1
0
mirror of https://github.com/DarthAffe/RGB.NET.git synced 2025-12-12 17:48:31 +00:00

Added Test for the PixelTexture

This commit is contained in:
Darth Affe 2023-04-23 12:16:38 +02:00
parent f5f81e74d7
commit af3989aa73
2 changed files with 415 additions and 0 deletions

View File

@ -0,0 +1,354 @@
using System;
namespace RGB.NET.Core.Tests.Helper;
// Simplex Noise for C#
// Copyright © Benjamin Ward 2019
// See LICENSE
// Simplex Noise implementation offering 1D, 2D, and 3D forms w/ values in the range of 0 to 255.
// Based on work by Heikki Törmälä (2012) and Stefan Gustavson (2006).
/// <summary>
/// Implementation of the Perlin simplex noise, an improved Perlin noise algorithm.
/// Based loosely on SimplexNoise1234 by Stefan Gustavson: http://staffwww.itn.liu.se/~stegu/aqsis/aqsis-newnoise/
/// </summary>
public static class SimplexNoise
{
public static float[] Calc1D(int width, float scale)
{
float[] values = new float[width];
for (int i = 0; i < width; i++)
values[i] = Generate(i * scale);
return values;
}
public static float[,] Calc2D(int width, int height, float scale)
{
float[,] values = new float[width, height];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
values[i, j] = Generate(i * scale, j * scale);
return values;
}
public static float[,,] Calc3D(int width, int height, int length, float scale)
{
float[,,] values = new float[width, height, length];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
for (int k = 0; k < length; k++)
values[i, j, k] = Generate(i * scale, j * scale, k * scale);
return values;
}
public static float CalcPixel1D(int x, float scale) => Generate(x * scale);
public static float CalcPixel2D(int x, int y, float scale) => Generate(x * scale, y * scale);
public static float CalcPixel3D(int x, int y, int z, float scale) => Generate(x * scale, y * scale, z * scale);
static SimplexNoise()
{
_perm = new byte[PermOriginal.Length];
PermOriginal.CopyTo(_perm, 0);
}
public static int Seed
{
get => _seed;
set
{
if (value == 0)
{
_perm = new byte[PermOriginal.Length];
PermOriginal.CopyTo(_perm, 0);
}
else
{
_perm = new byte[512];
Random random = new Random(value);
random.NextBytes(_perm);
}
_seed = value;
}
}
private static int _seed;
/// <summary>
/// 1D simplex noise
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
private static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float t0 = 1.0f - (x0 * x0);
t0 *= t0;
float n0 = t0 * t0 * Grad(_perm[i0 & 0xff], x0);
float t1 = 1.0f - (x1 * x1);
t1 *= t1;
float n1 = t1 * t1 * Grad(_perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/// <summary>
/// 2D simplex noise
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
private static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (i + j) * G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = (x0 - i1) + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = (y0 - j1) + G2;
float x2 = (x0 - 1.0f) + (2.0f * G2); // Offsets for last corner in (x,y) unskewed coords
float y2 = (y0 - 1.0f) + (2.0f * G2);
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
// Calculate the contribution from the three corners
float t0 = 0.5f - (x0 * x0) - (y0 * y0);
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * Grad(_perm[ii + _perm[jj]], x0, y0);
}
float t1 = 0.5f - (x1 * x1) - (y1 * y1);
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * Grad(_perm[ii + i1 + _perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - (x2 * x2) - (y2 * y2);
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * Grad(_perm[ii + 1 + _perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
private static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
int k = FastFloor(zs);
float t = (i + j + k) * G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0)
{
if (y0 >= z0)
{ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
}
else
{ // x0<y0
if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = (x0 - i1) + G3; // Offsets for second corner in (x,y,z) coords
float y1 = (y0 - j1) + G3;
float z1 = (z0 - k1) + G3;
float x2 = (x0 - i2) + (2.0f * G3); // Offsets for third corner in (x,y,z) coords
float y2 = (y0 - j2) + (2.0f * G3);
float z2 = (z0 - k2) + (2.0f * G3);
float x3 = (x0 - 1.0f) + (3.0f * G3); // Offsets for last corner in (x,y,z) coords
float y3 = (y0 - 1.0f) + (3.0f * G3);
float z3 = (z0 - 1.0f) + (3.0f * G3);
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
int kk = Mod(k, 256);
// Calculate the contribution from the four corners
float t0 = 0.6f - (x0 * x0) - (y0 * y0) - (z0 * z0);
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * Grad(_perm[ii + _perm[jj + _perm[kk]]], x0, y0, z0);
}
float t1 = 0.6f - (x1 * x1) - (y1 * y1) - (z1 * z1);
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * Grad(_perm[ii + i1 + _perm[jj + j1 + _perm[kk + k1]]], x1, y1, z1);
}
float t2 = 0.6f - (x2 * x2) - (y2 * y2) - (z2 * z2);
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * Grad(_perm[ii + i2 + _perm[jj + j2 + _perm[kk + k2]]], x2, y2, z2);
}
float t3 = 0.6f - (x3 * x3) - (y3 * y3) - (z3 * z3);
if (t3 < 0.0f) n3 = 0.0f;
else
{
t3 *= t3;
n3 = t3 * t3 * Grad(_perm[ii + 1 + _perm[jj + 1 + _perm[kk + 1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
private static byte[] _perm;
private static readonly byte[] PermOriginal = {
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
private static int FastFloor(float x)
{
return (x > 0) ? ((int)x) : (((int)x) - 1);
}
private static int Mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
private static float Grad(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return (grad * x); // Multiply the gradient with the distance
}
private static float Grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
}
private static float Grad(int hash, float x, float y, float z)
{
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : (h == 12) || (h == 14) ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);
}
private static float Grad(int hash, float x, float y, float z, float t)
{
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h < 24 ? x : y; // gradient directions, and compute dot product.
float v = h < 16 ? y : z;
float w = h < 8 ? z : t;
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w);
}
}

View File

@ -0,0 +1,61 @@
using System;
using System.Collections.Generic;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using RGB.NET.Core.Tests.Helper;
namespace RGB.NET.Core.Tests.Texture;
[TestClass]
public class PixelTextureTest
{
#region Methods
[TestMethod]
public void SampleRegionsTest()
{
const int SIZE = 1024;
Dictionary<Rectangle, Core.Color> testData = new()
{
[new Rectangle(0, 0, 1, 1)] = new Core.Color(255, 106, 159, 118),
[new Rectangle(0.09765625f, 0.486328125f, 0.427734375f, 0.2890625f)] = new Core.Color(255, 86, 115, 175),
[new Rectangle(0.5859375f, 0.111328125f, 0.271484375f, 0.826171875f)] = new Core.Color(255, 85, 183, 123),
[new Rectangle(0.279296875f, 0.439453125f, 0.583984375f, 0.499609375f)] = new Core.Color(255, 96, 144, 145),
[new Rectangle(0.603515625f, 0.646484375f, 0.365234375f, 0.306640625f)] = new Core.Color(255, 92, 151, 141),
[new Rectangle(0.583984375f, 0.11328125f, 0.314453125f, 0.662109375f)] = new Core.Color(255, 75, 201, 115),
[new Rectangle(0.166015625f, 0.740234375f, 0.76171875f, 0.166015625f)] = new Core.Color(255, 90, 150, 142),
[new Rectangle(0.384765625f, 0.017578125f, 0.576171875f, 0.82421875f)] = new Core.Color(255, 94, 164, 128),
[new Rectangle(0.216796875f, 0.5390625f, 0.669921875f, 0.2890625f)] = new Core.Color(255, 76, 135, 169),
[new Rectangle(0.08203125f, 0.060546875f, 0.857421875f, 0.8671875f)] = new Core.Color(255, 98, 167, 117),
[new Rectangle(0.345703125f, 0.431640625f, 0.560546875f, 0.25421875f)] = new Core.Color(255, 106, 167, 116),
[new Rectangle(0.54296875f, 0.12890625f, 0.40234375f, 0.8515625f)] = new Core.Color(255, 89, 183, 115),
[new Rectangle(0.00390625f, 0.462890625f, 0.953125f, 0.052734375f)] = new Core.Color(255, 138, 173, 96),
[new Rectangle(0.322265625f, 0.572265625f, 0.361328125f, 0.40234375f)] = new Core.Color(255, 123, 127, 128),
[new Rectangle(0.56640625f, 0.388671875f, 0.28125f, 0.423828125f)] = new Core.Color(255, 112, 161, 118),
[new Rectangle(0.119140625f, 0.28125f, 0.828125f, 0.501953125f)] = new Core.Color(255, 105, 170, 108),
[new Rectangle(0.173828125f, 0.8359375f, 0.7421875f, 0.119140625f)] = new Core.Color(255, 126, 151, 106),
[new Rectangle(0.109375f, 0.283203125f, 0.748046875f, 0.583984375f)] = new Core.Color(255, 102, 158, 122),
[new Rectangle(0.0546875f, 0.474609375f, 0.87109375f, 0.2734375f)] = new Core.Color(255, 101, 143, 140),
[new Rectangle(0.34765625f, 0.30859375f, 0.39453125f, 0.39453125f)] = new Core.Color(255, 99, 143, 136),
[new Rectangle(0.240234375f, 0.6796875f, 0.515625f, 0.248046875f)] = new Core.Color(255, 114, 135, 132),
};
Core.Color[] data = new Core.Color[SIZE * SIZE];
SimplexNoise.Seed = 1872;
Random random = new(1872);
for (int y = 0; y < SIZE; y++)
for (int x = 0; x < SIZE; x++)
data[(y * SIZE) + x] = HSVColor.Create(SimplexNoise.CalcPixel2D(x, y, 1f / SIZE) * 360, 1, 1);
PixelTexture texture = new(SIZE, SIZE, data);
foreach ((Rectangle rect, Core.Color color) in testData)
{
// DarthAffe 23.04.2023: To check it "correctly" the test-data would need to be setup with floating point colors, but i don't really bother for now - that should be good enough to detect breaking changes
(byte, byte, byte, byte) sampled = texture[rect].GetRGBBytes();
(byte, byte, byte, byte) refColor = color.GetRGBBytes();
Assert.AreEqual(refColor, sampled);
}
}
#endregion
}