1
0
mirror of https://github.com/DarthAffe/RGB.NET.git synced 2025-12-12 17:48:31 +00:00

Merge pull request #316 from DarthAffe/RenderPerformance

Render performance
This commit is contained in:
DarthAffe 2023-04-23 17:47:23 +02:00 committed by GitHub
commit 54f39f8023
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 578 additions and 156 deletions

View File

@ -1,5 +1,4 @@
using System;
using System.Buffers;
using System.Runtime.CompilerServices;
namespace RGB.NET.Core;
@ -12,12 +11,6 @@ namespace RGB.NET.Core;
public abstract class PixelTexture<T> : ITexture
where T : unmanaged
{
#region Constants
private const int STACK_ALLOC_LIMIT = 1024;
#endregion
#region Properties & Fields
private readonly int _dataPerPixel;
@ -85,31 +78,12 @@ public abstract class PixelTexture<T> : ITexture
if ((width == 0) || (height == 0)) return Color.Transparent;
if ((width == 1) && (height == 1)) return GetColor(GetPixelData(x, y));
int bufferSize = width * height * _dataPerPixel;
if (bufferSize <= STACK_ALLOC_LIMIT)
{
Span<T> buffer = stackalloc T[bufferSize];
GetRegionData(x, y, width, height, buffer);
SamplerInfo<T> samplerInfo = new(x, y, width, height, _stride, _dataPerPixel, Data);
Span<T> pixelData = stackalloc T[_dataPerPixel];
Sampler.Sample(new SamplerInfo<T>(width, height, buffer), pixelData);
Span<T> pixelData = stackalloc T[_dataPerPixel];
Sampler.Sample(samplerInfo, pixelData);
return GetColor(pixelData);
}
else
{
T[] rent = ArrayPool<T>.Shared.Rent(bufferSize);
Span<T> buffer = new Span<T>(rent)[..bufferSize];
GetRegionData(x, y, width, height, buffer);
Span<T> pixelData = stackalloc T[_dataPerPixel];
Sampler.Sample(new SamplerInfo<T>(width, height, buffer), pixelData);
ArrayPool<T>.Shared.Return(rent);
return GetColor(pixelData);
}
return GetColor(pixelData);
}
}
@ -152,27 +126,7 @@ public abstract class PixelTexture<T> : ITexture
/// <param name="y">The y-location.</param>
/// <returns>The pixel-data on the specified location.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
protected virtual ReadOnlySpan<T> GetPixelData(int x, int y) => Data.Slice((y * _stride) + x, _dataPerPixel);
/// <summary>
/// Writes the pixel-data of the specified region to the passed buffer.
/// </summary>
/// <param name="x">The x-location of the region to get the data for.</param>
/// <param name="y">The y-location of the region to get the data for.</param>
/// <param name="width">The width of the region to get the data for.</param>
/// <param name="height">The height of the region to get the data for.</param>
/// <param name="buffer">The buffer to write the data to.</param>
protected virtual void GetRegionData(int x, int y, int width, int height, in Span<T> buffer)
{
int dataWidth = width * _dataPerPixel;
ReadOnlySpan<T> data = Data;
for (int i = 0; i < height; i++)
{
ReadOnlySpan<T> dataSlice = data.Slice((((y + i) * _stride) + x) * _dataPerPixel, dataWidth);
Span<T> destination = buffer.Slice(i * dataWidth, dataWidth);
dataSlice.CopyTo(destination);
}
}
private ReadOnlySpan<T> GetPixelData(int x, int y) => Data.Slice((y * _stride) + x, _dataPerPixel);
#endregion
}
@ -225,6 +179,7 @@ public sealed class PixelTexture : PixelTexture<Color>
#region Methods
/// <inheritdoc />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
protected override Color GetColor(in ReadOnlySpan<Color> pixel) => pixel[0];
#endregion

View File

@ -30,20 +30,35 @@ public sealed class AverageColorSampler : ISampler<Color>
float a = 0, r = 0, g = 0, b = 0;
if (Vector.IsHardwareAccelerated && (info.Data.Length >= Vector<float>.Count))
if (Vector.IsHardwareAccelerated && (info.Height > 1) && (info.Width >= ELEMENTS_PER_VECTOR))
{
int chunks = info.Data.Length / ELEMENTS_PER_VECTOR;
int missingElements = info.Data.Length - (chunks * ELEMENTS_PER_VECTOR);
int chunks = info.Width / ELEMENTS_PER_VECTOR;
int missingElements = info.Width - (chunks * ELEMENTS_PER_VECTOR);
Vector<float> sum = Vector<float>.Zero;
fixed (Color* colorPtr = &MemoryMarshal.GetReference(info.Data))
for (int y = 0; y < info.Height; y++)
{
Color* current = colorPtr;
for (int i = 0; i < chunks; i++)
ReadOnlySpan<Color> data = info[y];
fixed (Color* colorPtr = &MemoryMarshal.GetReference(data))
{
sum = Vector.Add(sum, *(Vector<float>*)current);
current += ELEMENTS_PER_VECTOR;
Color* current = colorPtr;
for (int i = 0; i < chunks; i++)
{
sum = Vector.Add(sum, *(Vector<float>*)current);
current += ELEMENTS_PER_VECTOR;
}
}
for (int i = 0; i < missingElements; i++)
{
Color color = data[^(i + 1)];
a += color.A;
r += color.R;
g += color.G;
b += color.B;
}
}
@ -54,26 +69,17 @@ public sealed class AverageColorSampler : ISampler<Color>
g += sum[i + 2];
b += sum[i + 3];
}
for (int i = 0; i < missingElements; i++)
{
Color color = info.Data[^(i + 1)];
a += color.A;
r += color.R;
g += color.G;
b += color.B;
}
}
else
{
foreach (Color color in info.Data)
{
a += color.A;
r += color.R;
g += color.G;
b += color.B;
}
for (int y = 0; y < info.Height; y++)
foreach (Color color in info[y])
{
a += color.A;
r += color.R;
g += color.G;
b += color.B;
}
}
pixelData[0] = new Color(a / count, r / count, g / count, b / count);

View File

@ -10,20 +10,29 @@ public readonly ref struct SamplerInfo<T>
{
#region Properties & Fields
private readonly ReadOnlySpan<T> _data;
private readonly int _x;
private readonly int _y;
private readonly int _stride;
private readonly int _dataPerPixel;
private readonly int _dataWidth;
/// <summary>
/// Gets the width of the region the data comes from.
/// </summary>
public int Width { get; }
public readonly int Width;
/// <summary>
/// Gets the height of region the data comes from.
/// </summary>
public int Height { get; }
public readonly int Height;
/// <summary>
/// Gets the data to sample.
/// Gets the data for the requested row.
/// </summary>
public ReadOnlySpan<T> Data { get; }
/// <param name="row">The row to get the data for.</param>
/// <returns>A readonly span containing the data of the row.</returns>
public ReadOnlySpan<T> this[int row] => _data.Slice((((_y + row) * _stride) + _x) * _dataPerPixel, _dataWidth);
#endregion
@ -35,11 +44,17 @@ public readonly ref struct SamplerInfo<T>
/// <param name="width">The width of the region the data comes from.</param>
/// <param name="height">The height of region the data comes from.</param>
/// <param name="data">The data to sample.</param>
public SamplerInfo(int width, int height, ReadOnlySpan<T> data)
public SamplerInfo(int x, int y, int width, int height, int stride, int dataPerPixel, in ReadOnlySpan<T> data)
{
this._x = x;
this._y = y;
this._data = data;
this._stride = stride;
this._dataPerPixel = dataPerPixel;
this.Width = width;
this.Height = height;
this.Data = data;
_dataWidth = width * dataPerPixel;
}
#endregion

View File

@ -1,4 +1,5 @@
using System;
using System.Runtime.CompilerServices;
using RGB.NET.Core;
using RGB.NET.Presets.Textures.Sampler;
@ -59,6 +60,7 @@ public sealed class BytePixelTexture : PixelTexture<byte>
#region Methods
/// <inheritdoc />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
protected override Color GetColor(in ReadOnlySpan<byte> pixel)
{
return ColorFormat switch

View File

@ -1,4 +1,5 @@
using System;
using System.Runtime.CompilerServices;
using RGB.NET.Core;
using RGB.NET.Presets.Textures.Sampler;
@ -59,6 +60,7 @@ public sealed class FloatPixelTexture : PixelTexture<float>
#region Methods
/// <inheritdoc />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
protected override Color GetColor(in ReadOnlySpan<float> pixel)
{
return ColorFormat switch

View File

@ -24,41 +24,48 @@ public sealed class AverageByteSampler : ISampler<byte>
int count = info.Width * info.Height;
if (count == 0) return;
ReadOnlySpan<byte> data = info.Data;
int dataLength = pixelData.Length;
Span<uint> sums = stackalloc uint[dataLength];
if (Vector.IsHardwareAccelerated && (data.Length >= Vector<byte>.Count) && (dataLength <= Vector<byte>.Count))
int elementsPerVector = Vector<byte>.Count / dataLength;
int valuesPerVector = elementsPerVector * dataLength;
if (Vector.IsHardwareAccelerated && (info.Height > 1) && (info.Width >= valuesPerVector) && (dataLength <= Vector<byte>.Count))
{
int elementsPerVector = Vector<byte>.Count / dataLength;
int valuesPerVector = elementsPerVector * dataLength;
int chunks = data.Length / valuesPerVector;
int missingElements = data.Length - (chunks * valuesPerVector);
int chunks = info.Width / elementsPerVector;
Vector<uint> sum1 = Vector<uint>.Zero;
Vector<uint> sum2 = Vector<uint>.Zero;
Vector<uint> sum3 = Vector<uint>.Zero;
Vector<uint> sum4 = Vector<uint>.Zero;
fixed (byte* colorPtr = &MemoryMarshal.GetReference(data))
for (int y = 0; y < info.Height; y++)
{
byte* current = colorPtr;
for (int i = 0; i < chunks; i++)
ReadOnlySpan<byte> data = info[y];
fixed (byte* colorPtr = &MemoryMarshal.GetReference(data))
{
Vector<byte> bytes = *(Vector<byte>*)current;
Vector.Widen(bytes, out Vector<ushort> short1, out Vector<ushort> short2);
Vector.Widen(short1, out Vector<uint> int1, out Vector<uint> int2);
Vector.Widen(short2, out Vector<uint> int3, out Vector<uint> int4);
byte* current = colorPtr;
for (int i = 0; i < chunks; i++)
{
Vector<byte> bytes = *(Vector<byte>*)current;
Vector.Widen(bytes, out Vector<ushort> short1, out Vector<ushort> short2);
Vector.Widen(short1, out Vector<uint> int1, out Vector<uint> int2);
Vector.Widen(short2, out Vector<uint> int3, out Vector<uint> int4);
sum1 = Vector.Add(sum1, int1);
sum2 = Vector.Add(sum2, int2);
sum3 = Vector.Add(sum3, int3);
sum4 = Vector.Add(sum4, int4);
sum1 = Vector.Add(sum1, int1);
sum2 = Vector.Add(sum2, int2);
sum3 = Vector.Add(sum3, int3);
sum4 = Vector.Add(sum4, int4);
current += valuesPerVector;
current += valuesPerVector;
}
}
int missingElements = data.Length - (chunks * valuesPerVector);
int offset = chunks * valuesPerVector;
for (int i = 0; i < missingElements; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[offset + i + j];
}
int value = 0;
@ -102,17 +109,16 @@ public sealed class AverageByteSampler : ISampler<byte>
if (sumIndex >= dataLength)
sumIndex = 0;
}
int offset = chunks * valuesPerVector;
for (int i = 0; i < missingElements; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[offset + i + j];
}
else
{
for (int i = 0; i < data.Length; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[i + j];
for (int y = 0; y < info.Height; y++)
{
ReadOnlySpan<byte> data = info[y];
for (int i = 0; i < data.Length; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[i + j];
}
}
float divisor = count * byte.MaxValue;

View File

@ -18,45 +18,51 @@ public sealed class AverageFloatSampler : ISampler<float>
int count = info.Width * info.Height;
if (count == 0) return;
ReadOnlySpan<float> data = info.Data;
int dataLength = pixelData.Length;
Span<float> sums = stackalloc float[dataLength];
if (Vector.IsHardwareAccelerated && (data.Length >= Vector<float>.Count) && (dataLength <= Vector<float>.Count))
{
int elementsPerVector = Vector<float>.Count / dataLength;
int valuesPerVector = elementsPerVector * dataLength;
int chunks = data.Length / valuesPerVector;
int missingElements = data.Length - (chunks * valuesPerVector);
int elementsPerVector = Vector<float>.Count / dataLength;
int valuesPerVector = elementsPerVector * dataLength;
if (Vector.IsHardwareAccelerated && (info.Height > 1) && (info.Width >= valuesPerVector) && (dataLength <= Vector<float>.Count))
{
int chunks = info.Width / elementsPerVector;
Vector<float> sum = Vector<float>.Zero;
fixed (float* colorPtr = &MemoryMarshal.GetReference(data))
for (int y = 0; y < info.Height; y++)
{
float* current = colorPtr;
for (int i = 0; i < chunks; i++)
ReadOnlySpan<float> data = info[y];
fixed (float* colorPtr = &MemoryMarshal.GetReference(data))
{
sum = Vector.Add(sum, *(Vector<float>*)current);
current += valuesPerVector;
float* current = colorPtr;
for (int i = 0; i < chunks; i++)
{
sum = Vector.Add(sum, *(Vector<float>*)current);
current += valuesPerVector;
}
}
int missingElements = data.Length - (chunks * valuesPerVector);
int offset = chunks * valuesPerVector;
for (int i = 0; i < missingElements; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[offset + i + j];
}
for (int i = 0; i < valuesPerVector; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += sum[i + j];
int offset = chunks * valuesPerVector;
for (int i = 0; i < missingElements; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[offset + i + j];
}
else
{
for (int i = 0; i < data.Length; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[i + j];
for (int y = 0; y < info.Height; y++)
{
ReadOnlySpan<float> data = info[y];
for (int i = 0; i < data.Length; i += dataLength)
for (int j = 0; j < sums.Length; j++)
sums[j] += data[i + j];
}
}
for (int i = 0; i < pixelData.Length; i++)

View File

@ -0,0 +1,347 @@
// ReSharper disable InconsistentNaming
using System;
namespace RGB.NET.Core.Tests.Helper;
// Simplex Noise for C#
// Copyright © Benjamin Ward 2019
// See LICENSE (https://github.com/WardBenjamin/SimplexNoise/blob/2afa9a63483562cc4c0a95bbfa6b183fc256a790/LICENSE.txt)
// Simplex Noise implementation offering 1D, 2D, and 3D forms w/ values in the range of 0 to 255.
// Based on work by Heikki Törmälä (2012) and Stefan Gustavson (2006).
/// <summary>
/// Implementation of the Perlin simplex noise, an improved Perlin noise algorithm.
/// Based loosely on SimplexNoise1234 by Stefan Gustavson: http://staffwww.itn.liu.se/~stegu/aqsis/aqsis-newnoise/
/// </summary>
public static class SimplexNoise
{
public static float[] Calc1D(int width, float scale)
{
float[] values = new float[width];
for (int i = 0; i < width; i++)
values[i] = Generate(i * scale);
return values;
}
public static float[,] Calc2D(int width, int height, float scale)
{
float[,] values = new float[width, height];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
values[i, j] = Generate(i * scale, j * scale);
return values;
}
public static float[,,] Calc3D(int width, int height, int length, float scale)
{
float[,,] values = new float[width, height, length];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
for (int k = 0; k < length; k++)
values[i, j, k] = Generate(i * scale, j * scale, k * scale);
return values;
}
public static float CalcPixel1D(int x, float scale) => Generate(x * scale);
public static float CalcPixel2D(int x, int y, float scale) => Generate(x * scale, y * scale);
public static float CalcPixel3D(int x, int y, int z, float scale) => Generate(x * scale, y * scale, z * scale);
static SimplexNoise()
{
_perm = new byte[PermOriginal.Length];
PermOriginal.CopyTo(_perm, 0);
}
public static int Seed
{
get => _seed;
set
{
if (value == 0)
{
_perm = new byte[PermOriginal.Length];
PermOriginal.CopyTo(_perm, 0);
}
else
{
_perm = new byte[512];
Random random = new Random(value);
random.NextBytes(_perm);
}
_seed = value;
}
}
private static int _seed;
/// <summary>
/// 1D simplex noise
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
private static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float t0 = 1.0f - (x0 * x0);
t0 *= t0;
float n0 = t0 * t0 * Grad(_perm[i0 & 0xff], x0);
float t1 = 1.0f - (x1 * x1);
t1 *= t1;
float n1 = t1 * t1 * Grad(_perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/// <summary>
/// 2D simplex noise
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
private static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (i + j) * G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = (x0 - i1) + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = (y0 - j1) + G2;
float x2 = (x0 - 1.0f) + (2.0f * G2); // Offsets for last corner in (x,y) unskewed coords
float y2 = (y0 - 1.0f) + (2.0f * G2);
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
// Calculate the contribution from the three corners
float t0 = 0.5f - (x0 * x0) - (y0 * y0);
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * Grad(_perm[ii + _perm[jj]], x0, y0);
}
float t1 = 0.5f - (x1 * x1) - (y1 * y1);
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * Grad(_perm[ii + i1 + _perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - (x2 * x2) - (y2 * y2);
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * Grad(_perm[ii + 1 + _perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
private static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
int k = FastFloor(zs);
float t = (i + j + k) * G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0)
{
if (y0 >= z0)
{ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
}
else
{ // x0<y0
if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = (x0 - i1) + G3; // Offsets for second corner in (x,y,z) coords
float y1 = (y0 - j1) + G3;
float z1 = (z0 - k1) + G3;
float x2 = (x0 - i2) + (2.0f * G3); // Offsets for third corner in (x,y,z) coords
float y2 = (y0 - j2) + (2.0f * G3);
float z2 = (z0 - k2) + (2.0f * G3);
float x3 = (x0 - 1.0f) + (3.0f * G3); // Offsets for last corner in (x,y,z) coords
float y3 = (y0 - 1.0f) + (3.0f * G3);
float z3 = (z0 - 1.0f) + (3.0f * G3);
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
int kk = Mod(k, 256);
// Calculate the contribution from the four corners
float t0 = 0.6f - (x0 * x0) - (y0 * y0) - (z0 * z0);
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * Grad(_perm[ii + _perm[jj + _perm[kk]]], x0, y0, z0);
}
float t1 = 0.6f - (x1 * x1) - (y1 * y1) - (z1 * z1);
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * Grad(_perm[ii + i1 + _perm[jj + j1 + _perm[kk + k1]]], x1, y1, z1);
}
float t2 = 0.6f - (x2 * x2) - (y2 * y2) - (z2 * z2);
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * Grad(_perm[ii + i2 + _perm[jj + j2 + _perm[kk + k2]]], x2, y2, z2);
}
float t3 = 0.6f - (x3 * x3) - (y3 * y3) - (z3 * z3);
if (t3 < 0.0f) n3 = 0.0f;
else
{
t3 *= t3;
n3 = t3 * t3 * Grad(_perm[ii + 1 + _perm[jj + 1 + _perm[kk + 1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
private static byte[] _perm;
private static readonly byte[] PermOriginal = {
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
private static int FastFloor(float x)
{
return (x > 0) ? ((int)x) : (((int)x) - 1);
}
private static int Mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
private static float Grad(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return (grad * x); // Multiply the gradient with the distance
}
private static float Grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
}
private static float Grad(int hash, float x, float y, float z)
{
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : (h == 12) || (h == 14) ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);
}
}

View File

@ -15,11 +15,11 @@ public class AverageColorSamplerTest
data.Fill(new Core.Color(1f, 1f, 1f, 1f));
Core.Color[] result = new Core.Color[1];
SamplerInfo<Core.Color> info = new(2, 3, data[..6]);
SamplerInfo<Core.Color> info = new(0, 0, 2, 3, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 1f, 1f, 1f), result[0]);
info = new SamplerInfo<Core.Color>(16, 16, data);
info = new SamplerInfo<Core.Color>(0, 0, 16, 16, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 1f, 1f, 1f), result[0]);
}
@ -31,11 +31,11 @@ public class AverageColorSamplerTest
data.Fill(new Core.Color(1f, 0f, 0f, 0f));
Core.Color[] result = new Core.Color[1];
SamplerInfo<Core.Color> info = new(2, 3, data[..6]);
SamplerInfo<Core.Color> info = new(0, 0, 2, 3, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 0f, 0f, 0f), result[0]);
info = new SamplerInfo<Core.Color>(16, 16, data);
info = new SamplerInfo<Core.Color>(0, 0, 16, 16, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 0f, 0f, 0f), result[0]);
}
@ -48,11 +48,11 @@ public class AverageColorSamplerTest
data[i] = (i % 2) == 0 ? new Core.Color(1f, 0f, 0f, 0f) : new Core.Color(1f, 1f, 1f, 1f);
Core.Color[] result = new Core.Color[1];
SamplerInfo<Core.Color> info = new(2, 3, data[..6]);
SamplerInfo<Core.Color> info = new(0, 0, 2, 3, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 0.5f, 0.5f, 0.5f), result[0]);
info = new SamplerInfo<Core.Color>(16, 16, data);
info = new SamplerInfo<Core.Color>(0, 0, 16, 16, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(1f, 0.5f, 0.5f, 0.5f), result[0]);
}
@ -72,11 +72,11 @@ public class AverageColorSamplerTest
};
Core.Color[] result = new Core.Color[1];
SamplerInfo<Core.Color> info = new(2, 3, data[..6]);
SamplerInfo<Core.Color> info = new(0, 0, 2, 3, 2, 1, data[..6]);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(0.5833333f, 0.5f, 0.291666657f, 0.25f), result[0]);
info = new SamplerInfo<Core.Color>(16, 16, data);
info = new SamplerInfo<Core.Color>(0, 0, 16, 16, 16, 1, data);
new AverageColorSampler().Sample(info, result);
Assert.AreEqual(new Core.Color(0.5019531f, 0.40234375f, 0.3486328f, 0.298828125f), result[0]);
}

View File

@ -0,0 +1,59 @@
using System.Collections.Generic;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using RGB.NET.Core.Tests.Helper;
namespace RGB.NET.Core.Tests.Texture;
[TestClass]
public class PixelTextureTest
{
#region Methods
[TestMethod]
public void SampleRegionsTest()
{
const int SIZE = 1024;
Dictionary<Rectangle, Core.Color> testData = new()
{
[new Rectangle(0, 0, 1, 1)] = new Core.Color(255, 106, 159, 118),
[new Rectangle(0.09765625f, 0.486328125f, 0.427734375f, 0.2890625f)] = new Core.Color(255, 86, 115, 175),
[new Rectangle(0.5859375f, 0.111328125f, 0.271484375f, 0.826171875f)] = new Core.Color(255, 85, 183, 123),
[new Rectangle(0.279296875f, 0.439453125f, 0.583984375f, 0.499609375f)] = new Core.Color(255, 96, 144, 145),
[new Rectangle(0.603515625f, 0.646484375f, 0.365234375f, 0.306640625f)] = new Core.Color(255, 92, 151, 141),
[new Rectangle(0.583984375f, 0.11328125f, 0.314453125f, 0.662109375f)] = new Core.Color(255, 75, 201, 115),
[new Rectangle(0.166015625f, 0.740234375f, 0.76171875f, 0.166015625f)] = new Core.Color(255, 90, 150, 142),
[new Rectangle(0.384765625f, 0.017578125f, 0.576171875f, 0.82421875f)] = new Core.Color(255, 94, 164, 128),
[new Rectangle(0.216796875f, 0.5390625f, 0.669921875f, 0.2890625f)] = new Core.Color(255, 76, 135, 169),
[new Rectangle(0.08203125f, 0.060546875f, 0.857421875f, 0.8671875f)] = new Core.Color(255, 98, 167, 117),
[new Rectangle(0.345703125f, 0.431640625f, 0.560546875f, 0.25421875f)] = new Core.Color(255, 106, 167, 116),
[new Rectangle(0.54296875f, 0.12890625f, 0.40234375f, 0.8515625f)] = new Core.Color(255, 89, 183, 115),
[new Rectangle(0.00390625f, 0.462890625f, 0.953125f, 0.052734375f)] = new Core.Color(255, 138, 173, 96),
[new Rectangle(0.322265625f, 0.572265625f, 0.361328125f, 0.40234375f)] = new Core.Color(255, 123, 127, 128),
[new Rectangle(0.56640625f, 0.388671875f, 0.28125f, 0.423828125f)] = new Core.Color(255, 112, 161, 118),
[new Rectangle(0.119140625f, 0.28125f, 0.828125f, 0.501953125f)] = new Core.Color(255, 105, 170, 108),
[new Rectangle(0.173828125f, 0.8359375f, 0.7421875f, 0.119140625f)] = new Core.Color(255, 126, 151, 106),
[new Rectangle(0.109375f, 0.283203125f, 0.748046875f, 0.583984375f)] = new Core.Color(255, 102, 158, 122),
[new Rectangle(0.0546875f, 0.474609375f, 0.87109375f, 0.2734375f)] = new Core.Color(255, 101, 143, 140),
[new Rectangle(0.34765625f, 0.30859375f, 0.39453125f, 0.39453125f)] = new Core.Color(255, 99, 143, 136),
[new Rectangle(0.240234375f, 0.6796875f, 0.515625f, 0.248046875f)] = new Core.Color(255, 114, 135, 132),
};
Core.Color[] data = new Core.Color[SIZE * SIZE];
SimplexNoise.Seed = 1872;
for (int y = 0; y < SIZE; y++)
for (int x = 0; x < SIZE; x++)
data[(y * SIZE) + x] = HSVColor.Create(SimplexNoise.CalcPixel2D(x, y, 1f / SIZE) * 360, 1, 1);
PixelTexture texture = new(SIZE, SIZE, data);
foreach ((Rectangle rect, Core.Color color) in testData)
{
// DarthAffe 23.04.2023: To check it "correctly" the test-data would need to be setup with floating point colors, but i don't really bother for now - that should be good enough to detect breaking changes
(byte, byte, byte, byte) sampled = texture[rect].GetRGBBytes();
(byte, byte, byte, byte) refColor = color.GetRGBBytes();
Assert.AreEqual(refColor, sampled);
}
}
#endregion
}

View File

@ -27,11 +27,15 @@ public class AverageByteSamplerTest
data[index++] = colorData[i].GetB();
}
SamplerInfo<byte> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<byte> info = new(0, 0, 2, 3, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(16, 16, data);
info = new SamplerInfo<byte>(0, 0, 13, 13, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(0, 0, 16, 16, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
}
@ -53,11 +57,15 @@ public class AverageByteSamplerTest
data[index++] = colorData[i].GetB();
}
SamplerInfo<byte> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<byte> info = new(0, 0, 2, 3, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(16, 16, data);
info = new SamplerInfo<byte>(0, 0, 13, 13, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(0, 0, 16, 16, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
}
@ -80,11 +88,15 @@ public class AverageByteSamplerTest
data[index++] = colorData[i].GetB();
}
SamplerInfo<byte> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<byte> info = new(0, 0, 2, 3, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0.5f, 0.5f, 0.5f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(16, 16, data);
info = new SamplerInfo<byte>(0, 0, 13, 13, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, (6f / 13f).GetByteValueFromPercentage(), (6f / 13f).GetByteValueFromPercentage(), (6f / 13f).GetByteValueFromPercentage()), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(0, 0, 16, 16, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0.5f, 0.5f, 0.5f), new Color(result[0], result[1], result[2], result[3]));
}
@ -114,11 +126,11 @@ public class AverageByteSamplerTest
data[index++] = colorData[i].GetB();
}
SamplerInfo<byte> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<byte> info = new(0, 0, 2, 3, 2, 4, data[..(6 * 4)]);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(149, 128, 74, 64), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<byte>(16, 16, data);
info = new SamplerInfo<byte>(0, 0, 16, 16, 16, 4, data);
new AverageByteSampler().Sample(info, result);
Assert.AreEqual(new Color(128, 103, 89, 76), new Color(result[0], result[1], result[2], result[3]));
}

View File

@ -27,11 +27,15 @@ public class AverageFloatSamplerTest
data[index++] = colorData[i].B;
}
SamplerInfo<float> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<float> info = new(0, 0, 2, 3, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(16, 16, data);
info = new SamplerInfo<float>(0, 0, 13, 13, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(0, 0, 16, 16, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 1f, 1f, 1f), new Color(result[0], result[1], result[2], result[3]));
}
@ -53,11 +57,15 @@ public class AverageFloatSamplerTest
data[index++] = colorData[i].B;
}
SamplerInfo<float> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<float> info = new(0, 0, 2, 3, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(16, 16, data);
info = new SamplerInfo<float>(0, 0, 13, 13, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(0, 0, 16, 16, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0f, 0f, 0f), new Color(result[0], result[1], result[2], result[3]));
}
@ -80,11 +88,15 @@ public class AverageFloatSamplerTest
data[index++] = colorData[i].B;
}
SamplerInfo<float> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<float> info = new(0, 0, 2, 3, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0.5f, 0.5f, 0.5f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(16, 16, data);
info = new SamplerInfo<float>(0, 0, 13, 13, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 6f / 13f, 6f / 13f, 6f / 13f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(0, 0, 16, 16, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(1f, 0.5f, 0.5f, 0.5f), new Color(result[0], result[1], result[2], result[3]));
}
@ -114,11 +126,11 @@ public class AverageFloatSamplerTest
data[index++] = colorData[i].B;
}
SamplerInfo<float> info = new(2, 3, data[..(6 * 4)]);
SamplerInfo<float> info = new(0, 0, 2, 3, 2, 4, data[..(6 * 4)]);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(0.5833333f, 0.5f, 0.291666657f, 0.25f), new Color(result[0], result[1], result[2], result[3]));
info = new SamplerInfo<float>(16, 16, data);
info = new SamplerInfo<float>(0, 0, 16, 16, 16, 4, data);
new AverageFloatSampler().Sample(info, result);
Assert.AreEqual(new Color(0.5019531f, 0.40234375f, 0.3486328f, 0.298828125f), new Color(result[0], result[1], result[2], result[3]));
}