model_path_c_str,
|
||||
return NULL;
|
||||
}
|
||||
std::string model_path(model_path_c_str);
|
||||
std::string clip_l_path(clip_l_path_c_str);
|
||||
std::string t5xxl_path(t5xxl_path_c_str);
|
||||
std::string diffusion_model_path(diffusion_model_path_c_str);
|
||||
std::string vae_path(vae_path_c_str);
|
||||
std::string taesd_path(taesd_path_c_str);
|
||||
std::string control_net_path(control_net_path_c_str);
|
||||
@ -942,6 +1028,9 @@ sd_ctx_t* new_sd_ctx(const char* model_path_c_str,
|
||||
}
|
||||
|
||||
if (!sd_ctx->sd->load_from_file(model_path,
|
||||
clip_l_path,
|
||||
t5xxl_path_c_str,
|
||||
diffusion_model_path,
|
||||
vae_path,
|
||||
control_net_path,
|
||||
embd_path,
|
||||
@ -976,6 +1065,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
||||
std::string negative_prompt,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
@ -1127,7 +1217,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
||||
SDCondition uncond;
|
||||
if (cfg_scale != 1.0) {
|
||||
bool force_zero_embeddings = false;
|
||||
if (sd_ctx->sd->version == VERSION_XL && negative_prompt.size() == 0) {
|
||||
if (sd_ctx->sd->version == VERSION_SDXL && negative_prompt.size() == 0) {
|
||||
force_zero_embeddings = true;
|
||||
}
|
||||
uncond = sd_ctx->sd->cond_stage_model->get_learned_condition(work_ctx,
|
||||
@ -1156,7 +1246,9 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
||||
// Sample
|
||||
std::vector<struct ggml_tensor*> final_latents; // collect latents to decode
|
||||
int C = 4;
|
||||
if (sd_ctx->sd->version == VERSION_3_2B) {
|
||||
if (sd_ctx->sd->version == VERSION_SD3_2B) {
|
||||
C = 16;
|
||||
} else if (sd_ctx->sd->version == VERSION_FLUX_DEV || sd_ctx->sd->version == VERSION_FLUX_SCHNELL) {
|
||||
C = 16;
|
||||
}
|
||||
int W = width / 8;
|
||||
@ -1189,6 +1281,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
||||
control_strength,
|
||||
cfg_scale,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
sample_method,
|
||||
sigmas,
|
||||
start_merge_step,
|
||||
@ -1247,6 +1340,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
||||
const char* negative_prompt_c_str,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
@ -1265,9 +1359,12 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
if (sd_ctx->sd->version == VERSION_3_2B) {
|
||||
if (sd_ctx->sd->version == VERSION_SD3_2B) {
|
||||
params.mem_size *= 3;
|
||||
}
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_DEV || sd_ctx->sd->version == VERSION_FLUX_SCHNELL) {
|
||||
params.mem_size *= 4;
|
||||
}
|
||||
if (sd_ctx->sd->stacked_id) {
|
||||
params.mem_size += static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
}
|
||||
@ -1288,14 +1385,18 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps);
|
||||
|
||||
int C = 4;
|
||||
if (sd_ctx->sd->version == VERSION_3_2B) {
|
||||
if (sd_ctx->sd->version == VERSION_SD3_2B) {
|
||||
C = 16;
|
||||
} else if (sd_ctx->sd->version == VERSION_FLUX_DEV || sd_ctx->sd->version == VERSION_FLUX_SCHNELL) {
|
||||
C = 16;
|
||||
}
|
||||
int W = width / 8;
|
||||
int H = height / 8;
|
||||
ggml_tensor* init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1);
|
||||
if (sd_ctx->sd->version == VERSION_3_2B) {
|
||||
if (sd_ctx->sd->version == VERSION_SD3_2B) {
|
||||
ggml_set_f32(init_latent, 0.0609f);
|
||||
} else if (sd_ctx->sd->version == VERSION_FLUX_DEV || sd_ctx->sd->version == VERSION_FLUX_SCHNELL) {
|
||||
ggml_set_f32(init_latent, 0.1159f);
|
||||
} else {
|
||||
ggml_set_f32(init_latent, 0.f);
|
||||
}
|
||||
@ -1307,6 +1408,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
||||
negative_prompt_c_str,
|
||||
clip_skip,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
width,
|
||||
height,
|
||||
sample_method,
|
||||
@ -1332,6 +1434,7 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
||||
const char* negative_prompt_c_str,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
int width,
|
||||
int height,
|
||||
sample_method_t sample_method,
|
||||
@ -1351,9 +1454,12 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
if (sd_ctx->sd->version == VERSION_3_2B) {
|
||||
if (sd_ctx->sd->version == VERSION_SD3_2B) {
|
||||
params.mem_size *= 2;
|
||||
}
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_DEV || sd_ctx->sd->version == VERSION_FLUX_SCHNELL) {
|
||||
params.mem_size *= 3;
|
||||
}
|
||||
if (sd_ctx->sd->stacked_id) {
|
||||
params.mem_size += static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
}
|
||||
@ -1403,6 +1509,7 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
||||
negative_prompt_c_str,
|
||||
clip_skip,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
width,
|
||||
height,
|
||||
sample_method,
|
||||
@ -1510,6 +1617,7 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
|
||||
0.f,
|
||||
min_cfg,
|
||||
cfg_scale,
|
||||
0.f,
|
||||
sample_method,
|
||||
sigmas,
|
||||
-1,
|
||||
|
||||
@ -119,6 +119,9 @@ typedef struct {
|
||||
typedef struct sd_ctx_t sd_ctx_t;
|
||||
|
||||
SD_API sd_ctx_t* new_sd_ctx(const char* model_path,
|
||||
const char* clip_l_path,
|
||||
const char* t5xxl_path,
|
||||
const char* diffusion_model_path,
|
||||
const char* vae_path,
|
||||
const char* taesd_path,
|
||||
const char* control_net_path_c_str,
|
||||
@ -143,6 +146,7 @@ SD_API sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
||||
const char* negative_prompt,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
@ -161,6 +165,7 @@ SD_API sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
||||
const char* negative_prompt,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
|
||||
16
unet.hpp
16
unet.hpp
@ -166,7 +166,7 @@ public:
|
||||
// ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
class UnetModelBlock : public GGMLBlock {
|
||||
protected:
|
||||
SDVersion version = VERSION_1_x;
|
||||
SDVersion version = VERSION_SD1;
|
||||
// network hparams
|
||||
int in_channels = 4;
|
||||
int out_channels = 4;
|
||||
@ -177,19 +177,19 @@ protected:
|
||||
int time_embed_dim = 1280; // model_channels*4
|
||||
int num_heads = 8;
|
||||
int num_head_channels = -1; // channels // num_heads
|
||||
int context_dim = 768; // 1024 for VERSION_2_x, 2048 for VERSION_XL
|
||||
int context_dim = 768; // 1024 for VERSION_SD2, 2048 for VERSION_SDXL
|
||||
|
||||
public:
|
||||
int model_channels = 320;
|
||||
int adm_in_channels = 2816; // only for VERSION_XL/SVD
|
||||
int adm_in_channels = 2816; // only for VERSION_SDXL/SVD
|
||||
|
||||
UnetModelBlock(SDVersion version = VERSION_1_x)
|
||||
UnetModelBlock(SDVersion version = VERSION_SD1)
|
||||
: version(version) {
|
||||
if (version == VERSION_2_x) {
|
||||
if (version == VERSION_SD2) {
|
||||
context_dim = 1024;
|
||||
num_head_channels = 64;
|
||||
num_heads = -1;
|
||||
} else if (version == VERSION_XL) {
|
||||
} else if (version == VERSION_SDXL) {
|
||||
context_dim = 2048;
|
||||
attention_resolutions = {4, 2};
|
||||
channel_mult = {1, 2, 4};
|
||||
@ -211,7 +211,7 @@ public:
|
||||
// time_embed_1 is nn.SiLU()
|
||||
blocks["time_embed.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
|
||||
|
||||
if (version == VERSION_XL || version == VERSION_SVD) {
|
||||
if (version == VERSION_SDXL || version == VERSION_SVD) {
|
||||
blocks["label_emb.0.0"] = std::shared_ptr<GGMLBlock>(new Linear(adm_in_channels, time_embed_dim));
|
||||
// label_emb_1 is nn.SiLU()
|
||||
blocks["label_emb.0.2"] = std::shared_ptr<GGMLBlock>(new Linear(time_embed_dim, time_embed_dim));
|
||||
@ -533,7 +533,7 @@ struct UNetModelRunner : public GGMLRunner {
|
||||
|
||||
UNetModelRunner(ggml_backend_t backend,
|
||||
ggml_type wtype,
|
||||
SDVersion version = VERSION_1_x)
|
||||
SDVersion version = VERSION_SD1)
|
||||
: GGMLRunner(backend, wtype), unet(version) {
|
||||
unet.init(params_ctx, wtype);
|
||||
}
|
||||
|
||||
6
vae.hpp
6
vae.hpp
@ -455,9 +455,9 @@ protected:
|
||||
public:
|
||||
AutoencodingEngine(bool decode_only = true,
|
||||
bool use_video_decoder = false,
|
||||
SDVersion version = VERSION_1_x)
|
||||
SDVersion version = VERSION_SD1)
|
||||
: decode_only(decode_only), use_video_decoder(use_video_decoder) {
|
||||
if (version == VERSION_3_2B) {
|
||||
if (version == VERSION_SD3_2B || version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL) {
|
||||
dd_config.z_channels = 16;
|
||||
use_quant = false;
|
||||
}
|
||||
@ -527,7 +527,7 @@ struct AutoEncoderKL : public GGMLRunner {
|
||||
ggml_type wtype,
|
||||
bool decode_only = false,
|
||||
bool use_video_decoder = false,
|
||||
SDVersion version = VERSION_1_x)
|
||||
SDVersion version = VERSION_SD1)
|
||||
: decode_only(decode_only), ae(decode_only, use_video_decoder, version), GGMLRunner(backend, wtype) {
|
||||
ae.init(params_ctx, wtype);
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user